Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.884
Filtrar
1.
Mikrochim Acta ; 191(9): 525, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120793

RESUMO

A dual-emission ratiometric fluorescence sensor (CDs@CdTe@MIP) with a self-calibration function was successfully constructed for AMO detection. In the CDs@CdTe@MIP system, non-imprinted polymer-coated CDs and molecule-imprinted polymer-coated CdTe quantum dots were used as the reference signal and response elements, respectively. The added AMO quenched the fluorescence of the CdTe quantum dots, whereas the fluorescence intensity of the CDs remained almost unchanged. The AMO concentration was monitored using the fluorescence intensity ratio (log(I647/I465)0/(I647/I465)) to reduce interference from the testing environment. The sensor with a low detection limit of 0.15 µg/L enabled detection of the AMO concentration within 6 min. The ratiometric fluorescence sensor was used to detect AMO in spiked pork samples; it exhibited a high recovery efficiency and relative standard deviation (RSD) of 97.94-103.70% and 3.77-4.37%, respectively. The proposed highly sensitive and selective platform opens avenues for sensitive, reliable, and rapid determination of pharmaceuticals in the environment and food safety monitoring using ratiometric sensors.


Assuntos
Amoxicilina , Compostos de Cádmio , Limite de Detecção , Impressão Molecular , Pontos Quânticos , Espectrometria de Fluorescência , Telúrio , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Espectrometria de Fluorescência/métodos , Amoxicilina/análise , Amoxicilina/química , Corantes Fluorescentes/química , Sulfetos/química , Animais , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos/química , Suínos
2.
Nanoscale ; 16(28): 13677-13686, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38967236

RESUMO

Leptospirosis is a global public health problem caused by Gram-negative pathogenic bacteria belonging to the genus Leptospira. The disease is transmitted through the urine of infected animals, which contaminates water and soil, leading to the infection of other animals and humans. Currently, several approaches exist to detect these bacteria; however, a new sensitive method for the live-cell imaging of Leptospira is required. In this study, we report the green synthesis of cadmium telluride quantum dots (CdTe QDs) which are unique fluorescent nanocrystals with a high fluorescence quantum yield capable of modifying cell surfaces and are biocompatible with cells. The fabrication of QDs with concanavalin A (ConA), a carbohydrate-binding lectin and known biological probe for Gram-negative bacteria, produced ConA-QDs which can effectively bind on Leptospira and exhibit strong fluorescence under simple fluorescence microscopy, allowing the live-cell imaging of the bacteria. Overall, we performed the simple synthesis of ConA-QDs and demonstrated their potential use as versatile fluorescent probes for the live-cell imaging of Leptospira. This technique could be further applied to track leptospiral cells and study the infection mechanism, contributing to a more thorough understanding of leptospirosis and how to control it in the future.


Assuntos
Leptospira , Pontos Quânticos , Pontos Quânticos/química , Corantes Fluorescentes/química , Compostos de Cádmio/química , Telúrio/química , Concanavalina A/química , Canavalia/química , Materiais Biocompatíveis/química , Microscopia de Fluorescência
3.
Radiat Prot Dosimetry ; 200(11-12): 1189-1196, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016475

RESUMO

The energy produced from other sources which does neither come from fossil fuels nor contribute in the production of any greenhouse effects that causes climate changes is called as 'Alternative Energy'. Since our world's primary energy sources such as coal, oil and natural gases are exploited to a greater extent, we are in an urge to switch to an alternative energy. Scattered radiation, a common byproduct in radiation therapy and diagnostic radiology, presents a unique opportunity in the realm of alternative energy. As a potential source of interference, scattered radiation can be repurposed to contribute to sustainable energy solutions. Addressing the issue of scattered radiation wastage and utilizing it for alternative energy, an activated carbon-based solar cell emerges as a solution. This solar cell, a conventional one in which cadmium Telluride is replaced by coconut shell based carbon material, has the potential in producing a significant amount of electrical energy by utilizing scattered radiation from radiotherapy and radiology machines. Furthermore, this activated carbon based-material undergoes thorough characterization into various teletherapy and radiology machines, and it can be seamlessly integrated into clinical practices.


Assuntos
Energia Renovável , Humanos , Energia Solar , Carbono/química , Radioterapia/métodos , Telúrio/química , Carvão Vegetal/química
4.
J Radiol Prot ; 44(3)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39053496

RESUMO

This study explores the conversion coefficients from air kerma to operational quantities for radiation protection, using x-ray spectrometry for the narrow-beam qualities below 300 keV as defined by ISO 4037-1. By employing custom spectral correction algorithms combined with modern cadmium telluride (CdTe) semiconductor detectors, we effectively corrected spectral distortions caused by detection processes, ensuring more reliable measurements. These measurements are crucial for meeting radiation protection standards. The study also analyses the sources of uncertainty associated with the determination of conversion coefficients, thereby providing improved accuracy and reproducibility in photon dosimetry.


Assuntos
Proteção Radiológica , Algoritmos , Radiometria/métodos , Reprodutibilidade dos Testes , Telúrio/química , Compostos de Cádmio/química , Ar , Doses de Radiação
5.
Anal Chim Acta ; 1316: 342824, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969403

RESUMO

BACKGROUND: As is well documented, prostate cancer (PCa) being the second most prevalent cancer in men worldwide, emphasizing the importance of early diagnosis for prognosis. However, conventional prostate-specific antigen (PSA) testing lacks sufficient diagnostic efficiency due to its relatively low sensitivity and limited detection range. Mounting evidence suggests that matrix metalloproteinase 9 (MMP-9) expression increases with the aggressive behavior of PCa, highlighting the significance of detecting the serum level of MMP-9 in patients. Developing a non-immune rapid, portable MMP-9 detection strategy and investigating its representativeness of PCa serum markers hold considerable implications. RESULTS: Herein, our study developed a simple, homogeneous dual fluorescence and smartphone-assisted red-green-blue (RGB) visualization peptide sensor of MMP-9, utilizing cadmium telluride quantum dots (CdTe QDs) and calcein as signal reporters. The essence of our approach revolves around the proteolytic ability of MMP-9, exploiting the selective recognition of molecule-Cu2+ complexes with different molecular weights by CdTe QDs and calcein. Under optimized conditions, the limits of detection (LODs) for MMP-9 were 0.5 pg/mL and 6 pg/mL using fluorescence and RGB values readouts, respectively. Indeed, this strategy exhibited robust specificity and anti-interference ability. MMP-9 was quantified in 42 clinical serum samples via dual-fluorescence analysis, with 12 samples being visually identified with a smartphone. According to receiver operating characteristic curve (ROC) analysis, its sensitivity and specificity were 90 % and 100 %, respectively, with an area under curve (AUC) value of 0.903. SIGNIFICANCE AND NOVELTY: Of note, the results of the aforementioned analysis were highly consistent with the serum level of PSA, clinical color Doppler flow imaging (CDFI), and histopathological results. Therefore, this simple, rapid, homogeneous fluorescence and visualization strategy can reliably measure MMP-9 levels and exhibit promising potential in point-of-care testing (POCT) applications for PCa patients.


Assuntos
Compostos de Cádmio , Corantes Fluorescentes , Metaloproteinase 9 da Matriz , Pontos Quânticos , Telúrio , Humanos , Corantes Fluorescentes/química , Telúrio/química , Metaloproteinase 9 da Matriz/sangue , Pontos Quânticos/química , Compostos de Cádmio/química , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Smartphone , Espectrometria de Fluorescência , Limite de Detecção
6.
ACS Nano ; 18(28): 18522-18533, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963059

RESUMO

The abuse or misuse of antibiotics in clinical and agricultural settings severely endangers human health and ecosystems, which has raised profound concerns for public health worldwide. Trace detection and reliable discrimination of commonly used fluoroquinolone (FQ) antibiotics and their analogues have consequently become urgent to guide the rational use of antibiotic medicines and deliver efficient treatments for associated diseases. Herein, we report a wearable eye patch integrated with a quadruplex nanosensor chip for noninvasive detection and discrimination of primary FQ antibiotics in tears during routine eyedrop treatment. A set of dual-mode fluorescent nanoprobes of red- or green-emitting CdTe quantum dots integrated with lanthanide ions and a sensitizer, adenosine monophosphate, were constructed to provide an enhanced fluorescence up to 45-fold and nanomolar sensitivity toward major FQs owing to the aggregation-regulated antenna effect. The aggregation-driven, CdTe-Ln(III)-based microfluidic sensor chip is highly specific to FQ antibiotics against other non-FQ counterparts or biomolecular interfering species and is able to accurately discriminate nine types of FQ or non-FQ eyedrop suspensions using linear discriminant analysis. The prototyped wearable sensing detector has proven to be biocompatible and nontoxic to human tissues, which integrates the entire optical imaging modules into a miniaturized, smartphone-based platform for field use and reduces the overall assay time to ∼5 min. The practicability of the wearable eye patch was demonstrated through accurate quantification of antibiotics in a bactericidal event and the continuous profiling of FQ residues in tears after using a typical prescription antibiotic eyedrop. This technology provides a useful supplement to the toolbox for on-site and real-time examination and regulation of inappropriate daily drug use that might potentially lead to long-term antibiotic abuse and has great implications in advancing personal healthcare techniques for the regulation of daily medication therapy.


Assuntos
Antibacterianos , Fluoroquinolonas , Pontos Quânticos , Lágrimas , Dispositivos Eletrônicos Vestíveis , Humanos , Antibacterianos/análise , Lágrimas/química , Lágrimas/efeitos dos fármacos , Fluoroquinolonas/análise , Pontos Quânticos/química , Telúrio/química , Compostos de Cádmio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Corantes Fluorescentes/química , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip
7.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063040

RESUMO

There is an urgent need to develop safer and more effective modalities for the treatment of numerous pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Over the past decades, cyclodextrins (CDs) have gathered great attention as potential drug carriers due to their ability to enhance their bioactivities and properties. Likewise, selenium (Se) and tellurium (Te) have been extensively studied during the last decades due to their possible therapeutical applications. Although there is limited research on the relationship between Se and Te and CDs, herein, we highlight different representative examples of the advances related to this topic as well as give our view on the future directions of this emerging area of research. This review encompasses three different aspects of this relationship: (1) modification of the structure of the different CDs; (2) formation of host-guest interaction complexes of naïve CDs with Se and Te derivatives in order to overcome specific limitations of the latter; and (3) the use of CDs as catalysts to achieve novel Se and Te compounds.


Assuntos
Ciclodextrinas , Selênio , Telúrio , Telúrio/química , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Selênio/química , Humanos , Portadores de Fármacos/química , Animais
8.
J Colloid Interface Sci ; 674: 841-851, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955015

RESUMO

Due to the complexity of regulatory networks of disease-related biomarkers, developing simple, sensitive, and accurate methods has remained challenging for precise diagnosis. Herein, an "AND" logic gates DNA molecular machine (LGDM) was constructed, which was powered by the catalytic hairpin assembly (CHA). It was coupled with dual-emission CdTe quantum dots (QDs)-based cation exchange reaction (CER) for label-free, sensitive, and ratiometric fluorescence detection of APE1 and miRNA biomarkers. Benefiting from synergistic signal amplification strategies and a ratiometric fluorometric output mode, this LGDM enables accurate logic computing with robust and significant output signals from weak inputs. It offers improved sensitivity and selectivity even in cell extracts. Using dual-emission spectra CdTe QDs, with a ratiometric signal output mode, ensured good stability and effectively prevented false-positive signals from intrinsic biological interferences compared to the approach relying on a single signal output mode, which enabled the LGDM to achieve rapid, efficient, and accurate natural drug screening against APE1 inhibitors in vitro and cells. The developed method provides impetus to streamline research related to miRNA and APE1, offering significant promise for widespread application in drug development and clinical analysis.


Assuntos
Compostos de Cádmio , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MicroRNAs , Pontos Quânticos , Telúrio , Humanos , MicroRNAs/análise , MicroRNAs/antagonistas & inibidores , Telúrio/química , Pontos Quânticos/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Compostos de Cádmio/química , Espectrometria de Fluorescência , DNA/química , Fluorescência , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Avaliação Pré-Clínica de Medicamentos , Computadores Moleculares
9.
Biosens Bioelectron ; 261: 116493, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901393

RESUMO

Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Colesterol , DNA Catalítico , Células Neoplásicas Circulantes , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , Colesterol/sangue , Colesterol/análise , Limite de Detecção , Pontos Quânticos/química , Receptor ErbB-2/análise , Mucina-1/análise , Mucina-1/sangue , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Telúrio/química , Compostos de Cádmio/química
10.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888689

RESUMO

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Compostos de Cádmio , Técnicas Eletroquímicas , Ouro , Nanopartículas Metálicas , Pontos Quânticos , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos de Cádmio/química , Pontos Quânticos/química , Ouro/química , Nanopartículas Metálicas/química , Telúrio/química , Imidazóis/química , Proteínas Associadas a CRISPR/química , Limite de Detecção , Zeolitas/química , Endodesoxirribonucleases/química , Estruturas Metalorgânicas/química , Processos Fotoquímicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
11.
Chem Res Toxicol ; 37(7): 1210-1217, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38855932

RESUMO

Tellurium (Te) is a chalcogen element like sulfur and selenium. Although it is unclear whether Te is an essential nutrient in organisms, unique Te metabolic pathways have been uncovered. We have previously reported that an unknown Te metabolite (UKTe) was observed in plants exposed to tellurate, a highly toxic Te oxyanion, by liquid chromatography-inductively coupled plasma mass spectrometer (LC-ICP-MS). In the present study, we detected UKTe in tellurate-exposed broccoli (Brassica oleracea var. italica) by LC-ICP-MS and identified it as gluconic acid-3-tellurate (GA-3Te) using electrospray ionization mass spectrometer with quadrupole-Orbitrap detector and tandem MS analysis, the high-sensitivity and high-resolution mass spectrometry for organic compounds. We also found that GA-3Te was produced from one gluconic acid and one tellurate molecule by direct complexation in an aqueous solution. GA-3Te was significantly less toxic than tellurate on plant growth. This study is the first to identify the Te metabolite GA-3Te in plants and will contribute to the investigation of tellurate detoxification pathways. Moreover, gluconic acid, a natural and biodegradable organic compound, is expected to be applicable to eco-friendly remediation strategies for tellurate contamination.


Assuntos
Brassica , Telúrio , Brassica/metabolismo , Brassica/química , Telúrio/metabolismo , Telúrio/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas , Espectrometria de Massas em Tandem , Gluconatos/metabolismo , Gluconatos/química , Estrutura Molecular
12.
Luminescence ; 39(6): e4799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858760

RESUMO

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Telúrio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Telúrio/química , Telúrio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Processos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Manganês/química , Manganês/farmacologia , Estanho/química , Estanho/farmacologia , Tamanho da Partícula , Óxidos/química , Óxidos/farmacologia
13.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829117

RESUMO

Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method. The thin films were deposited on soda lime glass substrates at ambient temperature. The substrates were first washed using water and soap, ultrasonically cleaned with methanol, acetone, ethanol, and deionized water for 10 min, dried with nitrogen gas and hot plate, and finally treated under UV ozone for 10 min to remove residues before the coating process. A sputter target of Bi2Te3 and Sb2Te3 with Argon gas was used, and pre-sputtering was done to clean the target's surface. Then, a few clean substrates were loaded into the sputtering chamber, and the chamber was vacuumed until the pressure reached 2 x 10-5 Torr. The thin films were deposited for 60 min with Argon flow of 4 sccm and RF power at 75 W and 30 W for Bi2Te3 and Sb2Te3, respectively. This method resulted in highly uniform n-type Bi2Te3 and p-type Sb2Te3 thin films.


Assuntos
Antimônio , Bismuto , Telúrio , Bismuto/química , Antimônio/química , Telúrio/química , Ondas de Rádio
14.
Biosens Bioelectron ; 261: 116476, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852325

RESUMO

DNA hydrogel represents a noteworthy biomaterial. The preparation of biosensors by combining DNA hydrogel with electrochemiluminescence can simplify the modification process and raise the experimental efficiency. In this study, an electrochemiluminescence (ECL) biosensor based on DNA hydrogel was fabricated to detect adenosine triphosphate (ATP) simply and quickly. CdTe-Ru@SiO2 nanospheres capable of ECL resonance energy transfer (RET) were synthesized and encapsulated CdTe-Ru@SiO2 in the DNA hydrogel to provide strong and stable ECL signals. DNA hydrogel avoided the labeling of ECL signal molecules. The aptamer of ATP as the linker of the hydrogel for the specificity of ATP detection. The cross-linked structure of the aptamer and the polymer chains was opened by ATP, and then the decomposition of the DNA hydrogel initiated the escape of CdTe-Ru@SiO2 to generate an ECL signal. The designed biosensor detected ATP without too much modification and complex experimental steps on the electrode surface, with good specificity and stability, and a wide linear range. The detection range was 10-5000 nM, and the detection limit was 6.68 nM (S/N = 3). The combination of DNA hydrogel and ECL biosensor provided a new way for clinical detection of ATP and other biomolecule.


Assuntos
Trifosfato de Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Hidrogéis , Limite de Detecção , Medições Luminescentes , Dióxido de Silício , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Hidrogéis/química , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , DNA/química , Dióxido de Silício/química , Telúrio/química , Compostos de Cádmio/química , Humanos
15.
Food Chem ; 457: 140190, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924915

RESUMO

An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Contaminação de Alimentos , Ocratoxinas , Pontos Quânticos , Software , Transferência Ressonante de Energia de Fluorescência/instrumentação , Ocratoxinas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Contaminação de Alimentos/análise , Aflatoxina B1/análise , Pontos Quânticos/química , Zea mays/química , Fluorescência , Telúrio/química , Dissulfetos , Molibdênio
16.
Anal Sci ; 40(8): 1521-1528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740714

RESUMO

Herein, a ratiometric fluorimetric nanosensor is introduced for the sensitive and selective analysis of chlorpromazine (CPZ) via employing blue-emitting B-doped carbon dots (B-CDs) as the reference fluorophore and green-emitting CdTe capped thioglycolic acid (TGA) quantum dots (TGA-CdTe-QDs) as the specific recognition probe. The sensor exhibits dual emission centered at 440 and 560 nm, under a single excitation wavelength of 340 nm. Upon the addition of ultra-trace amount of CPZ, the fluorescence signal of TGA-CdTe-QDs declines due to electron transfer process from excited TGA-CdTe-QDs to CPZ molecules, whereas the fluorescence peak of B-CDs is unaffected. Therefore, a new fluorimetric platform was prepared for the assay of CPZ in the range of 2.2 × 10-10 to 5.0 × 10-9 M with a detection limit of 1.3 × 10-10 M. Moreover, the practicability of the designed strategy was investigated for the detection of CPZ in biological samples and the results demonstrate that it possesses considerable potential to be utilized in practical applications.


Assuntos
Compostos de Cádmio , Carbono , Clorpromazina , Pontos Quânticos , Espectrometria de Fluorescência , Pontos Quânticos/química , Clorpromazina/análise , Carbono/química , Compostos de Cádmio/química , Limite de Detecção , Telúrio/química , Humanos , Fluorescência , Nanotecnologia , Tioglicolatos/química
17.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780022

RESUMO

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Telúrio , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/imunologia , Técnicas Biossensoriais/métodos , Telúrio/química , Humanos , Dengue/diagnóstico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Cisteína/química , Compostos de Cádmio/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Limite de Detecção , Microscopia de Força Atômica
18.
Anal Chim Acta ; 1310: 342716, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811135

RESUMO

BACKGROUND: Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS: We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 µM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE: Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.


Assuntos
DNA , Grafite , Chumbo , Nanosferas , Pontos Quânticos , Dióxido de Silício , Espectrometria de Fluorescência , Pontos Quânticos/química , Chumbo/análise , Chumbo/química , Grafite/química , Dióxido de Silício/química , Nanosferas/química , DNA/química , Compostos de Cádmio/química , Limite de Detecção , Telúrio/química , Aptâmeros de Nucleotídeos/química , Fluorescência , Técnicas Biossensoriais/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124451, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761472

RESUMO

Organophosphorus pesticides (OPPs) constitute the most widely employed class of pesticides. However, the prevalent use of OPPs, while advantageous, raises concerns due to their toxicity, posing serious threats to food safety. Chemical sensors utilizing quantum dots (QDs) demonstrate promising applications in rapidly detecting OPPs residues, thereby facilitating efficient inspection of agricultural products. In this study, we employ an aqueous synthesis approach to prepare low toxic CdTe@ZnS QDs with stable fluorescence properties. To mitigate the risk of imprecise measurements stemming from the inherent susceptibility of fluorescence to quenching, we have adopted the principle of fluorescence resonance energy transfer (FRET) for the construction of the turn-on quantum dot sensor. With a detection limit for chlorpyrifos as low as 10 ppb (10 µg/L), the QDs sensor exhibits notable resistance to interference from various pesticides. Application of this system to detect organophosphorothioate pesticides in apples produced results consistent with those obtained from high-performance liquid chromatography (HPLC) detection, affirming the promising application prospects of this sensing system for the rapid detection of OPPs residues.


Assuntos
Compostos de Cádmio , Transferência Ressonante de Energia de Fluorescência , Compostos Organofosforados , Praguicidas , Pontos Quânticos , Sulfetos , Telúrio , Compostos de Zinco , Pontos Quânticos/química , Compostos de Cádmio/química , Compostos de Zinco/química , Praguicidas/análise , Sulfetos/química , Transferência Ressonante de Energia de Fluorescência/métodos , Telúrio/química , Compostos Organofosforados/análise , Limite de Detecção , Malus/química , Clorpirifos/análise , Contaminação de Alimentos/análise
20.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775232

RESUMO

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Assuntos
Encéfalo , Pontos Quânticos , Pontos Quânticos/química , Encéfalo/diagnóstico por imagem , Fótons , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Cádmio/química , Sulfetos/química , Camundongos , Compostos de Zinco/química , Telúrio/química , Compostos de Selênio/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...