Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.779
Filtrar
1.
Crit Rev Toxicol ; 54(6): 359-393, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979679

RESUMO

The potential carcinogenicity of talc has been evaluated in many studies in humans and experimental animals published in the scientific literature over the last several decades, with a number of these studies reporting no associations between talc exposure and any type of cancer. In order to fully understand the current state of the science regarding the potential for talc to induce human cancers, we conducted a comprehensive and systematic review of the available experimental animal and mechanistic evidence (in conjunction with a systematic review of the epidemiology evidence in a companion analysis) to evaluate whether it supports talc as being carcinogenic to humans. We considered study quality and its impact on the interpretation of results and evaluated all types of cancer and all exposure routes. We also evaluated the evidence on the potential for talc to migrate in the body to potential tumor sites. We identified seven experimental animal carcinogenicity studies and 11 mechanistic studies of talc to systematically review. We found that several of the experimental animal carcinogenicity studies of talc have limitations that preclude their sensitivity to detect increases in tumor incidence. Regardless, the studies cover multiple exposure routes, species, and exposure durations, and none indicate that talc is a carcinogen in experimental animals except in rats under conditions of extremely high exposure that likely resulted in lung particle overload, a nonspecific effect of high exposures to poorly soluble particles, and not from any carcinogenic properties of talc. Lung particle overload leading to lung tumor formation has only been observed in rats and not in any other species, including humans. The mechanistic studies indicate that talc is not genotoxic or mutagenic, but can induce some effects that could be events on a possible pathway to carcinogenicity, mainly at high exposures or in in vitro studies with exposures of unclear relevance in vivo, but these effects are not consistent across studies and cell types. This systematic review of the experimental animal carcinogenicity and mechanistic evidence for talc indicates that an association between talc exposure and cancer is not expected in humans. Talc carcinogenicity is not plausible in any species except rats, and only when the exposure conditions are high enough to induce lung particle overload, which is not relevant to human exposures.


Assuntos
Neoplasias , Talco , Talco/toxicidade , Animais , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Carcinógenos/toxicidade , Testes de Carcinogenicidade
2.
Regul Toxicol Pharmacol ; 150: 105642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735521

RESUMO

Isoeugenol is one of several phenylpropenoid compounds that is used as a fragrance, food flavoring agent and in aquaculture as a fish anesthetic. Carcinogenicity testing in rats and mice by NTP resulted in clear evidence of carcinogenicity (hepatic adenomas/carcinomas) in male mice only. A nongenotoxic threshold mode of action (MOA) is postulated for isoeugenol and is discussed considering the IPCS MOA and Human Relevance Framework. The weight of evidence indicates that isoeugenol is not genotoxic and that the carcinogenic outcome in male mice relates directly to the metabolism of individual compounds. Benchmark Dose (BMD) modeling was conducted to determine a Point of Departure (POD) and potential threshold of carcinogenicity. The results of the BMD evaluation for isoeugenol resulted in an estimated POD for carcinogenicity in the male mouse of 8 mg/kg with a lower limit of 4 mg/kg, representing a POD for the determination of an acceptable daily intake. With application of uncertainty factors, an ADI of 40 µg/kg is calculated. This daily dose in humans would be protective of human health, including carcinogenicity. A corresponding maximum residual level (MRL) of 3200 µg/kg fish is also estimated based on this POD that considers the threshold MOA.


Assuntos
Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Eugenol , Animais , Eugenol/análogos & derivados , Eugenol/toxicidade , Masculino , Humanos , Camundongos , Ratos , Carcinógenos/toxicidade , Medição de Risco , Feminino , Aromatizantes/toxicidade
3.
Regul Toxicol Pharmacol ; 150: 105640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754805

RESUMO

N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.


Assuntos
Carcinógenos , Contaminação de Medicamentos , Nitrosaminas , Nitrosaminas/análise , Nitrosaminas/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Contaminação de Medicamentos/prevenção & controle , Humanos , Animais , Relação Estrutura-Atividade , Medição de Risco , Testes de Carcinogenicidade
4.
Arch Toxicol ; 98(8): 2711-2730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762666

RESUMO

The development of a rapid and accurate model for determining the genotoxicity and carcinogenicity of chemicals is crucial for effective cancer risk assessment. This study aims to develop a 1-day, single-dose model for identifying genotoxic hepatocarcinogens (GHCs) in rats. Microarray gene expression data from the livers of rats administered a single dose of 58 compounds, including 5 GHCs, was obtained from the Open TG-GATEs database and used for the identification of marker genes and the construction of a predictive classifier to identify GHCs in rats. We identified 10 gene markers commonly responsive to all 5 GHCs and used them to construct a support vector machine-based predictive classifier. In the silico validation using the expression data of the Open TG-GATEs database indicates that this classifier distinguishes GHCs from other compounds with high accuracy. To further assess the model's effectiveness and reliability, we conducted multi-institutional 1-day single oral administration studies on rats. These studies examined 64 compounds, including 23 GHCs, with gene expression data of the marker genes obtained via quantitative PCR 24 h after a single oral administration. Our results demonstrate that qPCR analysis is an effective alternative to microarray analysis. The GHC predictive model showed high accuracy and reliability, achieving a sensitivity of 91% (21/23) and a specificity of 93% (38/41) across multiple validation studies in three institutions. In conclusion, the present 1-day single oral administration model proves to be a reliable and highly sensitive tool for identifying GHCs and is anticipated to be a valuable tool in identifying and screening potential GHCs.


Assuntos
Máquina de Vetores de Suporte , Animais , Masculino , Ratos , Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência com Séries de Oligonucleotídeos , Administração Oral , Perfilação da Expressão Gênica , Testes de Carcinogenicidade/métodos , Mutagênicos/toxicidade , Medição de Risco/métodos
5.
Arch Toxicol ; 98(8): 2463-2485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811392

RESUMO

A modular strategy is described for the testing and assessment (MoSt) of non-genotoxic carcinogenicity (NGTxC) that is suitable for regulatory applications. It utilizes and builds upon work conducted by the OECD expert group on NGTxC. The approach integrates relevant test methods from the molecular- to cellular- and further to tissue level, many of which have been recently reviewed. Six progressive modules are included in the strategy. Advice is provided for the iterative selection of the next appropriate test method within each step of the strategy. Assessment is completed by a weight of evidence conclusion, which integrates the different streams of modular information. The assessment method gives higher weight to findings that are mechanistically linked with biological relevance to carcinogenesis. With a focus on EU-REACH, and pending upon successful test method validation and acceptance, this will also enable the MoSt for NGTxC to be applied for regulatory purposes across different regulatory jurisdictions.


Assuntos
Testes de Carcinogenicidade , Carcinógenos , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Animais , Humanos , Medição de Risco/métodos
6.
Expert Opin Drug Metab Toxicol ; 20(7): 621-628, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742542

RESUMO

INTRODUCTION: This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance. AREAS COVERED: The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments. It explores applications ranging from early-phase compound screening to clinical trial optimization, highlighting the versatility of ML in enhancing predictive accuracy and efficiency. EXPERT OPINION: Through the analysis of traditional approaches such as in vivo rodent bioassays and in vitro assays, the review underscores the limitations and resource intensity associated with these methods. It provides expert insights into how ML offers innovative solutions to address these challenges, revolutionizing safety assessments in drug development.


Assuntos
Inteligência Artificial , Testes de Carcinogenicidade , Carcinógenos , Desenvolvimento de Medicamentos , Aprendizado de Máquina , Humanos , Desenvolvimento de Medicamentos/métodos , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Aprendizado Profundo
7.
ALTEX ; 41(3): 439-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652827

RESUMO

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the major components of long-chain per- and polyfluorinated alkyl substances (PFAS), known for their chemical stability and environmental persistence. Even if PFOA and PFOS have been phased out or are limited in use, they still represent a concern for human and environmental health. Several studies have been per­formed to highlight the toxicological behavior of these chemicals and their mode of action (MoA). Data have suggested a causal association between PFOA or PFOS exposure and carcinogenicity in humans, but the outcomes of epidemiological studies showed some inconsistency. Moreover, the hypothesized MoA based on animal studies is considered not relevant for human cancer. To improve the knowledge on PFAS toxicology and contribute to the weight of evidence for the regu­latory classification of PFAS, we used the BALB/c 3T3 cell transformation assay (CTA), an in vitro model under consideration to be included in an integrated approach to testing and assessment for non-genotoxic carcinogens (NGTxCs). PFOS and PFOA were tested at several concentrations using a validated experimental protocol. Our results demonstrate that PFOA does not induce cell transformation, whereas PFOS exposure induced a concentration-related increase of type III foci. Malignant foci formation was triggered at PFOS concentrations equal to or higher than 50 ppm and was not directly associated with cytotoxicity or proliferation induction. The divergent CTA outcomes suggest that different molecular events could be responsible for the toxicological profiles of PFOS and PFOA, which were not fully captured in our study.


PFAS chemicals are known for their durability and resistance to heat, water, and oil. They are per­sistent in the environment and may pose health risks despite decreased use. This study explored PFOS and PFOA, two common PFAS chemicals, to understand their potential harm and cancer risk. To better understand how they might be harmful, we conducted a cell-based test that can resemble the carcinogenesis process in experimental animals. The test revealed PFOS, but not PFOA, can cause cancer-like changes, at levels of 50 parts per million or higher. This result suggests different PFAS chemicals affect cells differently, but we need more research to understand exactly how they work and how they might cause cancer. Understanding this could help regulate and reduce PFAS harmful effects. This research aligns with 3R principles by using cell-based tests as an alternative to animal testing, thereby promoting ethical research practices.


Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Carcinógenos , Fluorocarbonos , Fluorocarbonos/toxicidade , Animais , Caprilatos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Camundongos , Carcinógenos/toxicidade , Testes de Carcinogenicidade , Células 3T3 BALB , Humanos , Alternativas aos Testes com Animais
8.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563870

RESUMO

The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.


Assuntos
Testes de Carcinogenicidade , Transformação Celular Neoplásica , Neoplasias Colorretais , Poluentes Ambientais , Organoides , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/efeitos dos fármacos , Testes de Carcinogenicidade/métodos , Organoides/efeitos dos fármacos , Organoides/patologia , Camundongos , Poluentes Ambientais/toxicidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/induzido quimicamente , Humanos , Carcinógenos/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/patologia , Relação Dose-Resposta a Droga
9.
Stem Cells Transl Med ; 13(6): 572-581, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38554123

RESUMO

The extrapolability of the current tumorigenicity test performed by transplanting human cell product into immunodeficient (NOG) mice was investigated. For this purpose, the susceptibility to form teratomas of NOG mice was assessed by transplanting undifferentiated human-induced pluripotent stem cells (hiPSCs) as positive control cells via the liver, striatum, or tail vein and evaluating the TPD50 value (dose required to form teratomas in half of the transplanted mice). This was then compared to the TPD50 of syngeneic or allogeneic mouse models. The TPD50 of C57/BL/6(B6)-iPSC or 129/Ola(129)-embryonic stem cell (ESC) transplanted into the liver of syngeneic mice was 4.08 × 105 and 4.64 × 104 cells, respectively, while the TPD50 of hiPSC administered into the liver of NOG mice was 4.64 × 104 cells. The TPD50 of B6-miPSC-synergic, 129-mESC-synergic, or 129-cell/B6 allogeneic transplantation into the striatum was 5.09 × 102, 1.0 × 104, and 3.73 × 104 cells, respectively, while that of hiPSC/NOG mice was 1.0 × 103 cells. The TPD50 for B6-miPSC or 129-mESC syngeneic tail vein infusion was 3.16 × 106 or 5.62 × 106 cells, respectively, while no incidence was observed from 1 × 107 B6-miPSCs in 129 mice or hiPSCs in NOG mice infusion study. Although the number of data sets was limited, these data indicate that the teratoma formation from transplanted undifferentiated hiPSCs via the liver or striatum in NOG mice is comparable to that in syngeneic or allogeneic mouse transplantation model, suggesting that the result of the current tumorigenicity test in NOG mice would provide useful information to infer the incidence of teratoma from residual undifferentiated hPSCs in hPSC-derived products after transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Camundongos Endogâmicos C57BL , Transplante Homólogo , Transplante Isogênico , Animais , Camundongos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante Homólogo/métodos , Teratoma/patologia , Modelos Animais de Doenças , Testes de Carcinogenicidade/métodos
10.
Crit Rev Toxicol ; 54(3): 153-173, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470145

RESUMO

The Ramazzini Institute (RI) has been conducting animal carcinogenicity studies for decades, many of which have been considered by authoritative bodies to determine potential carcinogenicity in humans. Unlike other laboratories, such as the U.S. National Toxicology Program (NTP), the RI does not provide a report or record of historical control data. Transparently documenting historical control data is critical in the interpretation of individual study results within the same laboratory. Historical control data allow an assessment of significant trends, either increasing or decreasing, resulting from changes in laboratory methods or genetic drift. In this investigation: (1) we compiled a dataset of the tumors reported in control groups of Sprague-Dawley rats and Swiss mice based on data included in published RI studies on specific substances, and (2) conducted case studies to compare data from this RI control dataset to the findings from multiple RI studies on sweeteners and corresponding breakdown products. We found considerable variability in the tumor incidence across multiple tumor types when comparing across control groups from RI studies. When compared to the tumor incidence in treated groups from multiple studies, the incidence of some tumors considered to be treatment-related fell within the variability of background incidence from the RI control dataset.


Assuntos
Neoplasias , Ratos , Camundongos , Humanos , Animais , Ratos Sprague-Dawley , Incidência , Testes de Carcinogenicidade , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
11.
Food Chem Toxicol ; 188: 114524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428799

RESUMO

Sucralose, a sugar substitute first approved for use in 1991, is a non-caloric sweetener regulated globally as a food additive. Based on numerous experimental animal studies (dating to the 1980s) and human epidemiology studies, international health agencies have determined that sucralose is safe when consumed as intended. A single lifetime rodent carcinogenicity bioassay conducted by the Ramazzini Institute (RI) reported that mice fed diets containing sucralose develop hematopoietic neoplasia, but controversy continues regarding the validity and relevance of these data for predicting health effects in humans. The present paper addresses the controversy by providing the perspective of experienced pathologists on sucralose-related animal toxicity and carcinogenicity data generally, and the RI carcinogenicity bioassay findings specifically, using results from publicly available papers and international regulatory authority decisions. In the authors' view, flaws in the design, methodology, data evaluation, and reporting of the RI carcinogenicity bioassay for sucralose diminish the value of the data as evidence that this agent represents a carcinogenic hazard to humans. This limitation will remain until the RI bioassay is repeated under Good Laboratory Practices and the design, data, and accuracy of the pathology diagnoses and interpretations are reviewed by qualified pathologists with experience in evaluating potential chemically-induced carcinogenic hazards.


Assuntos
Testes de Carcinogenicidade , Sacarose , Animais , Sacarose/análogos & derivados , Sacarose/toxicidade , Camundongos , Humanos , Projetos de Pesquisa , Bioensaio/métodos , Edulcorantes/toxicidade , Ratos , Carcinógenos/toxicidade , Patologistas
12.
Toxicol Pathol ; 52(1): 13-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38445634

RESUMO

The Tumor Combination Guide was created at the request of the U. S. Food and Drug Administration (FDA) by a Working Group of biopharmaceutical experts from international societies of toxicologic pathology, the Food and Drug Administration (FDA), and members of the Standard for Exchange of Nonclinical Data (SEND) initiative, to assist pharmacology/toxicology reviewers and biostatisticians in statistical analysis of nonclinical tumor data. The guide will also be useful to study and peer review pathologists in interpreting the tumor data. This guide provides a higher-level hierarchy of tumor types or categories correlating the tumor names from the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) publications with those available in the NEOPLASM controlled terminology (CT) code list in SEND. The version of CT used in a study should be referenced in the nonclinical study data reviewer's guide (SDRG) (section 3.1) of electronic submissions to the FDA. The tumor combination guide instructions and examples are in a tabular format to make informed decisions for combining tumor data for statistical analysis. The strategy for combining tumor types for statistical analysis is based on scientific criteria gleaned from the current scientific literature; as SEND and INHAND terminology and information evolve, this guide will be updated.


Assuntos
Testes de Carcinogenicidade , Animais , Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Neoplasias/induzido quimicamente , Neoplasias/patologia , Estados Unidos , Ratos , United States Food and Drug Administration , Roedores , Camundongos , Guias como Assunto , Interpretação Estatística de Dados
13.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301659

RESUMO

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Testes de Mutagenicidade/métodos , Dano ao DNA , Técnicas In Vitro
14.
Arch Toxicol ; 98(1): 335-345, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874342

RESUMO

Triclosan is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifetime exposures to triclosan, yet data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. We evaluated the toxicity/carcinogenicity of triclosan administered dermally to B6C3F1 mice for 104 weeks. Groups of 48 male and 48 female B6C3F1 mice received dermal applications of 0, 1.25, 2.7, 5.8, or 12.5 mg triclosan/kg body weight (bw)/day in 95% ethanol, 7 days/week for 104 weeks. Vehicle control animals received 95% ethanol only; untreated, naïve control mice did not receive any treatment. There were no significant differences in survival among the groups. The highest dose of triclosan significantly decreased the body weight of mice in both sexes, but the decrease was ≤ 9%. Minimal-to-mild epidermal hyperplasia, suppurative inflammation (males only), and ulceration (males only) were observed at the application site in the treated groups, with the highest incidence occurring in the 12.5 mg triclosan/kg bw/day group. No tumors were identified at the application site. Female mice had a positive trend in the incidence of pancreatic islet adenoma. In male mice, there were positive trends in the incidences of hepatocellular carcinoma and hepatocellular adenoma or carcinoma (combined), with the increase of carcinoma being significant in the 5.8 and 12.5 mg/kg/day groups and the increase in hepatocellular adenoma or carcinoma (combined) being significant in the 2.7, 5.8, and 12.5 mg/kg/day groups.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triclosan , Ratos , Humanos , Camundongos , Masculino , Feminino , Animais , Triclosan/toxicidade , Ratos Endogâmicos F344 , Testes de Carcinogenicidade , Camundongos Endogâmicos , Etanol , Peso Corporal
15.
Toxicol Lett ; 390: 1-4, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923025

RESUMO

The Tumorigenic dose 50 (TD50) is a widely used measure of carcinogenic potency representing the dosage at which 50 % of animals exposed to a compound will develop tumours. The popularity of the TD50 is in part due to the large amount of publicly available data. TD50s were calculated for a large number of compounds in the Carcinogenic Potency Database, which has since been extended in the freely available Lhasa Carcinogenicity database, containing TD50s from over 7500 studies and 1700 compounds. However, due to the age of these studies many are of low quality, often comprising only a single test dosage, therefore raising questions about the applicability of such TD50 sfor toxicological risk assessment. We investigate whether the lower 99 % confidence interval is sufficient to produce conservative TD50 estimates for these studies.


Assuntos
Neoplasias , Roedores , Animais , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Medição de Risco , Carcinogênese , Testes de Carcinogenicidade
16.
Regul Toxicol Pharmacol ; 145: 105522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879513

RESUMO

For a pharmaceutical drug, carcinogenicity testing occurs in rodents to identify its tumorigenic potential to allow assessment of the risk from its use in humans. Testing takes the form of 2-year studies in mice and rats and/or more recently, a 6-month study in transgenic mice. This paper examines the process of regulatory interaction regarding carcinogenicity testing, notably through the United States (US) Food and Drug Administration (FDA) Special Protocol Assessment (SPA) process to seek Executive Carcinogenicity Assessment Committee (ECAC) approval. The content of 37 submissions to CAC were examined. The paper also examines the outcome from such agency engagement, notably around study dose level selection as well as looking at the design of proposed carcinogenicity study protocols used in submissions (including numbers of animals, control group aspects and toxicokinetic [TK] evaluation). Overall, it was shown that the current process of regulatory interaction allows for studies acceptable to support eventual drug approval and marketing. However, it was established that areas exist to improve the content of submission documents and study design aspects.


Assuntos
Aprovação de Drogas , Roedores , Humanos , Estados Unidos , Camundongos , Ratos , Animais , Preparações Farmacêuticas , Testes de Carcinogenicidade/métodos , Camundongos Transgênicos , United States Food and Drug Administration
17.
Toxicol Lett ; 389: 11-18, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813191

RESUMO

To date, long-term rodent carcinogenesis assays are the only assays recognized by regulators to assess non-genotoxic carcinogens, but their reliability has been questioned. In vitro cell transformation assays (CTAs) could represent an interesting alternative to animal models as it has the advantage of detecting both genotoxic and non-genotoxic transforming chemicals. Among them, Bhas 42 CTA uses a cell line that has been transfected with the oncogenic sequence v-Ha-ras. This sequence confers an "initiated" status to these cells and makes them particularly sensitive to non-genotoxic agents. In a previous work, transcriptomic analysis revealed that the treatment of Bhas 42 cells with transforming silica (nano)particles and 12-O-tetradecanoylphorbol-13-acetate (TPA) commonly modified the expression of 12 genes involved in cell proliferation and adhesion. In the present study, we assess whether this signature would be the same for four other soluble transforming agents, i.e. mezerein, methylarsonic acid, cholic acid and quercetin. The treatment of Bhas 42 cells for 48 h with mezerein modified the expression of the 12 genes of the signature according to the same profile as that of the TPA. However, methylarsonic acid and cholic acid gave an incomplete signature with changes in the expression of only 7 and 5 genes, respectively. Finally, quercetin treatment induced no change in the expression of all genes but exhibited higher cytotoxicty. These results suggest that among the transforming agents tested, some may share similar mechanisms of action leading to cell transformation while others may activate different additional pathways involved in such cellular process. More transforming and non-transforming agents and gene markers should be tested in order to try to identify a relevant gene signature to predict the transforming potential of non-genotoxic agents.


Assuntos
Hidroxianisol Butilado , Transcriptoma , Animais , Camundongos , Hidroxianisol Butilado/toxicidade , Reprodutibilidade dos Testes , Quercetina , Testes de Carcinogenicidade/métodos , Células 3T3 BALB , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/induzido quimicamente , Carcinógenos/toxicidade , Acetato de Tetradecanoilforbol/farmacologia , Ácido Cólico/toxicidade
18.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629136

RESUMO

Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.


Assuntos
Bioensaio , Células-Tronco Mesenquimais , Humanos , Reprodutibilidade dos Testes , Testes de Carcinogenicidade , Endotoxinas , Controle de Qualidade
19.
Int J Toxicol ; 42(6): 489-503, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37480334

RESUMO

Enarodustat (JTZ-951) is an oral hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) inhibitor for the treatment of anemia with chronic kidney disease. Carcinogenicity of enarodustat was evaluated in a 26-week repeated oral dose study in Transgenic rasH2 (Tg.rasH2) mice and a 2-year repeated oral dose study in Sprague-Dawley (SD) rats. The highest dose levels were set at 6 mg/kg in the Tg.rasH2 mouse study and at 1 mg/kg in the SD rat study based on the maximum tolerated doses in the 3-month and 6-month dose-range finding studies, respectively. Enarodustat did not increase the incidence of any tumors or affect survival in these carcinogenicity studies. Pharmacology-related findings including increases in blood RBC parameters were observed at the highest dose levels for each study. The AUC-based exposure margins as protein-unbound drug base are 16.3-/26.0-fold multiple (males/females) for Tg.rasH2 mice and 1.6-/1.1-fold multiple for SD rats when compared with the estimated exposure in human with chronic kidney disease at 8 mg/day (maximum recommended human dose). In conclusion, enarodustat was considered to have no carcinogenic potential at the clinical dose.


Assuntos
Inibidores de Prolil-Hidrolase , Insuficiência Renal Crônica , Camundongos , Ratos , Animais , Masculino , Humanos , Feminino , Camundongos Transgênicos , Ratos Sprague-Dawley , Prolil Hidroxilases , Carcinógenos , Inibidores de Prolil-Hidrolase/farmacologia , Carcinogênese , Hipóxia , Testes de Carcinogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...