Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
1.
Nat Commun ; 15(1): 9497, 2024 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-39489770

RESUMO

Focal adhesions (FAs) strengthen their link with the actin cytoskeleton to resist force. Talin-vinculin association could reinforce actin anchoring to FAs by controlling actin polymerization. However, the actin polymerization activity of the talin-vinculin complex is not known because it requires the reconstitution of the mechanical and biochemical activation steps that control the association of talin and vinculin. By combining kinetic and binding assays with single actin filament observations in TIRF microscopy, we show that the association of talin and vinculin mutants, mimicking mechanically stretched talin and activated vinculin, triggers a sequential mechanism in which filaments are nucleated, capped and released to elongate. In agreement with these observations, FRAP experiments in cells co-expressing the same constitutive mutants of talin and vinculin revealed accelerated growth of stress fibers. Our findings suggest a versatile mechanism for the regulation of actin assembly in FAs subjected to various combinations of biochemical and mechanical cues.


Assuntos
Citoesqueleto de Actina , Actinas , Adesões Focais , Talina , Vinculina , Talina/metabolismo , Talina/genética , Vinculina/metabolismo , Actinas/metabolismo , Adesões Focais/metabolismo , Animais , Citoesqueleto de Actina/metabolismo , Camundongos , Ligação Proteica , Humanos , Mutação
2.
Nat Commun ; 15(1): 9270, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468080

RESUMO

Talin regulates crucial cellular functions, including cell adhesion and motility, and affects human diseases. Triggered by mechanical forces, talin plays crucial roles in facilitating the formation of focal adhesions and recruiting essential focal adhesion regulatory elements such as vinculin. The structural flexibility allows talin to fine-tune its signaling responses. This study presents our 2.7 Å cryoEM structures of talin, which surprisingly uncovers several auto-inhibitory states. Contrary to previous suggestions, our structures reveal that (1) the first and last three domains are not involved in maintaining talin in its closed state and are mobile, (2) the talin F-actin and membrane binding domain are loosely attached and thus available for binding, and (3) the main force-sensing domain is oriented with its vinculin binding sites ready for release. These structural snapshots offer insights and advancements in understanding the dynamic talin activation mechanism, which is crucial for mediating cell adhesion.


Assuntos
Adesão Celular , Microscopia Crioeletrônica , Transdução de Sinais , Talina , Vinculina , Talina/metabolismo , Talina/química , Talina/genética , Adesão Celular/fisiologia , Vinculina/metabolismo , Vinculina/química , Humanos , Sítios de Ligação , Actinas/metabolismo , Actinas/química , Ligação Proteica , Domínios Proteicos , Adesões Focais/metabolismo , Animais , Modelos Moleculares
3.
FEBS J ; 291(21): 4830-4848, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39285620

RESUMO

Heat shock factor 2 (HSF2) is a versatile transcription factor that regulates gene expression under stress conditions, during development, and in disease. Despite recent advances in characterizing HSF2-dependent target genes, little is known about the protein networks associated with this transcription factor. In this study, we performed co-immunoprecipitation coupled with mass spectrometry analysis to identify the HSF2 interactome in mouse testes, where HSF2 is required for normal sperm development. Endogenous HSF2 was discovered to form a complex with several adhesion-associated proteins, a finding substantiated by mass spectrometry analysis conducted in human prostate carcinoma PC-3 cells. Notably, this group of proteins included the focal adhesion adapter protein talin-1 (TLN1). Through co-immunoprecipitation and proximity ligation assays, we demonstrate the conservation of the HSF2-TLN1 interaction from mouse to human. Additionally, employing sequence alignment analyses, we uncovered a TLN1-binding motif in the HSF2 C terminus that binds directly to multiple regions of TLN1 in vitro. We provide evidence that the 25 C-terminal amino acids of HSF2, fused to EGFP, are sufficient to establish a protein complex with TLN1 and modify cell-cell adhesion in human cells. Importantly, this TLN1-binding motif is absent in the C-terminus of a closely related HSF family member, HSF1, which does not form a complex with TLN1. These results highlight the unique molecular characteristics of HSF2 in comparison to HSF1. Taken together, our data unveil the protein partners associated with HSF2 in a physiologically relevant context and identifies TLN1 as the first adhesion-related HSF2-interacting partner.


Assuntos
Fatores de Transcrição de Choque Térmico , Ligação Proteica , Proteômica , Talina , Talina/metabolismo , Talina/genética , Humanos , Animais , Camundongos , Masculino , Proteômica/métodos , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Células PC-3 , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico
4.
ACS Nano ; 18(40): 27590-27596, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39344156

RESUMO

Cellular mechanotransduction, a process central to cell biology, embryogenesis, adult physiology, and multiple diseases, is thought to be mediated by force-driven changes in protein conformation that control protein function. However, methods to study proteins under defined mechanical loads on a biochemical scale are lacking. We report the development of a DNA-based device in which the transition between single- and double-stranded DNA applies tension to an attached protein. Using a fragment of the talin rod domain as a test case, negative-stain electron microscopy reveals programmable extension, while pull down assays show tension-induced binding to two ligands, ARPC5L and vinculin, known to bind to cryptic sites inside the talin structure. These results demonstrate the utility of the DNA clamp for biochemical studies and potential structural analysis.


Assuntos
DNA , Talina , DNA/química , DNA/metabolismo , Talina/química , Talina/metabolismo , Ligação Proteica , Vinculina/metabolismo , Vinculina/química , Conformação Proteica , Mecanotransdução Celular
5.
Nat Commun ; 15(1): 8182, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294148

RESUMO

Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling. Using phosphoproteomics, we identified ß2 integrins as critical mediators of this mechanically regulated phagocytic switch. Macrophages lacking ß2 integrins or their downstream effectors, Talin1 and Vinculin, exhibited specific defects in phagocytic cup architecture and selective suppression of stiff cargo uptake. We conclude that integrin signaling serves as a mechanical checkpoint during phagocytosis to pair cargo rigidity to the appropriate mode of engulfment.


Assuntos
Antígenos CD18 , Macrófagos , Fagocitose , Talina , Vinculina , Animais , Talina/metabolismo , Macrófagos/metabolismo , Antígenos CD18/metabolismo , Camundongos , Vinculina/metabolismo , Transdução de Sinais , Camundongos Knockout , Camundongos Endogâmicos C57BL , Actinas/metabolismo
6.
Sci Adv ; 10(34): eadi6286, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167642

RESUMO

Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM. Mutation of a mechanosensitive site between talin 1 rod-domain helix bundles R1 and R2 increased cell spreading and tension exertion on compliant substrates. These mutations promote binding of the ARP2/3 complex subunit ARPC5L, which mediates the change in substrate stiffness sensing. Ascending aortas from mice bearing these mutations showed less fibrillar collagen, reduced axial stiffness, and lower rupture pressure. Together, these results demonstrate that cellular stiffness sensing contributes to ECM mechanics, directly supporting the mechanical homeostasis hypothesis and identifying a mechanosensitive interaction within talin that contributes to this mechanism.


Assuntos
Matriz Extracelular , Homeostase , Talina , Talina/metabolismo , Talina/genética , Animais , Camundongos , Matriz Extracelular/metabolismo , Humanos , Mecanotransdução Celular , Mutação , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Aorta/metabolismo , Ligação Proteica , Fenômenos Biomecânicos
7.
Sci Rep ; 14(1): 20175, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215026

RESUMO

Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward ß-integrin tails than talin1. Moreover, disruption of the talin2-ß-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-ß-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the ß1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.


Assuntos
Adesão Celular , Fibronectinas , Miosina não Muscular Tipo IIA , Ligação Proteica , Talina , Animais , Humanos , Cortactina/metabolismo , Fibronectinas/metabolismo , Adesões Focais/metabolismo , Integrina beta1/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Podossomos/metabolismo , Talina/metabolismo , Camundongos
8.
PLoS Comput Biol ; 20(8): e1012341, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39110765

RESUMO

Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Talina , Vinculina , Vinculina/metabolismo , Vinculina/química , Talina/metabolismo , Talina/química , Sítios de Ligação , Desdobramento de Proteína , Dobramento de Proteína , Estresse Mecânico , Humanos
9.
ACS Nano ; 18(32): 21144-21155, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088555

RESUMO

Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.


Assuntos
Adesão Celular , Matriz Extracelular , Ligantes , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Modelos Biológicos , Integrinas/metabolismo , Integrinas/química , Membrana Celular/metabolismo , Membrana Celular/química , Talina/metabolismo , Talina/química
10.
Angew Chem Int Ed Engl ; 63(42): e202409852, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39007225

RESUMO

Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin-membrane distance of 2.5 nm. We demonstrate that QD-FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub-nanometer accuracy.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Talina , Talina/metabolismo , Talina/química , Pontos Quânticos/química , Técnicas Biossensoriais
11.
Nat Commun ; 15(1): 6131, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033133

RESUMO

One question in lymphocyte homing is how integrins are rapidly activated to enable immediate arrest of fast rolling lymphocytes upon encountering chemokines at target vascular beds given the slow chemokine-induced integrin inside-out activation. Herein we demonstrate that chemokine CCL25-triggered Ca2+ influx induces T cell membrane-proximal external Ca2+ concentration ([Ca2+]ex) drop in 6 s from physiological concentration 1.2 mM to 0.3 mM, a critical extracellular Ca2+ threshold for inducing αLß2 activation, triggering rapid αLß2 activation and T cell arrest before occurrence of αLß2 inside-out activation. Talin knockdown inhibits the slow inside-out activation of αLß2 but not [Ca2+]ex drop-triggered αLß2 quick activation. Blocking Ca2+ influx significantly suppresses T cell rolling-to-arrest transition and homing to skin lesions in a mouse psoriasis model, thus alleviating skin inflammation. [Ca2+]ex decrease-triggered rapid integrin activation bridges the gap between initial chemokine stimulation and slow integrin inside-out activation, ensuring immediate lymphocyte arrest and subsequent diapedesis on the right location.


Assuntos
Cálcio , Linfócitos T , Talina , Animais , Cálcio/metabolismo , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Humanos , Psoríase/metabolismo , Psoríase/imunologia , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo , Integrinas/metabolismo , Sinalização do Cálcio , Pele/metabolismo
12.
Nat Commun ; 15(1): 4986, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862544

RESUMO

Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.


Assuntos
Membrana Celular , Adesões Focais , Talina , Vinculina , Talina/metabolismo , Talina/química , Adesões Focais/metabolismo , Membrana Celular/metabolismo , Vinculina/metabolismo , Vinculina/química , Humanos , Animais , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Integrinas/metabolismo , Integrinas/química , Citoplasma/metabolismo , Ligação Proteica , Separação de Fases
13.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38889096

RESUMO

Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.


Assuntos
Movimento Celular , Matriz Extracelular , Adesões Focais , Integrinas , Talina , Adesões Focais/metabolismo , Animais , Integrinas/metabolismo , Talina/metabolismo , Camundongos , Matriz Extracelular/metabolismo , Vinculina/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Linfocitária , Adesão Celular
14.
Arterioscler Thromb Vasc Biol ; 44(8): 1799-1812, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38899470

RESUMO

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.


Assuntos
Aterosclerose , Adesão Celular , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides , Talina , Animais , Talina/metabolismo , Talina/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Macrófagos/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/imunologia , Doenças da Aorta/prevenção & controle , Masculino , Antígenos CD18/metabolismo , Antígenos CD18/genética , Integrina alfa4beta1/metabolismo , Integrina alfa4beta1/genética , Monócitos/metabolismo , Monócitos/imunologia , Placa Aterosclerótica , Camundongos , Células Cultivadas , Aorta/patologia , Aorta/metabolismo , Transdução de Sinais
15.
Front Immunol ; 15: 1400819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863696

RESUMO

Background: Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives: We aimed to explore the function of integrin activating molecules in SSc. Methods: Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results: We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin ß1 and ß5 in SSc. Conclusions: Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.


Assuntos
Fibrose , Escleroderma Sistêmico , Pele , Talina , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Cultivadas , Fibroblastos/metabolismo , Fibrose/etiologia , Fibrose/genética , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Pele/metabolismo , Pele/patologia , Talina/metabolismo , Talina/genética
16.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772370

RESUMO

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Assuntos
Integrinas , Talina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adesão Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Imagem Individual de Molécula , Talina/metabolismo , Talina/química
17.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769437

RESUMO

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Assuntos
Adesões Focais , Cinesinas , Microtúbulos , Fatores de Troca de Nucleotídeo Guanina Rho , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animais
18.
J Cell Sci ; 137(9)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587458

RESUMO

Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proteínas do Citoesqueleto , Ligação Proteica , Talina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Células MCF-7 , Microtúbulos/metabolismo , Fosforilação , Talina/metabolismo
19.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662776

RESUMO

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Assuntos
Actinas , Adesão Celular , Matriz Extracelular , Talina , Animais , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Actinas/metabolismo , Actinas/genética , Sítios de Ligação , Adesão Celular/genética , Citoesqueleto/metabolismo , Citoesqueleto/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Integrinas/genética , Mutação , Ligação Proteica , Talina/metabolismo , Talina/genética
20.
Biomaterials ; 308: 122542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547833

RESUMO

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Talina , Vinculina , Proteínas de Sinalização YAP , Talina/metabolismo , Vinculina/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Adesões Focais/metabolismo , Camundongos , Fibroblastos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...