Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.423
Filtrar
1.
Sci Rep ; 14(1): 13787, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877207

RESUMO

Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.


Assuntos
Corticosterona , Aprendizagem , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Masculino , Aprendizagem/fisiologia , Corticosterona/metabolismo , Feminino , Tentilhões/fisiologia , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Genes Precoces
2.
Am Nat ; 204(1): 73-95, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857346

RESUMO

AbstractDevelopmental plasticity allows organisms to increase the fit between their phenotype and their early-life environment. The extent to which such plasticity also enhances adult fitness is not well understood, however, particularly when early-life and adult environments differ substantially. Using a cross-factorial design that manipulated diet at two life stages, we examined predictions of major hypotheses-silver spoon, environmental matching, and thrifty phenotype-concerning the joint impacts of early-life and adult diets on adult morphology/display traits, survival, and reproductive allocation. Overall, results aligned with the silver spoon hypothesis, which makes several predictions based on the premise that development in poor-quality environments constrains adult performance. Males reared and bred on a low-protein diet had lower adult survivorship than other male treatment groups; females' survivorship was higher than males' and not impacted by early diet. Measures of allocation to reproduction primarily reflected breeding diet, but where natal diet impacted reproduction, results supported the silver spoon. Both sexes showed reduced expression of display traits when reared on a low-protein diet. Results accord with other studies in supporting the relevance of the silver spoon hypothesis to birds and point to significant ramifications of sex differences in early-life viability selection on the applicability/strength of silver spoon effects.


Assuntos
Tentilhões , Reprodução , Animais , Masculino , Feminino , Tentilhões/fisiologia , Longevidade , Dieta/veterinária , Fenótipo , Dieta com Restrição de Proteínas
3.
Proc Biol Sci ; 291(2024): 20240358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835281

RESUMO

Communication governs the formation and maintenance of social relationships. The interpretation of communication signals depends not only on the signal's content but also on a receiver's individual experience. Experiences throughout life may interact to affect behavioural plasticity, such that a lack of developmental sensory exposure could constrain adult learning, while salient adult social experiences could remedy developmental deficits. We investigated how experiences impact the formation and direction of female auditory preferences in the zebra finch. Zebra finches form long-lasting pair bonds and females learn preferences for their mate's vocalizations. We found that after 2 weeks of cohabitation with a male, females formed pair bonds and learned to prefer their partner's song regardless of whether they were reared with ('normally reared') or without ('song-naive') developmental exposure to song. In contrast, females that heard but did not physically interact with a male did not prefer his song. In addition, previous work has found that song-naive females do not show species-typical preferences for courtship song. We found that cohabitation with a male ameliorated this difference in preference. Thus, courtship and pair bonding, but not acoustic-only interactions, strongly influence preference learning regardless of rearing experience, and may dynamically drive auditory plasticity for recognition and preference.


Assuntos
Tentilhões , Aprendizagem , Vocalização Animal , Animais , Feminino , Masculino , Tentilhões/fisiologia , Ligação do Par , Comportamento Social , Corte
4.
Rev Bras Parasitol Vet ; 33(2): e000524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896754

RESUMO

The saffron finch, Sicalis flaveola, a passerine bird, can be found in nearly all Brazilian territory and is also raised in captivity. The objective of this work was to determine the prevalence and load of oocysts in captive saffron finches in the municipality of Campos dos Goytacazes, state of Rio de Janeiro and in free-living saffron finches in the municipality of Eugenopolis, state of Minas Gerais. In this analysis, 30 captive and 30 wild birds were assessed. Feces eliminated in a 24-hour period were collected and weighed to determine the number of oocysts per gram of feces (OoPG). Statistical analyses were performed using Microsoft Excel and GraphPad Prism Software. All birds in the present study were positive for one or more species of coccidia. Captive birds had a mean total oocyst count higher than that of wild birds. No significant differences in OoPG counts were observed when comparing males and females or captive and wild birds. We can conclude that due to the fact that birds both eat and defecate in their cages, it is essential to keep them as clean as possible, since captive birds have a higher prevalence of coccidia.


Assuntos
Tentilhões , Animais , Tentilhões/parasitologia , Prevalência , Feminino , Masculino , Brasil/epidemiologia , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Oocistos , Animais Selvagens/parasitologia , Carga Parasitária , Animais de Zoológico/parasitologia , Fezes/parasitologia
5.
Physiol Behav ; 281: 114581, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734358

RESUMO

Bird song is a crucial feature for mate choice and reproduction. Song can potentially communicate information related to the quality of the mate, through song complexity, structure or finer changes in syllable characteristics. It has been shown in zebra finches that those characteristics can be affected by various factors including motivation, hormone levels or extreme temperature. However, although the literature on zebra finch song is substantial, some factors have been neglected. In this paper, we recorded male zebra finches in two breeding contexts (before and after pairing) and in two ambient temperature conditions (stable and variable) to see how those factors could influence song production. We found strong differences between the two breeding contexts: compared to their song before pairing, males that were paired had lower song rate, syllable consistency, frequency and entropy, while surprisingly the amplitude of their syllables increased. Temperature variability had an impact on the extent of these differences, but did not directly affect the song parameters that we measured. Our results describe for the first time how breeding status and temperature variability can affect zebra finch song, and give some new insights into the subtleties of the acoustic communication of this model species.


Assuntos
Tentilhões , Comportamento Sexual Animal , Temperatura , Vocalização Animal , Animais , Masculino , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Comportamento Sexual Animal/fisiologia , Espectrografia do Som , Feminino
6.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755126

RESUMO

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Assuntos
Galinhas , Plumas , Tentilhões , Animais , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Galinhas/genética , Tentilhões/genética , Regulação da Expressão Gênica no Desenvolvimento , Matriz Extracelular/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Via de Sinalização Wnt , Queratinas/metabolismo , Queratinas/genética , Evolução Biológica , Morfogênese/genética
7.
Cell Rep ; 43(5): 114196, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717902

RESUMO

Memory recall and guidance are essential for motor skill acquisition. Like humans learning to speak, male zebra finches learn to sing by first memorizing and then matching their vocalization to the tutor's song (TS) during specific developmental periods. Yet, the neuroanatomical substrate supporting auditory-memory-guided sensorimotor learning has remained elusive. Here, using a whole-brain connectome analysis with activity-dependent viral expression, we identified a transient projection into the motor region, HVC, from neuronal ensembles responding to TS in the auditory forebrain, the caudomedial nidopallium (NCM), in juveniles. Virally induced cell death of the juvenile, but not adult, TS-responsive NCM neurons impaired song learning. Moreover, isolation, which delays closure of the sensory, but not the motor, learning period, did not affect the decrease of projections into the HVC from the NCM TS-responsive neurons after the song learning period. Taken together, our results suggest that dynamic axonal pruning may regulate timely auditory-memory-guided vocal learning during development.


Assuntos
Tentilhões , Aprendizagem , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Tentilhões/fisiologia , Aprendizagem/fisiologia , Masculino , Neurônios/fisiologia , Conectoma
8.
Sci Rep ; 14(1): 11235, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755202

RESUMO

Skin cancer is one of the most life-threatening diseases caused by the abnormal growth of the skin cells, when exposed to ultraviolet radiation. Early detection seems to be more crucial for reducing aberrant cell proliferation because the mortality rate is rapidly rising. Although multiple researches are available based on the skin cancer detection, there still exists challenges in improving the accuracy, reducing the computational time and so on. In this research, a novel skin cancer detection is performed using a modified falcon finch deep Convolutional neural network classifier (Modified Falcon finch deep CNN) that efficiently detects the disease with higher efficiency. The usage of modified falcon finch deep CNN classifier effectively analyzed the information relevant to the skin cancer and the errors are also minimized. The inclusion of the falcon finch optimization in the deep CNN classifier is necessary for efficient parameter tuning. This tuning enhanced the robustness and boosted the convergence of the classifier that detects the skin cancer in less stipulated time. The modified falcon finch deep CNN classifier achieved accuracy, sensitivity, and specificity values of 93.59%, 92.14%, and 95.22% regarding k-fold and 96.52%, 96.69%, and 96.54% regarding training percentage, proving more effective than literary works.


Assuntos
Redes Neurais de Computação , Neoplasias Cutâneas , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/patologia , Humanos , Tentilhões , Animais , Masculino , Detecção Precoce de Câncer/métodos , Feminino , Sensibilidade e Especificidade
9.
Curr Biol ; 34(12): 2739-2747.e3, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38815578

RESUMO

Somatosensation is essential for animals to perceive the external world through touch, allowing them to detect physical contact, temperature, pain, and body position. Studies on rodent vibrissae have highlighted the organization and processing in mammalian somatosensory pathways.1,2 Comparative research across vertebrates is vital for understanding evolutionary influences and ecological specialization on somatosensory systems. Birds, with their diverse morphologies, sensory abilities, and behaviors, serve as ideal models for investigating the evolution of somatosensation. Prior studies have uncovered tactile-responsive areas within the avian telencephalon, particularly in pigeons,3,4,5,6 parrots,7 and finches,8 but variations in somatosensory maps and responses across avian species are not fully understood. This study aims to explore somatotopic organization and neural coding in the telencephalon of Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata) by using in vivo extracellular electrophysiology to record activity in response to controlled tactile stimuli on various body regions. These findings reveal unique representations of body regions across distinct forebrain somatosensory nuclei, indicating significant differences in the extent of areas dedicated to certain body surfaces, which may correlate with their behavioral importance.


Assuntos
Tentilhões , Prosencéfalo , Animais , Tentilhões/fisiologia , Prosencéfalo/fisiologia , Tato/fisiologia , Aves/fisiologia , Masculino , Percepção do Tato/fisiologia , Feminino
10.
Commun Biol ; 7(1): 598, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762691

RESUMO

Many songbirds learn to produce songs through vocal practice in early life and continue to sing daily throughout their lifetime. While it is well-known that adult songbirds sing as part of their mating rituals, the functions of singing behavior outside of reproductive contexts remain unclear. Here, we investigated this issue in adult male zebra finches by suppressing their daily singing for two weeks and examining the effects on song performance. We found that singing suppression decreased the pitch, amplitude, and duration of songs, and that those song features substantially recovered through subsequent free singing. These reversible song changes were not dependent on auditory feedback or the age of the birds, contrasting with the adult song plasticity that has been reported previously. These results demonstrate that adult song structure is not stable without daily singing, and suggest that adult songbirds maintain song performance by preventing song changes through physical act of daily singing throughout their life. Such daily singing likely functions as vocal training to maintain the song production system in optimal conditions for song performance in reproductive contexts, similar to how human singers and athletes practice daily to maintain their performance.


Assuntos
Retroalimentação Sensorial , Tentilhões , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Masculino , Tentilhões/fisiologia , Retroalimentação Sensorial/fisiologia , Fatores Etários , Envelhecimento/fisiologia , Percepção Auditiva/fisiologia
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230191, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38768203

RESUMO

Acoustic signalling is crucial in affecting movements and in social interactions. In species with dynamic social structures, such as multi-level societies, acoustic signals can provide a key mechanism allowing individuals to identify and find or avoid each other and to exchange information. Yet, if the spacing between individuals regularly exceeds the maximum signalling range, the relation between movements and signals becomes more complex. As the best-studied songbird in captivity, the zebra finch (Taeniopygia castanotis) is a species with individually distinct songs that are audible over just a few metres and a widely ranging dynamic multi-level social organization in the wild, raising questions on the actual role of its song in social cohesion and coordination. Here, we provide an overview of birdsong in social organizations (networks) and use the ecology of the zebra finch and male song to discuss how singing can facilitate social cohesion and coordination in species where the signal range is very short. We raise the question of the extent to which zebra finches are a representative species to understand the function of song in communication, and we broaden current views on the function of birdsong and its individual signature. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Assuntos
Tentilhões , Comportamento Social , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Tentilhões/fisiologia , Masculino , Feminino
12.
J Chem Neuroanat ; 138: 102418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621597

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. From minutes to months following damage, injury can result in a complex pathophysiology that can lead to temporary or permanent deficits including an array of neurodegenerative symptoms. These changes can include behavioral dysregulation, memory dysfunctions, and mood changes including depression. The nature and severity of impairments resulting from TBIs vary widely given the range of injury type, location, and extent of brain tissue involved. In response to the injury, the brain induces structural and functional changes to promote repair and minimize injury size. Despite its high prevalence, effective treatment strategies for TBI are limited. PNNs are part of the neuronal extracellular matrix (ECM) that mediate synaptic stabilization in the adult brain and thus neuroplasticity. They are associated mostly with inhibitory GABAergic interneurons and are thought to be responsible for maintaining the excitatory/inhibitory balance of the brain. The major structural components of PNNs include multiple chondroitin sulfate proteoglycans (CSPGs) as well as other structural proteins. Here we examine the effects of injury on CSPG expression, specifically around the changes in the side change moieties. To investigate CSPG expression following injury, adult male and female zebra finches received either a bilateral penetrating, or no injury and qPCR analysis and immunohistochemistry for components of the CSPGs were examined at 1- or 7-days post-injury. Next, to determine if CSPGs and thus PNNs should be a target for therapeutic intervention, CSPG side chains were degraded at the time of injury with chondroitinase ABC (ChABC) CSPGs moieties were examined. Additionally, GABA receptor mRNA and aromatase mRNA expression was quantified following CSPG degradation as they have been implicated in neuronal survival and neurogenesis. Our data indicate the CSPG moieties change following injury, potentially allowing for a brief period of synaptic reorganization, and that treatments that target CSPG side chains are successful in further targeting this brief critical period by decreasing GABA mRNA receptor expression, but also decreasing aromatase expression.


Assuntos
Lesões Encefálicas Traumáticas , Proteoglicanas de Sulfatos de Condroitina , Tentilhões , RNA Mensageiro , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , RNA Mensageiro/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Masculino , Feminino , Encéfalo/metabolismo
13.
Nat Neurosci ; 27(6): 1176-1186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684893

RESUMO

Reliable execution of precise behaviors requires that brain circuits are resilient to variations in neuronal dynamics. Genetic perturbation of the majority of excitatory neurons in HVC, a brain region involved in song production, in adult songbirds with stereotypical songs triggered severe degradation of the song. The song fully recovered within 2 weeks, and substantial improvement occurred even when animals were prevented from singing during the recovery period, indicating that offline mechanisms enable recovery in an unsupervised manner. Song restoration was accompanied by increased excitatory synaptic input to neighboring, unmanipulated neurons in the same brain region. A model inspired by the behavioral and electrophysiological findings suggests that unsupervised single-cell and population-level homeostatic plasticity rules can support the functional restoration after large-scale disruption of networks that implement sequential dynamics. These observations suggest the existence of cellular and systems-level restorative mechanisms that ensure behavioral resilience.


Assuntos
Tentilhões , Plasticidade Neuronal , Neurônios , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia , Tentilhões/fisiologia , Masculino , Aprendizagem/fisiologia
14.
Science ; 384(6694): 380-382, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662851

RESUMO

Long-term impact from prenatal noise exposure in birds should raise general concern.


Assuntos
Exposição Ambiental , Tentilhões , Ruído dos Transportes , Animais , Feminino , Tentilhões/crescimento & desenvolvimento , Tentilhões/fisiologia , Reprodução , Ruído dos Transportes/efeitos adversos
15.
Science ; 384(6694): 475-480, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662819

RESUMO

Noise pollution is expanding at an unprecedented rate and is increasingly associated with impaired reproduction and development across taxa. However, whether noise sound waves are intrinsically harmful for developing young-or merely disturb parents-and the fitness consequences of early exposure remain unknown. Here, by only manipulating the offspring, we show that sole exposure to noise in early life in zebra finches has fitness consequences and causes embryonic death during exposure. Exposure to pre- and postnatal traffic noise cumulatively impaired nestling growth and physiology and aggravated telomere shortening across life stages until adulthood. Consistent with a long-term somatic impact, early life noise exposure, especially prenatally, decreased individual offspring production throughout adulthood. Our findings suggest that the effects of noise pollution are more pervasive than previously realized.


Assuntos
Tentilhões , Ruído , Animais , Tentilhões/genética , Tentilhões/crescimento & desenvolvimento , Aptidão Genética , Ruído/efeitos adversos , Ruído dos Transportes/efeitos adversos , Reprodução , Encurtamento do Telômero
16.
Nat Commun ; 15(1): 3419, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658545

RESUMO

Songs constitute a complex system of vocal signals for inter-individual communication in songbirds. Here, we elucidate the flexibility which songbirds exhibit in the organizing and sequencing of syllables within their songs. Utilizing a newly devised song decoder for quasi-real-time annotation, we execute an operant conditioning paradigm, with rewards contingent upon specific syllable syntax. Our analysis reveals that birds possess the capacity to modify the contents of their songs, adjust the repetition length of particular syllables and employing specific motifs. Notably, birds altered their syllable sequence in a goal-directed manner to obtain rewards. We demonstrate that such modulation occurs within a distinct song segment, with adjustments made within 10 minutes after cue presentation. Additionally, we identify the involvement of the parietal-basal ganglia pathway in orchestrating these flexible modulations of syllable sequences. Our findings unveil an unappreciated aspect of songbird communication, drawing parallels with human speech.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Masculino , Condicionamento Operante/fisiologia , Tentilhões/fisiologia , Objetivos , Gânglios da Base/fisiologia , Aves Canoras/fisiologia
17.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563308

RESUMO

Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force-velocity relationship. Here, we quantified the force-velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s-1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37-42L0 s-1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force-length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.


Assuntos
Tentilhões , Laringe , Animais , Feminino , Masculino , Músculo Esquelético/fisiologia , Tentilhões/fisiologia , Contração Muscular/fisiologia
18.
J Neurophysiol ; 131(5): 950-963, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629163

RESUMO

Rare disruptions of the transcription factor FOXP1 are implicated in a human neurodevelopmental disorder characterized by autism and/or intellectual disability with prominent problems in speech and language abilities. Avian orthologues of this transcription factor are evolutionarily conserved and highly expressed in specific regions of songbird brains, including areas associated with vocal production learning and auditory perception. Here, we investigated possible contributions of FoxP1 to song discrimination and auditory perception in juvenile and adult female zebra finches. They received lentiviral knockdowns of FoxP1 in one of two brain areas involved in auditory stimulus processing, HVC (proper name) or CMM (caudomedial mesopallium). Ninety-six females, distributed over different experimental and control groups were trained to discriminate between two stimulus songs in an operant Go/Nogo paradigm and subsequently tested with an array of stimuli. This made it possible to assess how well they recognized and categorized altered versions of training stimuli and whether localized FoxP1 knockdowns affected the role of different features during discrimination and categorization of song. Although FoxP1 expression was significantly reduced by the knockdowns, neither discrimination of the stimulus songs nor categorization of songs modified in pitch, sequential order of syllables or by reversed playback were affected. Subsequently, we analyzed the full dataset to assess the impact of the different stimulus manipulations for cue weighing in song discrimination. Our findings show that zebra finches rely on multiple parameters for song discrimination, but with relatively more prominent roles for spectral parameters and syllable sequencing as cues for song discrimination.NEW & NOTEWORTHY In humans, mutations of the transcription factor FoxP1 are implicated in speech and language problems. In songbirds, FoxP1 has been linked to male song learning and female preference strength. We found that FoxP1 knockdowns in female HVC and caudomedial mesopallium (CMM) did not alter song discrimination or categorization based on spectral and temporal information. However, this large dataset allowed to validate different cue weights for spectral over temporal information for song recognition.


Assuntos
Sinais (Psicologia) , Aprendizagem por Discriminação , Tentilhões , Fatores de Transcrição Forkhead , Técnicas de Silenciamento de Genes , Vocalização Animal , Animais , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Feminino , Aprendizagem por Discriminação/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Estimulação Acústica
19.
Trends Neurosci ; 47(5): 322-323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664110

RESUMO

In a recent study, Shvedov and colleagues used live two-photon imaging in transgenic zebra finches to reveal migration patterns of neuroblasts through the complex environment of the postembryonic brain. This study highlights the value of ubiquitin C/green fluorescent protein (UBC-GFP) transgenic zebra finches in studying adult neurogenesis and advances our understanding of dispersed long-distance neuronal migration in the adult brain, shedding light on this understudied phenomenon.


Assuntos
Encéfalo , Movimento Celular , Neurogênese , Neurônios , Aves Canoras , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Encéfalo/citologia , Movimento Celular/fisiologia , Tentilhões/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Aves Canoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA