Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062925

RESUMO

Telangiectases and arteriovenous malformations (AVMs) are the characteristic lesions of Hereditary Hemorrhagic Telangiectasia (HHT). Somatic second-hit loss-of-function variations in the HHT causative genes, ENG and ACVRL1, have been described in dermal telangiectasias. It is unclear if somatic second-hit mutations also cause the formation of AVMs and nasal telangiectasias in HHT. To investigate the genetic mechanism of AVM formation in HHT, we evaluated multiple affected tissues from fourteen individuals. DNA was extracted from fresh/frozen tissue of 15 nasal telangiectasia, 4 dermal telangiectasia, and 9 normal control tissue biopsies, from nine unrelated individuals with HHT. DNA from six formalin-fixed paraffin-embedded (FFPE) AVM tissues (brain, lung, liver, and gallbladder) from five individuals was evaluated. A 736 vascular malformation and cancer gene next-generation sequencing (NGS) panel was used to evaluate these tissues down to 1% somatic mosaicism. Somatic second-hit mutations were identified in three in four AVM biopsies (75%) or half of the FFPE (50%) samples, including the loss of heterozygosity in ENG in one brain AVM sample, in which the germline mutation occurred in a different allele than a nearby somatic mutation (both are loss-of-function mutations). Eight of nine (88.9%) patients in whom telangiectasia tissues were evaluated had a somatic mutation ranging from 0.68 to 1.96% in the same gene with the germline mutation. Six of fifteen (40%) nasal and two of four (50%) dermal telangiectasia had a detectable somatic second hit. Additional low-level somatic mutations in other genes were identified in several telangiectasias. This is the first report that nasal telangiectasias and solid organ AVMs in HHT are caused by very-low-level somatic biallelic second-hit mutations.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Adulto , Endoglina/genética , Idoso , Mutação , Receptores de Activinas Tipo II/genética , Telangiectasia/genética , Telangiectasia/patologia , Sequenciamento de Nucleotídeos em Larga Escala
2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892351

RESUMO

Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-ß pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year-old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.


Assuntos
Células Endoteliais , Artéria Pulmonar , Veias Pulmonares , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Criança , Artéria Pulmonar/anormalidades , Artéria Pulmonar/patologia , Veias Pulmonares/anormalidades , Veias Pulmonares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Mutação , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Malformações Arteriovenosas/metabolismo , Transição Epitelial-Mesenquimal/genética , Transplante de Pulmão , Fístula Arteriovenosa/patologia , Fístula Arteriovenosa/genética , Pulmão/patologia , Pulmão/irrigação sanguínea , Feminino
3.
Angiogenesis ; 27(3): 501-522, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727966

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.


Assuntos
Receptores de Activinas Tipo II , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Humanos , Camundongos , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Transcrição Gênica , Ligantes , Células Endoteliais/metabolismo
4.
Eur J Hum Genet ; 32(6): 731-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627541

RESUMO

Constitutional loss of SMAD4 function results in Juvenile Polyposis-Hereditary Haemorrhagic Telangiectasia Overlap Syndrome (JP-HHT). A retrospective multi-centre case-note review identified 28 patients with a pathogenic SMAD4 variant from 13 families across all Scottish Clinical Genetics Centres. This provided a complete clinical picture of the Scottish JP-HHT cohort. Colonic polyps were identified in 87% (23/28) and gastric polyps in 67% (12/18) of screened patients. Complication rates were high: 43% (10/23) of patients with polyps required a colectomy and 42% (5/12) required a gastrectomy. Colorectal cancer occurred in 25% (7/28) of patients, at a median age of 33 years. Pulmonary arteriovenous malformations were identified in 42% (8/19) of screened patients. 88% (23/26) and 81% (17/21) of patients exhibited JP and HHT features respectively, with 70% (14/20) demonstrating features of both conditions. We have shown that individuals with a pathogenic SMAD4 variant are all at high risk of both gastrointestinal neoplasia and HHT-related vascular complications, requiring a comprehensive screening programme.


Assuntos
Polipose Intestinal , Proteína Smad4 , Telangiectasia Hemorrágica Hereditária , Humanos , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Polipose Intestinal/genética , Polipose Intestinal/congênito , Polipose Intestinal/patologia , Polipose Intestinal/diagnóstico , Adolescente , Escócia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Síndromes Neoplásicas Hereditárias/diagnóstico , Criança , Mutação , Estudos Retrospectivos , Idoso
5.
J Med Genet ; 61(8): 734-740, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38575304

RESUMO

BACKGROUND: Both hereditary haemorrhagic telangiectasia (HHT) and juvenile polyposis syndrome (JPS) are known to be caused by SMAD4 pathogenic variants, with overlapping symptoms for both disorders in some patients. Additional connective tissue disorders have also been reported. Here, we describe carriers of SMAD4 variants followed in an HHT reference centre to further delineate the phenotype. METHODS: Observational study based on data collected from the Clinical Investigation for the Rendu-Osler Cohort database. RESULTS: Thirty-three participants from 15 families, out of 1114 patients with HHT, had an SMAD4 variant (3%).Regarding HHT, 26 out of 33 participants (88%) had a definite clinical diagnosis based on Curaçao criteria. Complication frequencies were as follows: epistaxis (n=27/33, 82%), cutaneous telangiectases (n=19/33, 58%), pulmonary arteriovenous malformations (n=17/32, 53%), hepatic arteriovenous malformations (AVMs) (n=7/18, 39%), digestive angiodysplasia (n=13/22, 59%). No cerebral AVMs were diagnosed.Regarding juvenile polyposis, 25 out of 31 participants (81%) met the criteria defined by Jass et al for juvenile polyposis syndrome. Seven patients (21%) had a prophylactic gastrectomy due to an extensive gastric polyposis incompatible with endoscopic follow-up, and four patients (13%) developed a digestive cancer.Regarding connective tissue disorders, 20 (61%) had at least one symptom, and 4 (15%) participants who underwent echocardiography had an aortic dilation. CONCLUSION: We describe a large cohort of SMAD4 variant carriers in the context of HHT. Digestive complications are frequent, early and diffuse, justifying endoscopy every 2 years. The HHT phenotype, associating pulmonary and hepatic AVMs, warrants systematic screening. Connective tissue disorders broaden the phenotype associated with SMAD4 gene variants and justify systematic cardiac ultrasound and skeletal complications screening.


Assuntos
Fenótipo , Proteína Smad4 , Telangiectasia Hemorrágica Hereditária , Humanos , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Polipose Intestinal/genética , Polipose Intestinal/congênito , Polipose Intestinal/patologia , Heterozigoto , Idoso , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Síndromes Neoplásicas Hereditárias/diagnóstico , Adolescente , Predisposição Genética para Doença , Mutação/genética , Adulto Jovem
6.
Blood ; 143(22): 2314-2331, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457357

RESUMO

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Assuntos
Receptores de Activinas Tipo II , Códon sem Sentido , Endoglina , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Endoglina/genética , Endoglina/metabolismo , Receptores de Activinas Tipo II/genética , Proteína Smad4/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação , Masculino , Feminino , Degradação do RNAm Mediada por Códon sem Sentido
7.
Eur J Med Genet ; 68: 104919, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355093

RESUMO

Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, is a dominant inherited vascular disorder. The clinical diagnosis is based on the Curaçao criteria and pathogenic variants in the ENG and ACVRL1 genes are responsible for most cases of HHT. Four families with a negative targeted gene panel and selected by a multidisciplinary team were selected and whole-genome sequencing was performed according to the recommendations of the French National Plan for Genomic Medicine. Structural variations were confirmed by standard molecular cytogenetic analysis (FISH). In two families with a definite diagnosis of HHT, we identified two different paracentric inversions of chromosome 9, both disrupting the ENG gene. These inversions are considered as pathogenic and causative for the HHT phenotype of the patients. This is the first time structural variations are reported to cause HHT. As such balanced events are often missed by exon-based sequencing (panel, exome), structural variations may be an under-recognized cause of HHT. Genome sequencing for the detection of these events could be suggested for patients with a definite diagnosis of HHT and in whom no causative pathogenic variant was identified.


Assuntos
Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Mutação , Endoglina/genética , Sequência de Bases , Cromossomos Humanos Par 9/genética , Receptores de Activinas Tipo II/genética
8.
Eur J Intern Med ; 119: 99-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689549

RESUMO

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disease inherited in an autosomal dominant manner. Disease-causing variants in endoglin (ENG) and activin A receptor type II-like 1 (ACVRL1) genes are detected in around 90% of the patients; also 2% of patients harbor pathogenic variants at SMAD4 and GDF2. Importantly, the genetic cause of 8% of patients with clinical HHT remains unknown. Here, we present new putative genetic drivers of HHT. METHODS: To identify new HHT genetic drivers, we performed exome sequencing of 19 HHT patients and relatives with unknown HHT genetic etiology. We applied a multistep filtration strategy to catalog deleterious variants and prioritize gene candidates based on their known relevance in endothelial cell biology. Additionally, we performed in vitro validation of one of the identified variants. RESULTS: We identified variants in the INHA, HIF1A, JAK2, DNM2, POSTN, ANGPTL4, FOXO1 and SMAD6 genes as putative drivers in HHT. We have identified the SMAD6 p.(Glu407Lys) variant in one of the families; this is a loss-of-function variant leading to the activation of the BMP/TGFß signaling in endothelial cells. CONCLUSIONS: Variants in these genes should be considered for genetic testing in patients with HHT phenotype and negative for ACVRL1/ENG mutations.


Assuntos
Células Endoteliais , Telangiectasia Hemorrágica Hereditária , Humanos , Células Endoteliais/patologia , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Mutação , Testes Genéticos , Endoglina/genética , Receptores de Activinas Tipo II/genética
9.
Circulation ; 149(12): 944-962, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126211

RESUMO

BACKGROUND: Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS: We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS: We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS: This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Camundongos , Animais , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Malformações Arteriovenosas/metabolismo , Células Endoteliais/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Pontos de Checagem do Ciclo Celular
10.
J Med Case Rep ; 17(1): 219, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237319

RESUMO

BACKGROUND: Brain arteriovenous malformations (AVMs) are rare congenital developmental vascular lesions, and often presents with symptoms upon rupture. The controversy exists as to whether pregnancy confers an increased risk of intracranial hemorrhage. The diagnosis of brain AVMs, in the absence of brain imaging, is challenging in resource-limited settings, particularly in sub-Saharan Africa. CASE PRESENTATION: A 22-year old black African woman, primigravida at 14 weeks of gestation, presented with a history of persistent throbbing headache which was treated at primary health care facilities with analgesics and anti-migraine medications without relief. She later developed severe headache 2 weeks prior to admission and one-day history of serial partial generalized tonic-clonic seizures which were followed by post-ictal confusion and persistent right upper limb weakness. Initial evaluation revealed her to be pregnant and she later underwent a brain magnetic resonance angiography (MRA) at a university teaching hospital which revealed bleeding bilateral parietal AMVs with intracerebral haematoma and associated perilesional vasogenic oedema. The patient was managed conservatively using antifibrinolytic drugs and prophylactic anti-seizure drugs. Seven months later, she underwent a control brain MRA which revealed resolution of intracranial haematoma and associated vasogenic oedema and had her seizures well controlled. The headache had subsided and the pregnancy was allowed to continue to term under close obstetric and neurological observation. On follow up visits she reported episodes of nasal bleeding which upon ENT examination revealed nasal AVMs, suggesting the diagnosis of hereditary hemorrhagic telangiectasia (HHT). CONCLUSION: AVMs are rare but should prompt suspicion in young patients with atypical Central Nervous System (CNS) manifestations without evident underlying causes.


Assuntos
Malformações Arteriovenosas Intracranianas , Telangiectasia Hemorrágica Hereditária , Gravidez , Feminino , Humanos , Adulto Jovem , Adulto , Malformações Arteriovenosas Intracranianas/complicações , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/terapia , Encéfalo/patologia , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/patologia , Hemorragias Intracranianas/complicações , Hemorragia Cerebral/etiologia , Cefaleia/etiologia
11.
Angiogenesis ; 26(4): 493-503, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37219736

RESUMO

BACKGROUND: Longitudinal mouse models of brain arteriovenous malformations (AVMs) are crucial for developing novel therapeutics and pathobiological mechanism discovery underlying brain AVM progression and rupture. The sustainability of existing mouse models is limited by ubiquitous Cre activation, which is associated with lethal hemorrhages resulting from AVM formation in visceral organs. To overcome this condition, we developed a novel experimental mouse model of hereditary hemorrhagic telangiectasia (HHT) with CreER-mediated specific, localized induction of brain AVMs. METHODS: Hydroxytamoxifen (4-OHT) was stereotactically delivered into the striatum, parietal cortex, or cerebellum of R26CreER; Alk12f/2f (Alk1-iKO) littermates. Mice were evaluated for vascular malformations with latex dye perfusion and 3D time-of-flight magnetic resonance angiography (MRA). Immunofluorescence and Prussian blue staining were performed for vascular lesion characterization. RESULTS: Our model produced two types of brain vascular malformations, including nidal AVMs (88%, 38/43) and arteriovenous fistulas (12%, 5/43), with an overall frequency of 73% (43/59). By performing stereotaxic injection of 4-OHT targeting different brain regions, Alk1-iKO mice developed vascular malformations in the striatum (73%, 22/30), in the parietal cortex (76%, 13/17), and in the cerebellum (67%, 8/12). Identical application of the stereotaxic injection protocol in reporter mice confirmed localized Cre activity near the injection site. The 4-week mortality was 3% (2/61). Seven mice were studied longitudinally for a mean (SD; range) duration of 7.2 (3; 2.3-9.5) months and demonstrated nidal stability on sequential MRA. The brain AVMs displayed microhemorrhages and diffuse immune cell invasion. CONCLUSIONS: We present the first HHT mouse model of brain AVMs that produces localized AVMs in the brain. The mouse lesions closely resemble the human lesions for complex nidal angioarchitecture, arteriovenous shunts, microhemorrhages, and inflammation. The model's longitudinal robustness is a powerful discovery resource to advance our pathomechanistic understanding of brain AVMs and identify novel therapeutic targets.


Assuntos
Fístula Arteriovenosa , Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Camundongos , Humanos , Telangiectasia Hemorrágica Hereditária/patologia , Malformações Arteriovenosas/patologia , Fístula Arteriovenosa/patologia , Encéfalo/patologia
12.
BMC Cardiovasc Disord ; 23(1): 224, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120586

RESUMO

BACKGROUND: Noncompaction of ventricular myocardium(NVM) is a rare kind of cardiomyopathy associated with genetic mutations and nongenetic factors, among which the isolated right ventricular noncompaction (iRVNC) is the most rare type. ACVRL1 is the pathogenic gene of type 2 hereditary hemorrhagic telangiectasia (HHT2), and there's no NVM reported to be associated with ACVRL1 mutation. CASE PRESENTATION: This is a rare case diagnosed as iRVNC and pulmonary hypertention with ACVRL1 mutation detected. CONCLUSION: iRVNC in this case may be due to ACVRL1 mutation, secondary to pulmonary hypertention and right ventricular failure caused by ACVRL1 mutation, or they happened in the same case coincidently.


Assuntos
Insuficiência Cardíaca , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia , Mutação , Pulmão , Miocárdio/patologia , Receptores de Activinas Tipo II/genética
13.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35380991

RESUMO

Patients with hereditary hemorrhagic telangiectasia (HHT) have arteriovenous malformations (AVMs) with genetic mutations involving the activin-A receptor like type 1 (ACVRL1 or ALK1) and endoglin (ENG). Recent studies have shown that Neuropilin-1 (NRP-1) inhibits ALK1. We investigated the expression of NRP-1 in livers of patients with HHT and found that there was a significant reduction in NRP-1 in perivascular smooth muscle cells (SMCs). We used Nrp1SM22KO mice (Nrp1 was ablated in SMCs) and found hemorrhage, increased immune cell infiltration with a decrease in SMCs, and pericyte lining in lungs and liver in adult mice. Histologic examination revealed lung arteriovenous fistulas (AVFs) with enlarged liver vessels. Evaluation of the retina vessels at P5 from Nrp1SM22KO mice demonstrated dilated capillaries with a reduction of pericytes. In inflow artery of surgical AVFs from the Nrp1SM22KO versus WT mice, there was a significant decrease in Tgfb1, Eng, and Alk1 expression and phosphorylated SMAD1/5/8 (pSMAD1/5/8), with an increase in apoptosis. TGF-ß1-stimulated aortic SMCs from Nrp1SM22KO versus WT mice have decreased pSMAD1/5/8 and increased apoptosis. Coimmunoprecipitation experiments revealed that NRP-1 interacts with ALK1 and ENG in SMCs. In summary, NRP-1 deletion in SMCs leads to reduced ALK1, ENG, and pSMAD1/5/8 signaling and reduced cell death associated with AVM formation.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Animais , Malformações Arteriovenosas/genética , Endoglina/genética , Endoglina/metabolismo , Humanos , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neuropilina-1/genética , Artéria Pulmonar/patologia , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo , Telangiectasia Hemorrágica Hereditária/patologia
14.
Acta Dermatovenerol Alp Pannonica Adriat ; 31(Suppl): S14-S17, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35339136

RESUMO

Hereditary benign telangiectasia is an autosomal dominant inherited dermatosis with typical presentation of telangiectasia of the skin and lips. The cause is still unknown. It is a primary telangiectasia that develops during childhood without systemic symptoms. Clinically round, oval, dendritic, or punctate telangiectasias are present, mostly asymptomatic, and they may cause only aesthetic problems. Because a similar clinical picture can be seen in several other skin diseases that may manifest not only with vascular lesions of the skin but also with systemic involvement and possible serious complications, we must be aware of all differential diagnostic possibilities. We present the case of a 37-year-old patient with hereditary benign telangiectasia to emphasize the importance of establishing the correct diagnosis and presenting proper information about the disease in a patient with telangiectasia of the skin.


Assuntos
Artrogripose , Telangiectasia Hemorrágica Hereditária , Telangiectasia , Adulto , Artrogripose/complicações , Humanos , Lábio/patologia , Pele/patologia , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/patologia , Telangiectasia/complicações , Telangiectasia/etiologia
15.
Am J Med Genet A ; 188(3): 959-964, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904380

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Fístula Arteriovenosa , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética , Criança , Endoglina/genética , Endoglina/metabolismo , Epistaxe , Fator 2 de Diferenciação de Crescimento/genética , Humanos , Mutação , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
16.
Am J Med Genet A ; 188(1): 199-209, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611981

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant fibrovascular dysplasia caused by mutations in ENG, ACVRL1, and SMAD4. Increasingly, there has been an appreciation for vascular conditions with phenotypic overlap to HHT but which have distinct clinical manifestations and arise from novel or uncharacterized gene variants. This study reported on a cohort of four unrelated probands who were diagnosed with a rare form of GDF2-related HHT5, for which only five prior cases have been described. Two patients harbored heterozygous missense variants not previously annotated as pathogenic (p.Val403Ile; p.Glu355Gln). Clinically, these patients had features resembling HHT1, including cerebrovascular involvement of their disease (first report documenting cerebral involvement of HHT5), but with earlier onset of epistaxis and a unique anatomic distribution of dermal capillary lesions that involved the upper forelimbs, trunk, and head. The other two patients harbored interstitial deletions larger than five megabases between 10q11.22 and 10q11.23 that included GDF2. To our knowledge, this is the first report detailing large genomic deletions leading to HHT5. These patients also demonstrated mucocutaneous capillary dysplasias, including intranasal vascular lesions complicated by childhood-onset epistasis, with a number of extravascular findings related to their 10q11.21q11.23 deletion. In conclusion, patients with GDF2-related HHT may present with a number of unique characteristics that differ from classically reported features of HHT.


Assuntos
Fator 2 de Diferenciação de Crescimento , Mutação de Sentido Incorreto , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Criança , Endoglina/genética , Fator 2 de Diferenciação de Crescimento/genética , Heterozigoto , Humanos , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
17.
BMC Med Genomics ; 14(1): 288, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872578

RESUMO

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited vascular disorder characterized by recurrent epistaxis, skin/mucocutaneous telangiectasia, and organ/visceral arteriovenous malformations (AVM). HHT is mostly caused by mutations either in the ENG or ACVRL1 genes, and there are regional differences in the breakdown of causative genes. The clinical presentation is also variable between populations suggesting the influence of environmental or genetic backgrounds. In this study, we report the largest series of mutational and clinical analyses for East Asians. METHODS: Using DNAs derived from peripheral blood leukocytes of 281 Japanese HHT patients from 150 families, all exons and exon-intron boundaries of the ENG, ACVRL1, and SMAD4 genes were sequenced either by Sanger sequencing or by the next-generation sequencing. Deletions/amplifications were analyzed by the multiplex ligation-dependent probe amplification analyses. Clinical information was obtained by chart review. RESULTS: In total, 80 and 59 pathogenic/likely pathogenic variants were identified in the ENG and ACVRL1 genes, respectively. No pathogenic variants were identified in the SMAD4 gene. In the ENG gene, the majority (60/80) of the pathogenic variants were private mutations unique to a single family, and the variants were widely distributed without any distinct hot spots. In the ACVRL1 gene, the variants were more commonly found in exons 5-10 which encompasses the serine/threonine kinase domain. Of these, 25/59 variants were unique to a single family while those in exons 8-10 tended to be shared by multiple (2-7) families. Pulmonary and cerebral AVMs were more commonly found in ENG-HHT (69.1 vs. 14.4%, 34.0 vs. 5.2%) while hepatic AVM was more common in ACVRL1-HHT (31.5 vs. 73.2%). Notable differences include an increased incidence of cerebral (34.0% in ENG-HHT and 5.2% in ACVRL1-HHT), spinal (2.5% in ENG-HHT and 1.0% in ACVL1-HHT), and gastric AVM (13.0% in ENG-HHT, 26.8% in ACVRL1-HHT) in our cohort. Intrafamilial phenotypic heterogeneity not related to the age of examination was observed in 71.4% and 24.1% of ENG- and ACVRL1-HHT, respectively. CONCLUSIONS: In a large Japanese cohort, ENG-HHT was 1.35 times more common than ACVRL1-HHT. The phenotypic presentations were similar to the previous reports although the cerebral, spinal, and gastric AVMs were more common.


Assuntos
Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Endoglina/genética , Éxons , Humanos , Japão , Mutação , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/patologia
18.
Am J Med Genet A ; 185(7): 1981-1990, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768677

RESUMO

In this retrospective single-center study, we evaluated whether/how pathogenic/likely pathogenic variants of three hereditary hemorrhagic telangiectasia (HHT)-associated genes (ENG, ACVRL1, and SMAD4) are associated with specific clinical presentations of HHT. We also characterized the morphological features of pulmonary arteriovenous malformations (AVMs) in patients with these variants. Pathogenic or likely pathogenic variants were detected in 64 patients. Using nonparametric statistical tests, we compared the type and prevalence of specific HHT diagnostic features associated with these three variants. Pathogenic variants in these genes resulted in gene-specific HHT clinical presentations. Epistaxis was present in 93%, 94%, and 100% of patients with ENG, ACVRL1, and SMAD4 variants, respectively (p = 0.79). Pulmonary AVMs were more common in patients with the ENG variant (p = 0.034) compared with other subgroups. ACVRL1 variant was associated with the lowest frequency of pulmonary AVMs (p = 0.034) but the highest frequency of hepatic AVMs (p = 0.015). Patients with the ACVRL1 variant did not have significantly more pancreatic AVMs compared with the other groups (p = 0.72). ENG, ACVRL1, and SMAD4 pathogenic or likely pathogenic variants are associated with gene-specific HHT presentations, which is consistent with results from other HHT centers.


Assuntos
Receptores de Activinas Tipo II/genética , Fístula Arteriovenosa/genética , Endoglina/genética , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Adulto , Fístula Arteriovenosa/complicações , Fístula Arteriovenosa/patologia , Feminino , Predisposição Genética para Doença , Fator 2 de Diferenciação de Crescimento/genética , Humanos , Masculino , Mutação/genética , Artéria Pulmonar/patologia , Veias Pulmonares/patologia , Estudos Retrospectivos , Telangiectasia Hemorrágica Hereditária/patologia , Proteína p120 Ativadora de GTPase/genética
19.
BMC Infect Dis ; 21(1): 277, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740906

RESUMO

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant disease associated with neurological complications, including cerebral abscesses (CA). They tend to be unique, supratentorial and lobar. While the surgical intervention is a rule of thumb when treating and diagnosing the etiology of these lesions, this is not always possible due to dangerous or inaccessible locations. We report the case of a patient solely treated with empiric antibiotics without stereotaxic intervention and satisfactory results. CASE PRESENTATION: We present the case of a 21-year-old patient with a right thalamic abscess due to HHT and pulmonary arteriovenous malformations, previously embolized, treated solely with antibiotics. At first, we contemplated the possibility of a stereotaxic biopsy, but the high-risk location and the fact that our patient received a previous full course of antibiotic treatment (in another center), made us discard this intervention because of the low diagnostic yield. We started an empiric antibiotic regime. We followed up very closely the clinical and radiological evaluation the next weeks, adjusting our antibiotic treatment when necessary. The results were favorable from both the radiological and clinical aspects and 6 months after the diagnosis the images show its almost complete disappearance. CONCLUSION: Carefully tailored antibiotic-only regime and vigilance of its adverse effects and close radiological following is a good treatment approach when surgery is not an option.


Assuntos
Antibacterianos/uso terapêutico , Abscesso Encefálico/diagnóstico , Veias Pulmonares/anormalidades , Telangiectasia Hemorrágica Hereditária/patologia , Encéfalo/diagnóstico por imagem , Abscesso Encefálico/tratamento farmacológico , Abscesso Encefálico/etiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Telangiectasia Hemorrágica Hereditária/complicações , Tomografia Computadorizada por Raios X , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Adulto Jovem
20.
Mol Genet Genomic Med ; 8(11): e1498, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33058509

RESUMO

BACKGROUND: Patients with germline variants in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and Hereditary Hemorrhagic Telangiectasia (HHT): JP-HHT syndrome. Next-Generation Sequencing (NGS) techniques disclose causative sequence variants in around 90% of HHT patients fulfilling the Curaçao criteria. Here we report a translocation event involving SMAD4 resulting in JP-HHT. METHODS: A patient fulfilling the Curaçao criteria was analyzed for variants in ENG, ACVRL1, and SMAD4 using standard techniques. Whole-genome sequencing (WGS) using both short-read NGS technology and long-read Oxford Nanopore technology was performed to define the structural variant and exact breakpoints. RESULTS: No pathogenic variant was detected in ENG, ACVRL1, or SMAD4 in DNA extracted from blood. Due to abortus habitualis, the proband´s daughter was submitted for chromosomal analysis, and a cytogenetically balanced chromosomal reciprocal translocation t(1;18)(p36.1;q21.1) was detected in the daughter and the patient. The balanced translocation segregated with both gastrointestinal cancer and HHT in the family. WGS provided the exact breakpoints of the reciprocal translocation proving disruption of the SMAD4 gene. DISCUSSION: A disease-causing reciprocal translocation between chromosome 1 and 18 with a breakpoint in the SMAD4 locus co-segregated with JP-HHT in an extended family. This observation warrants further analysis for chromosomal rearrangements in individuals with clinical HHT or JP-HHT of unknown cause.


Assuntos
Polipose Intestinal/congênito , Síndromes Neoplásicas Hereditárias/genética , Fenótipo , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Translocação Genética , Adulto , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 18/genética , Feminino , Humanos , Polipose Intestinal/genética , Polipose Intestinal/patologia , Masculino , Síndromes Neoplásicas Hereditárias/patologia , Linhagem , Telangiectasia Hemorrágica Hereditária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...