Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.279
Filtrar
1.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717261

RESUMO

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Assuntos
Glutationa Transferase , Larva , Locomoção , Tenebrio , Zearalenona , Animais , Tenebrio/efeitos dos fármacos , Tenebrio/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Zearalenona/toxicidade , Glutationa Transferase/metabolismo , Locomoção/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antioxidantes/metabolismo
2.
ScientificWorldJournal ; 2024: 3350591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756480

RESUMO

The challenge in polystyrene disposal has caused researchers to look for urgent innovative and ecofriendly solutions for plastic degradation. Some insects have been reported to use polystyrene as their sole carbon source, and this has been linked to the presence of microbes in their guts that aid in plastic digestion. Thus, this study focuses on the molecular detection and phylogenetic analysis of the alkane-1-monooxygenase (alkB) gene in Klebsiella oxytoca strains isolated from the gut of Tenebrio molitor. The alkB gene encodes for alkane-1-monooxygenase, an enzyme involved in the oxidation of inactivated alkanes. This gene can be used as a marker to assess bacteria's ability to biodegrade polystyrene. Three bacterial strains were isolated from the guts of T. molitor mealworms and were confirmed using polymerase chain reaction (PCR) of the 16S ribosomal RNA gene. The primers used in the amplification of the 16S ribosomal RNA region were designed using NCBI, a bioinformatics tool. To detect the presence of the alkB gene in the isolated bacterial strains, a set of primers used in the amplification of this gene was manually designed from the conserved regions of the alkB nucleotide sequences of eleven bacterial species from GenBank. TCOFFE online tool was used to align the alkB sequences of the bacteria, while Jalview and ConSurf were used to view the alignment. The amplified alkB gene was then sequenced using the Sanger sequencing technique, blasted on NCBI to look for similar sequences, and a phylogenetic tree was constructed. Based on the 16S ribosomal RNA gene sequences, the isolated bacterial strains were confirmed to be Klebsiella oxytoca NBRC 102593, Klebsiella oxytoca JCM 1665, and Klebsiella oxytoca ATCC 13182. The alkB gene sequence identical to fourteen alkB gene sequences derived from Actinobacteria whole genome was detected in Klebsiella oxytoca for the first time to the best of our knowledge. The novel nucleotide sequence was published in the NCBI database under accession number OP959069. This gene sequence was found to be for the enzyme alkane-1-monooxygenase and may be one of the enzymes responsible for polystyrene degradation by the putative Klebsiella oxytoca ATCC 13182 in T. molitor.


Assuntos
Klebsiella oxytoca , Filogenia , RNA Ribossômico 16S , Tenebrio , Tenebrio/microbiologia , Tenebrio/genética , Animais , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Klebsiella oxytoca/classificação , RNA Ribossômico 16S/genética , Proteínas de Bactérias/genética , Citocromo P-450 CYP4A/genética
3.
Environ Sci Pollut Res Int ; 31(24): 35760-35768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38744763

RESUMO

In pursuit of sustainable protein sources, the agricultural sector and emerging edible insect industry intersect in the valorization of agricultural by-products. Establishing a mutually beneficial relationship involves utilizing agricultural by-products as feeding substrates for insect farming, potentially enhancing the sustainability of both sectors. In the present study, by-products from beer, rice, oat, maize, sunflower, and lucerne, as well as mill residues and spent mushroom substrate from the regions of Thessaly and Central Macedonia (Greece) were investigated as nutritional sources for the larvae of the yellow mealworm (Tenebrio molitor). Results show that the suitability of the tested by-products for rearing T. molitor larvae varies greatly, with larvae surviving better in some by-products than in others. The highest survival rate and the highest weight of larvae were recorded for larvae reared on rice bran, spent grains, and oat by-products. Similarly, high feed conversion and growth rate were observed when the larvae were fed with rice bran and spent grains. Thus, this research promotes cost-effective and sustainable T. molitor rearing, aligning with circular economy principles.


Assuntos
Agricultura , Larva , Tenebrio , Animais , Ração Animal , Grécia
4.
Food Chem ; 452: 139391, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713980

RESUMO

Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.


Assuntos
Larva , Lecitinas , Animais , Lecitinas/química , Larva/química , Larva/crescimento & desenvolvimento , Insetos Comestíveis/química , Dípteros/química , Dípteros/crescimento & desenvolvimento , Tenebrio/química , Simuliidae/química , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Lipídeos/química , Lipídeos/isolamento & purificação
5.
Acta Vet Hung ; 72(1): 24-32, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578702

RESUMO

Feeding costs of farmed insects may be reduced by applying alternative nitrogen sources such as urea that can partly substitute true proteins. The aim of this study was to examine the effects of different nitrogen sources on body weight (BW) and survival rate (SR) of the Jamaican field cricket (JFC, Gryllus assimilis), the house cricket (HC, Acheta domesticus), yellow mealworm larvae (YM, Tenebrio molitor) and superworm larvae (SW, Zophobas morio). Crickets were either housed individually or in groups, and larvae were group-housed. Six isonitrogenous feeds composed of 3.52% nitrogen were designed for all four insect species using four independent replicates with micellar casein: urea proportions of 100-0%, 75-25%, 50-50%, 25-75%, 0-100% and 100% extracted soybean meal. All selected insect species were able to utilise urea. However, urea as the only nitrogen source resulted in low final BW. In the HC, the JFC, and the YM on nitrogen basis urea can replace 25% of micellar casein without having any negative effects on BW and SR in comparison to the 100% micellar casein group. In the SW, a 25% urea level did not have a significant effect on final BW, but SR decreased significantly.


Assuntos
Besouros , Gryllidae , Tenebrio , Animais , Caseínas/metabolismo , Insetos , Larva/metabolismo , Tenebrio/metabolismo , Peso Corporal , Nitrogênio , Suplementos Nutricionais
6.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
7.
J Ethnopharmacol ; 330: 118240, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY: The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS: Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS: Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION: Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.


Assuntos
Antifúngicos , Farmacorresistência Fúngica Múltipla , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Animais , Extratos Vegetais/farmacologia , Folhas de Planta/química , Candida auris/efeitos dos fármacos , Candida auris/isolamento & purificação , Fluconazol/farmacologia , Tenebrio , Sinergismo Farmacológico , Brasil , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos
8.
J Environ Manage ; 358: 120832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animais , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo
9.
Food Chem ; 449: 139177, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581785

RESUMO

Edible insects represent a great alternative protein source but food neophobia remains the main barrier to consumption. However, the incorporation of insects as protein-rich ingredients, such as protein concentrates, could increase acceptance. In this study, two methods, isoelectric precipitation and ultrafiltration-diafiltration, were applied to produce mealworm protein concentrates, which were compared in terms of composition, protein structure and techno-functional properties. The results showed that the protein content of the isoelectric precipitation concentrate was higher than ultrafiltration-diafiltration (80 versus 72%) but ash (1.91 versus 3.82%) and soluble sugar (1.43 versus 8.22%) contents were lower. Moreover, the protein structure was affected by the processing method, where the ultrafiltration-diafiltration concentrate exhibited a higher surface hydrophobicity (493.5 versus 106.78 a.u) and a lower denaturation temperature (161.32 versus 181.44 °C). Finally, the ultrafiltration-diafiltration concentrate exhibited higher solubility (87 versus 41%) and emulsifying properties at pH 7 compared to the concentrate obtained by isoelectric precipitation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos , Ultrafiltração , Animais , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Tenebrio/química , Precipitação Química , Solubilidade , Concentração de Íons de Hidrogênio , Manipulação de Alimentos
10.
Food Chem ; 450: 139400, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640536

RESUMO

Three protein hydrolysates from Tenebrio molitor were obtained by enzymatic hydrolysis employing two food-grade proteases (i.e. Alcalase and Flavourzyme), and a complete characterisation of their composition was done. The digestion-derived products were obtained using the INFOGEST protocol. In vitro antioxidant activity and anti-inflammatory activities were evaluated. Tenebrio molitor flour and the protein hydrolysates showed a high ability to scavenge the DPPH radical (EC50 values from 0.30 to 0.87 mg/mL). The hydrolysate obtained with a combination of the two food-grade proteases could decrease the gene expression of pro-inflammatory genes after being digested. Furthermore, the peptidome was fully determined for the first time for T. molitor hydrolysates and digests, and 40 peptides were selected based on their bioactivity to be evaluated by in silico tools, including prediction tools and molecular docking. These results provide new perspectives on the use of edible insects as sustainable and not nutritionally disadvantageous food for human consumption.


Assuntos
Antioxidantes , Proteínas de Insetos , Oligopeptídeos , Tenebrio , Tenebrio/química , Tenebrio/genética , Tenebrio/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Hidrólise , Humanos
11.
J Mater Chem B ; 12(19): 4717-4723, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655651

RESUMO

Metal-organic frameworks (MOFs) possess a variety of interesting features related to their composition and structure that make them excellent candidates to be used in agriculture. However, few studies have reported their use as delivery agents of agrochemicals. In this work, the natural polyphenol chlorogenic acid (CGA) was entrapped via simple impregnation in the titanium aminoterephthalate MOF, MIL-125-NH2. A combination of experimental and computational techniques was used to understand and quantify the encapsulated CGA in MIL-125-NH2. Subsequently, CGA delivery studies were carried out in water at different pHs, showing a fast release of CGA during the first 2 h (17.3 ± 0.3% at pH = 6.5). In vivo studies were also performed against larvae of mealworm (Tenebrio molitor), evidencing the long-lasting insecticidal activity of CGA@MIL-125-NH2. This report demonstrates the potential of MOFs in the efficient release of agrochemicals, and paves the way to their study against in vivo models.


Assuntos
Ácido Clorogênico , Inseticidas , Estruturas Metalorgânicas , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Animais , Tenebrio/química , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos
12.
Bioresour Technol ; 401: 130731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663637

RESUMO

There is limited research on physiological and degradation mechanisms of yellow mealworm, a novel organic waste converter, in processing lignocellulosic wastes. This study has selected two types of lignocellulosic wastes, distillers' grains (DG) and maize straw (MS), to feed yellow mealworms. This study investigated the effects of lignocellulosic wastes on the growth, antioxidant system, microbiome, and lipidome of yellow mealworms. The relative growth of lignocellulosic waste group was not significantly different from wheat bran. The antioxidant level was elevated in DG. MS was significantly enriched in cellulose-degrading bacteria in the gut and was accompanied by disturbances in lipid metabolism. The correlation coefficients were used to construct a network connecting diet, microbiota, and lipids. The correlation analysis indicated that two sphingolipids, hexylglyceramide and dihydroglyceramide, were strongly and positively linked with the dominating species. This study provides comprehensive information on physiological and mechanism of mealworms in process of treating lignocellulosic waste.


Assuntos
Microbioma Gastrointestinal , Lignina , Metabolismo dos Lipídeos , Tenebrio , Lignina/metabolismo , Animais , Metabolismo dos Lipídeos/fisiologia , Microbioma Gastrointestinal/fisiologia , Tenebrio/metabolismo , Antioxidantes/metabolismo , Zea mays/metabolismo
13.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582118

RESUMO

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Polietileno/metabolismo , Microbioma Gastrointestinal , Poluentes Químicos da Água/metabolismo
14.
Food Funct ; 15(8): 4552-4563, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38584501

RESUMO

The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.


Assuntos
Insetos Comestíveis , Proteínas de Insetos , Ratos Wistar , Tenebrio , Animais , Ratos , Humanos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Enteropatias , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
15.
Int J Biol Macromol ; 268(Pt 2): 131731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649081

RESUMO

In this work we have characterized and compared chitin sourced from exoskeleton of Tenebrio molitor larvae fed with polystyrene or plastic kitchen wrap combined with bran in the ratio 1: 1 with chitin sourced from larvae exoskeleton fed only with bran. Analysis of the frass by ATR-FTIR showed very similar spectra and confirmed degradation of the plastic feed components, while ATR-FTIR analysis of the exoskeleton verified the absence of any plastic residue. Deproteinization followed by demineralization produced 6.78-5.29 % chitin, showing that plastic (polystyrene or plastic kitchen wrap) in the larvae diet resulted in heavier insect exoskeleton, but yielded slightly less chitin, with the lowest value obtained for plastic kitchen wrap in the insect diet. The deacetylation degree of 98.17-98.61 % was determined from measured ATR-FTIR spectra. XRD analysis confirmed the presence of α-chitin with a crystallinity index of 66.5-62 % and crystallite size 4-5 nm. Thermogravimetric analysis showed similar degradation curves for all chitin samples, with two degradation steps. These results show that chitin sourced from exoskeleton of T. molitor larvae fed with plastic (polystyrene or plastic kitchen wrap) and contributing to significant biodegradation of major polluting materials can be a feasible and alternative source of chitin, further promoting a bio-circular economy.


Assuntos
Quitina , Poliestirenos , Tenebrio , Animais , Tenebrio/química , Quitina/química , Poliestirenos/química , Plásticos/química , Exoesqueleto/química , Larva , Espectroscopia de Infravermelho com Transformada de Fourier
16.
J Invertebr Pathol ; 204: 108106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621520

RESUMO

The thermal environment is a critical determinant of outcomes in host-pathogen interactions, yet the complexities of this relationship remain underexplored in many ecological systems. We examined the Thermal Mismatch Hypothesis (TMH) by measuring phenotypic variation in individual thermal performance profiles using a model system of two species of entomopathogenic fungi (EPF) that differ in their ecological niche, Metarhizium brunneum and M. flavoviride, and a warm-adapted model host, the mealworm Tenebrio molitor. We conducted experiments across ecologically relevant temperatures to determine the thermal performance curves for growth and virulence, measured as % survival, identify critical thresholds for these measures, and elucidate interactive host-pathogen effects. Both EPF species and the host exhibited a shared growth optima at 28 °C, while the host's growth response was moderated in sublethal pathogen infections that depended on fungus identity and temperature. However, variances in virulence patterns were different between pathogens. The fungus M. brunneum exhibited a broader optimal temperature range (23-28 °C) for virulence than M. flavoviride, which displayed a multiphasic virulence-temperature relationship with distinct peaks at 18 and 28 °C. Contrary to predictions of the TMH, both EPF displayed peak virulence at the host's optimal temperature (28 °C). The thermal profile for M. brunneum aligned more closely with that of T. molitor than that for M. flavoviride. Moreover, the individual thermal profile of M. flavoviride closely paralleled its virulence thermal profile, whereas the virulence thermal profile of M. brunneum did not track with its individual thermal performance. This suggests an indirect, midrange (23 °C) effect, where M. brunneum virulence exceeded growth. These findings suggest that the evolutionary histories and ecological adaptations of these EPF species have produced distinct thermal niches during the host interaction. This study contributes to our understanding of thermal ecology in host-pathogen interactions, underpinning the ecological and evolutionary factors that shape infection outcomes in entomopathogenic fungi. The study has ecological implications for insect population dynamics in the face of a changing climate, as well as practically for the use of these organisms in biological control.


Assuntos
Interações Hospedeiro-Patógeno , Metarhizium , Tenebrio , Animais , Metarhizium/patogenicidade , Metarhizium/fisiologia , Tenebrio/microbiologia , Virulência , Temperatura , Controle Biológico de Vetores
17.
J Environ Manage ; 355: 120545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447512

RESUMO

Insects receive increasing attention as an alternative source of protein for animals and humans, and thus, the production of low-cost insects for meeting the dietary demand on sustained basis is an ever-growing concept. This study aims to design dietswith locally available agricultural byproducts from Greece as feed for larvae of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). This will considerably reduce the cost of insect feed and the environmental impact of insect farming by using locally available agricultural byproducts as economic insect feedstock. More specifically, five agricultural byproducts derived from the production of cereals and legumes were utilized to design twelve different diets at two protein levels, i.e., 17.4 and 22.5% protein content. All diets were evaluated both at laboratory scale, but also at pilot scale. Based on the obtained results, both bioassays revealed that the diets contained one legume and one cereal byproduct (i.e., lupin and triticale as well as lupin and oat) supported more efficiently the growth and performance of the larvae, irrespective of the protein level. Indicatively, individual larval weight of the best performed larvae from both groups ranged from 132 to 142 mg. Moreover, our results highlight the fact that data derived from laboratory scale bioassays are not always easy to be extrapolated to industrial production. For instance, the total harvest of larvae, a parameter assessed in the tray scale bioassay, exhibited a disparity between diet A2 (910 g) and diet A3 (749 g), despite both being deemed optimal in the laboratory-scale experiment. Our study aims to promote a circular approach for the industrial rearing of insects through integration of local agricultural byproducts into specific diets for T. molitor larvae.


Assuntos
Besouros , Tenebrio , Animais , Humanos , Tenebrio/metabolismo , Ração Animal/análise , Larva/metabolismo , Proteínas/metabolismo , Fazendas , Verduras
18.
Genes Genomics ; 46(5): 601-611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546934

RESUMO

Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.


Assuntos
Tenebrio , Animais , Humanos , Tenebrio/genética , Peroxidases/genética , Filogenia , Proteínas/genética , Aminoácidos/genética
19.
J Basic Microbiol ; 64(5): e2300744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466146

RESUMO

Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.


Assuntos
Larva , Metarhizium , Controle Biológico de Vetores , Pupa , Tenebrio , Animais , Tenebrio/microbiologia , Metarhizium/patogenicidade , Metarhizium/crescimento & desenvolvimento , Larva/microbiologia , Pupa/microbiologia , Virulência , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
20.
Sci Rep ; 14(1): 6836, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514719

RESUMO

Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Galinhas/microbiologia , Ração Animal/análise , Dieta/veterinária , Larva , Suplementos Nutricionais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA