Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.145
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39087887

RESUMO

Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.


Assuntos
Artemia , Ecotoxicologia , Testes de Mutagenicidade , Artemia/efeitos dos fármacos , Animais , Dano ao DNA , Poluentes Químicos da Água/toxicidade , Mutagênicos/toxicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-39147448

RESUMO

In the present study, we investigated the genotoxicity of the active products formed from N-nitrosoproline (NPRO) dissolved in oleic acid following ultraviolet A (UVA) irradiation, bypassing the need for metabolic activation. We previously demonstrated the photomutagenicity of NPRO dissolved in a phosphate-buffered solution. It has been suggested that the association of the nitrosamine group with acid ions facilitates rapid photodissociation and photoactivation. We hypothesized that NPRO's inherent carboxyl group may mimic an acid, inducing photodissociation and photomutagenicity, even in a non-aqueous solvent lacking acidic ions. Following UVA irradiation, NPRO dissolved in oleic acid exhibited a dose-dependent mutagenic activity. Similar results were obtained when NPRO was dissolved in linoleic acid and triolein. Nitric oxide formation, which is dependent on NPRO concentration, is accompanied by mutagenic activity. The mutagenicity spectrum obtained in response to NPRO irradiation followed the absorption curve of NPRO dissolved in oleic acid. Irradiated NPRO in oleic acid displayed relative stability, retaining approximately 18, 36, and 63 % of initial mutagenicity after 10 days of storage at 25, 4, and -20 °C, respectively. Thus NPRO stored in a fatty environment undergoes photoactivation upon irradiation, leading to genotoxicity.


Assuntos
Testes de Mutagenicidade , Ácido Oleico , Solventes , Raios Ultravioleta , Ácido Oleico/química , Solventes/química , Mutagênicos/química , Mutagênicos/toxicidade , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/efeitos da radiação
3.
Artigo em Inglês | MEDLINE | ID: mdl-39147450

RESUMO

In vitro and in silico tests were used to assess the possible genotoxicity and mutagenicity of five impurities that may be present in levothyroxine, a drug used for thyroid hormone replacement therapy. Neither ToxTree nor VEGA (Virtual Models for evaluating the properties of chemicals within a global architecture) identified cause for concern for any of the impurities. Ames test results (doses up to 1 mg per plate), with or without metabolic activation, were negative. The micronucleus test with TK6 (human lymphoblastoid) cells, at doses up to 500 µg/mL, with or without metabolic activation, also gave negative results.


Assuntos
Testes para Micronúcleos , Testes de Mutagenicidade , Tiroxina , Humanos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos , Contaminação de Medicamentos , Mutagênicos/toxicidade , Linhagem Celular , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
4.
Int J Radiat Biol ; 100(8): 1213-1225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038272

RESUMO

PURPOSE: Nuclear applications are being increasingly used in various fields, necessitating studies to protect from radiation hazards and their effects. In this study, five different chemical structures of pyrazolo [3,4-b] pyridine derivatives were synthesized. The gamma and neutron radiation protective abilities of these samples were determined and demonstrated their potential use as ingredients in radioprotective drugs. MATERIAL AND METHODS: Gamma radiation absorption parameters were calculated both theoretical and experimental. Important attenuation parameters for fast neutrons (4.5 MeV energy radiation) were figured out using the Monte Carlo simulation Geant4 code. Additionally, experimental dose rates were measured for each sample and compared to those of Paraffin and high-density polyethylene, an organic substance. Besides, Ames/Salmonella test system was aimed to detecting genotoxicity features of pyrazolo pyridine derivatives. RESULTS: All results demonstrated that each sample possesses both gamma and neutron radiation attenuation capabilities. It was determined that sample PPC4 (C20H14BrN5) exhibited the highest gamma radiation attenuation capacity among all samples, while sample PPC2 (C22H20N6) displayed an excellent neutron stopping capacity. The genotoxic properties of pyrazolo[3,4-b] pyridine derivatives were examined using the Ames/Salmonella test, and as a result, it was determined that these substances did not exhibit genotoxic effects at test doses up to 5 mM. CONCLUSION: All obtained results indicate that all PPC (pyrazolo[3,4-b] pyridine derivatives) samples do not possess a toxic effect, and they can be utilized as an active substance for the development of a drug or cream with protective properties against both gamma and neutron radiations.


Assuntos
Raios gama , Nêutrons , Pirazóis , Piridinas , Protetores contra Radiação , Piridinas/química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/toxicidade , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Testes de Mutagenicidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/efeitos da radiação , Relação Dose-Resposta à Radiação , Método de Monte Carlo
5.
Artigo em Inglês | MEDLINE | ID: mdl-39054007

RESUMO

'Heat-not-burn' products (HnBP) contain lower levels of harmful substances than traditional cigarettes, but the use of these products warrants further toxicological evaluation. We have compared the cytotoxicity and genotoxicity of a heat-not burn product with conventional cigarettes, in vivo and in vitro. Male Sprague Dawley rats were exposed to mainstream smoke from conventional cigarettes or a HnBP, for 4 or 28 days, followed by isolation of bone marrow polychromatic erythrocytes (PCE) and histological examination of the testes. Chinese hamster lung fibroblast cells were exposed in vitro to total particulate matter from cigarette smoke obtained through Cambridge filters. The cytotoxicity and genotoxicity of total particulate matter were assessed by the neutral red uptake assay, chromosome aberration assay, in vitro micronucleus test, comet assay, and Ames assay. In the short-term exposure rat models, only the conventional-cigarettes group showed a significant increase in the ratio of micronuclei to total PCE. There was no significant difference in rat testis histology in the long-term exposure models. In vitro, in the neutral red uptake assay, the HnBP product showed lower cytotoxicity than conventional cigarettes. Conventional cigarettes showed greater genotoxicity in the chromosome aberration assay, high-dose Ames tests with exogenous metabolic activation, and micronucleus tests. In summary, our results suggest that HnBP have lower cytotoxicity and genotoxicity than conventional cigarettes.


Assuntos
Aberrações Cromossômicas , Cricetulus , Testes de Mutagenicidade , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Cricetinae , Aberrações Cromossômicas/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Testes para Micronúcleos , Fumaça/efeitos adversos , Material Particulado/toxicidade , Temperatura Alta , Ensaio Cometa , Fibroblastos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39054008

RESUMO

Bioassays are widely used in assessment of mutagenicity. Alternative methods have also been developed, including "intelligent evaluation", which depends on the quality of data, strategies, and techniques. CISOC-PSMT is an Ames test prediction system. The strategies and techniques for intelligent evaluation and four applications of CISOC-PSMT are presented; roles in pesticide management, environmental protection, drug discovery, and safety management of chemicals are introduced.


Assuntos
Testes de Mutagenicidade , Mutagênicos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Humanos , Praguicidas/toxicidade , Descoberta de Drogas/métodos , Animais , Bioensaio/métodos
7.
Molecules ; 29(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064836

RESUMO

Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.


Assuntos
Dano ao DNA , Testes de Mutagenicidade , Mutagênicos , Mutagênicos/análise , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos , Humanos , Análise de Alimentos/métodos , Chá/química , Biomarcadores , Solanum lycopersicum/química , Histonas/metabolismo , Histonas/análise , Café/química , Spinacia oleracea/química , Rad51 Recombinase/metabolismo
8.
J Hazard Mater ; 476: 134948, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968824

RESUMO

Pesticides in the environment often compromise the ecosystem, thus requiring reliable approaches to assess their effects. Commonly used approaches, such as in vivo, come with several disadvantages, namely in the light of the 3 R's policy. Seeking for accurate and ethical approaches, this study intended to validate the ex vivo technique as an alternative, and to assess the genotoxicity of chemically-based pesticides and a biopesticide. The ex vivo approach was applied to gill cells of Procambarus clarkii for 2, 4 and 8 h. Cell viability and DNA integrity were evaluated to determine the applicability of this approach. Crayfish gill cells only showed to be suitable for exposures of 2 h. Accordingly, genotoxicity was evaluated in gill cells exposed, for 2 h, to environmentally relevant concentrations of the chemically-based pesticides dimethoate (20 µg L-1), imazalil (160 µg L-1) and penoxsulam (23 µg L-1), as well as to the bioinsecticide Turex® (25, 50, 100, 200 and 400 µg L-1). Every chemically-based pesticide demonstrated to be genotoxic, despite not inducing oxidative DNA damage. On the other hand, Turex® showed no genotoxic effects. Overall, the ex vivo approach demonstrated to be possible and practical to implement, improving the number of outcomes with a lower number of organisms. The findings from the screening test suggest that biological pesticides may pose a lower risk to non-target organisms compared to chemically-based pesticides.


Assuntos
Astacoidea , Dano ao DNA , Brânquias , Praguicidas , Animais , Praguicidas/toxicidade , Brânquias/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Astacoidea/efeitos dos fármacos , Medição de Risco , Testes de Mutagenicidade , Poluentes Químicos da Água/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Mutagênicos/toxicidade
9.
Toxicol In Vitro ; 99: 105891, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972515

RESUMO

This study represents the first application of in silico methods to evaluate the toxicity of 4-methylphenidate (4-Mmph), a new psychoactive substance (NPS). Using advanced in silico toxicology tools, it was feasible to anticipate key aspects of 4-Mmph's toxicological profile, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and possible endocrine disruption. The findings indicate significant acute toxicity with variability among species, a high potential for adverse effects in the gastrointestinal system and lungs, a low genotoxic potential, a significant likelihood of skin irritation, and a notable cardiotoxicity risk associated with hERG channel inhibition. Evaluation of endocrine disruption revealed a low likelihood that 4-Mmph interacts with the estrogen receptor alpha (ER-α), indicating minimal estrogenic activity. These insights, derived from in silico studies, play a crucial role in improving the comprehension of 4-Mmph in forensic and clinical toxicology. These initial toxicological inquiries establish the foundation for future investigations and help formulate risk assessment and management strategies regarding the use and abuse of NPS. This article is part of a larger project funded by the Polish Ministry of Education and Science, titled "Toxicovigilance, Poisoning Prevention, and First Aid in Poisoning with Xenobiotics of Current Clinical Importance in Poland" (Grant Number SKN/SP/570184/2023).


Assuntos
Simulação por Computador , Metilfenidato , Psicotrópicos , Metilfenidato/toxicidade , Metilfenidato/análogos & derivados , Humanos , Psicotrópicos/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Cardiotoxicidade/etiologia , Receptor alfa de Estrogênio/metabolismo , Testes de Mutagenicidade , Estimulantes do Sistema Nervoso Central/toxicidade , Dose Letal Mediana
10.
Artigo em Inglês | MEDLINE | ID: mdl-39063448

RESUMO

This study was carried out in the district of Taquaral de Minas, in the municipality of Itinga, located in Jequitinhonha Valley, state of Minas Gerais, which is considered one of the largest yolk-producing regions in Brazil. Miners in gem extraction areas are prone to severe oxidative damage due to their increased exposure to toxic metals, as well as chemical, physical, and biological agents, resulting in diseases such as silicosis. Thus, this work aimed to evaluate occupational exposure in prospectors through biomonitoring techniques using a variety of biomarkers for oxidative stress, genotoxicity, and mutagenicity. Twenty-two miners and seventeen workers who were not occupationally exposed were recruited, totaling thirty-nine participants. The study was approved by the Research Ethics Committee of the Federal University of the Jequitinhonha and Mucuri Valleys. In this study, the levels of total peroxides, catalase activity, and microelements in plasma were evaluated. Additionally, environmental analysis was carried out through the Ames and Allium cepa tests. The results of the lipoperoxidation assessment were significant, with increased frequencies in exposed individuals compared to controls (p < 0.05), as determined by the Mann-Whitney test. Micronutrients in the blood showed lower concentrations in the group exposed to Fe and Se than in individuals not exposed to these elements. The results of the Ames test and Allium cepa test were statistically significant compared to the controls (p < 0.05), as determined by the Mann-Whitney test for genotoxicity and cytotoxicity. Thus, the results of the present study indicate possible environmental contamination and a potential risk to the health of miners, which suggests that further studies are important in the region.


Assuntos
Biomarcadores , Mineração , Exposição Ocupacional , Estresse Oxidativo , Humanos , Brasil , Exposição Ocupacional/análise , Exposição Ocupacional/efeitos adversos , Adulto , Biomarcadores/sangue , Masculino , Pessoa de Meia-Idade , Monitoramento Biológico , Bertholletia/química , Testes de Mutagenicidade , Dano ao DNA
11.
Drug Chem Toxicol ; 47(4): 404-415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949608

RESUMO

Although the presence of nitro groups in chemicals can be recognized as structural alerts for mutagenicity and carcinogenicity, nitroaromatic compounds have attracted considerable interest as a class of agents that can serve as source of potential new anticancer agents. In the present study, the in vitro cytotoxicity, genotoxicity, and mutagenicity of three synthetic ortho-nitrobenzyl derivatives (named ON-1, ON-2 and ON-3) were evaluated by employing human breast and ovarian cancer cell lines. A series of biological assays was carried out with and without metabolic activation. Complementarily, computational predictions of the pharmacokinetic properties and druglikeness of the compounds were performed in the Swiss ADME platform. The MTT assay showed that the compounds selectively affected selectively the cell viability of cancer cells in comparison with a nontumoral cell line. Additionally, the metabolic activation enhanced cytotoxicity, and the compounds affected cell survival, as demonstrated by the clonogenic assay. The comet assay, the cytokinesis-block micronucleus assay, and the immunofluorescence of the γ-H2AX foci formation assay have that the compounds caused chromosomal damage to the cancer cells, with and without metabolic activation. The results obtained in the present study showed that the compounds assessed were genotoxic and mutagenic, inducing double-strand breaks in the DNA structure. The high selectivity indices observed for the compounds ON-2 and ON-3, especially after metabolic activation with the S9 fraction, must be highlighted. These experimental biological results, as well as the theoretical properties predicted for the compounds have shown that they are promising anticancer candidates to be exploited in additional studies.


Assuntos
Ativação Metabólica , Antineoplásicos , Sobrevivência Celular , Dano ao DNA , Humanos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/química , Dano ao DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Testes para Micronúcleos , Mutagênicos/toxicidade , Ensaio Cometa , Testes de Mutagenicidade , Feminino , Nitrobenzenos/toxicidade , Nitrobenzenos/química , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Relação Dose-Resposta a Droga
12.
Chemosphere ; 363: 142930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053776

RESUMO

The objective of the present study was to investigate some commonly detected halogenated textile pollutants for their bioavailability and hazardous properties. Release into artificial sweat and skin absorption in vitro were examined as well as mutagenic effects by Ames test, and skin-sensitizing properties from a peptide reactivity assay combined with a cell test. All investigated compounds were shown to migrate from the textile into sweat and be absorbed by the skin, although to a different extent. The experimental values for migration were found to be up to 390 times higher compared to literature values. Two of the studied compounds, 2,5-dinitrochlorobenzene and 3,5-dinitrobromobenzene, both exhibited mutagenic effects in the Ames test, while both 2,5-dinitrochlorobenzene and 2,6-dichlorobenzene-1,4-diamine were classified as skin sensitizers. The allergenic reactivity of the latter was found to be due to an oxidized transformation product. Risks for the induction of skin allergy and other non-carcinogenic effects from dermal exposure to the individual compounds were found low, even when considering clothing with the highest reported levels. However, the complex mixtures of chemicals often present in garments may still constitute a health risk, especially when considering the many hours of daily exposure. It is important to further study the toxicity of other frequently occurring chemicals as well as the synergistic effects of chemicals that co-occur in clothing.


Assuntos
Vestuário , Humanos , Pele/efeitos dos fármacos , Pele/metabolismo , Hidrocarbonetos Halogenados/toxicidade , Medição de Risco , Têxteis , Suor/química , Absorção Cutânea , Testes de Mutagenicidade
13.
Regul Toxicol Pharmacol ; 151: 105670, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936798

RESUMO

Given the widespread applications in industrial and agricultural production, the health effects of rare earth elements (REEs) have garnered public attention, and the genotoxicity of REEs remains unclear. In this study, we evaluated the genetic effects of lanthanum nitrate, a typical representative of REEs, with guideline-compliant in vivo and in vitro methods. Genotoxicity assays, including the Ames test, comet assay, mice bone marrow erythrocyte micronucleus test, spermatogonial chromosomal aberration test, and sperm malformation assay were conducted to assess mutagenicity, chromosomal damage, DNA damage, and sperm malformation. In the Ames test, no statistically significant increase in bacterial reverse mutation frequencies was found as compared with the negative control. Mice exposed to lanthanum nitrate did not exhibit a statistically significant increase in bone marrow erythrocyte micronucleus frequencies, spermatogonial chromosomal aberration frequencies, or sperm malformation frequencies compared to the negative control (P > 0.05). Additionally, after a 24-h treatment with lanthanum nitrate at concentrations of 1.25, 5, and 20 µg/ml, no cytotoxicity was observed in CHL cells. Furthermore, the comet assay results indicate no significant DNA damage was observed even after exposure to high doses of lanthanum nitrate (20 µg/ml). In conclusion, our findings suggest that lanthanum nitrate does not exhibit genotoxicity.


Assuntos
Aberrações Cromossômicas , Ensaio Cometa , Dano ao DNA , Lantânio , Testes para Micronúcleos , Testes de Mutagenicidade , Espermatozoides , Lantânio/toxicidade , Animais , Masculino , Camundongos , Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos dos fármacos , Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Espermatozoides/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Dose-Resposta a Droga , Camundongos Endogâmicos ICR , Linhagem Celular
14.
Chemosphere ; 362: 142700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936485

RESUMO

Pesticides are significant environmental pollutants, and many of them possess mutagenic potential, which is closely linked to carcinogenesis. Here we tested the mutagenicity of all six pesticides classified probably carcinogenic (Group 2A) by the International Agency of Research on Cancer: 4,4'-DDT, captafol, dieldrin, diazinon, glyphosate and malathion. Whole genome sequencing of TK6 human lymphoblastoid cell clones following 30-day exposure at subtoxic concentrations revealed a clear mutagenic effect of treatment with captafol or malathion when added at 200 nM or 100 µM initial concentrations, respectively. Each pesticide induced a specific base substitution mutational signature: captafol increased C to A mutations primarily, while malathion induced mostly C to T mutations. 4,4'-DDT, dieldrin, diazinon and glyphosate were not mutagenic. Whereas captafol induced chromosomal instability, H2A.X phosphorylation and cell cycle arrest in G2/M phase, all indicating DNA damage, malathion did not induce DNA damage markers or cell cycle alterations despite its mutagenic effect. Hypersensitivity of REV1 and XPA mutant DT40 chicken cell lines suggests that captafol induces DNA adducts that are bypassed by translesion DNA synthesis and are targets for nucleotide excision repair. The experimentally identified mutational signatures of captafol and malathion could shed light on the mechanism of action of these compounds. The signatures are potentially suitable for detecting past exposure in tumour samples, but the reanalysis of large cancer genome databases did not reveal any evidence of captafol or malathion exposure.


Assuntos
Testes de Mutagenicidade , Mutagênicos , Praguicidas , Humanos , Praguicidas/toxicidade , Mutagênicos/toxicidade , Dano ao DNA , Carcinógenos/toxicidade , Animais , Mutação , Linhagem Celular , Poluentes Ambientais/toxicidade
15.
Food Chem ; 456: 139948, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852444

RESUMO

The natural vanilla market, which generates millions annually, is predominantly dependent on Vanilla planifolia, a species characterized by low genetic variability and susceptibility to pathogens. There is an increasing demand for natural vanilla, prized for its complex, authentic, and superior quality compared to artificial counterparts. Therefore, there is a necessity for innovative production alternatives to ensure a consistent and stable supply of vanilla flavors. In this context, vanilla crop wild relatives (WRs) emerge as promising natural sources of the spice. However, these novel species must undergo toxicity assessments to evaluate potential risks and ensure safety for consumption. This study aimed to assess the non-mutagenic and non-carcinogenic properties of ethanolic extracts from V. bahiana, V. chamissonis, V. cribbiana, and V. planifolia through integrated metabolomic profiling, in vitro toxicity assays, and in silico analyses. The integrated approach of metabolomics, in vitro assays, and in silico analyses has highlighted the need for further safety assessments of Vanilla cribbiana ethanolic extract. While the extracts of V. bahiana, V. chamissonis, and V. planifolia generally demonstrated non-mutagenic properties in the Ames assay, V. cribbiana exhibited mutagenicity at high concentrations (5000 µg/plate) in the TA98 strain without metabolic activation. This finding, coupled with the dose-dependent cytotoxicity observed in WST-1 (Water Soluble Tetrazolium) assays, a colorimetric method that assesses the viability of cells exposed to a test substance, underscores the importance of concentration in the safety evaluation of these extracts. Kaempferol and pyrogallol, identified with higher intensity in V. cribbiana, are potential candidates for in vitro mutagenicity. Although the results are not conclusive, they suggest the safety of these extracts at low concentrations. This study emphasizes the value of an integrated approach in providing a nuanced understanding of the safety profiles of natural products, advocating for cautious use and further research into V. cribbiana mutagenicity.


Assuntos
Metabolômica , Extratos Vegetais , Vanilla , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Brasil , Vanilla/química , Humanos , Florestas , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Mutagenicidade , Simulação por Computador
16.
Comput Biol Med ; 178: 108731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870727

RESUMO

Non-sugar sweeteners (NSSs) or artificial sweeteners have long been used as food chemicals since World War II. NSSs, however, also raise a concern about their mutagenicity. Evaluating the mutagenic ability of NSSs is crucial for food safety; this step is needed for every new chemical registration in the food and pharmaceutical industries. A computational assessment provides less time, money, and involved animals than the in vivo experiments; thus, this study developed a novel computational method from an ensemble convolutional deep neural network and read-across algorithms, called DeepRA, to classify the mutagenicity of chemicals. The mutagenicity data were obtained from the curated Ames test data set. The DeepRA model was developed using both molecular descriptors and molecular fingerprints. The obtained DeepRA model provides accurate and reliable mutagenicity classification through an independent test set. This model was then used to examine the NSSs-related chemicals, enabling the evaluation of mutagenicity from the NSSs-like substances. Finally, this model was publicly available at https://github.com/taraponglab/deepra for further use in chemical regulation and risk assessment.


Assuntos
Aprendizado Profundo , Mutagênicos , Mutagênicos/toxicidade , Edulcorantes/toxicidade , Testes de Mutagenicidade , Algoritmos , Redes Neurais de Computação
17.
Toxicol In Vitro ; 99: 105874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851604

RESUMO

Amantadine (AMA) is a useful drug in neuronal disorders, but few studies have been performed to access its toxicological profile. Conversely, doxorubicin (Dox) is a well-known antineoplastic drug that has shown neurotoxic effects leading to cognitive impairment. The aims of this study are to evaluate the cytotoxic, genotoxic, and mutagenic effects of AMA, as well as its possible protective actions against deleterious effects of Dox. The Salmonella/microsome assay was performed to assess mutagenicity while cytotoxicity and genotoxicity were evaluated in SH-SY5Y cells using MTT and comet assays. Possible modulating effects of AMA on the cytotoxicity, genotoxicity, and mutagenicity induced by Dox were evaluated through cotreatment procedures. Amantadine did not induce mutations in the Salmonella/microsome assay and decreased Dox-induced mutagenicity in the TA98 strain. AMA reduced cell viability and induced DNA damage in SH-SY5Y cells. In cotreatment with Dox, AMA attenuated the cytotoxicity of Dox and showed an antigenotoxic effect. In conclusion, AMA does not induce gene mutations, although it has shown a genotoxic effect. Furthermore, AMA decreases frameshift mutations induced by Dox as well as the cytotoxic and genotoxic effects of Dox in SH-SY5Y cells, suggesting that AMA can interfere with Dox mutagenic activity and attenuate its neurotoxic effects.


Assuntos
Amantadina , Sobrevivência Celular , Dano ao DNA , Doxorrubicina , Humanos , Doxorrubicina/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Amantadina/farmacologia , Amantadina/toxicidade , Amantadina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Antibióticos Antineoplásicos/toxicidade , Testes de Mutagenicidade
18.
Biomed Pharmacother ; 177: 116969, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908200

RESUMO

Cannabidiol (CBD), a naturally occurring cyclic terpenoid found in Cannabis sativa L., is renowned for its diverse pharmacological benefits. Marketed as a remedy for various health issues, CBD products are utilized by patients as a supplementary therapy or post-treatment failure, as well as by healthy individuals seeking promised advantages. Despite its widespread use, information regarding potential adverse effects, especially genotoxic properties, is limited. The present study is focused on the mutagenic and genotoxic activity of a CBD isolate (99.4 % CBD content) and CBD-rich Cannabis sativa L extract (63.6 % CBD content) in vitro. Both CBD samples were non-mutagenic, as determined by the AMES test (OECD 471) but exhibited cytotoxicity for HepG2 cells (∼IC50(4 h) 26 µg/ml, ∼IC50(24 h) 6-8 µg/ml, MTT assay). Noncytotoxic concentrations induced upregulation of genes encoding metabolic enzymes involved in CBD metabolism, and CBD oxidative as well as glucuronide metabolites were found in cell culture media, demonstrating the ability of HepG2 cells to metabolize CBD. In this study, the CBD samples were found non-genotoxic. No DNA damage was observed with the comet assay, and no influence on genomic instability was observed with the cytokinesis block micronucleus and the γH2AX and p-H3 assays. Furthermore, no changes in the expression of genes involved in genotoxic stress response were detected in the toxicogenomic analysis, after 4 and 24 h of exposure. Our comprehensive study contributes valuable insights into CBD's safety profile, paving the way for further exploration of CBD's therapeutic applications and potential adverse effects.


Assuntos
Canabidiol , Cannabis , Dano ao DNA , Testes de Mutagenicidade , Mutagênicos , Extratos Vegetais , Canabidiol/farmacologia , Canabidiol/toxicidade , Canabidiol/isolamento & purificação , Humanos , Cannabis/química , Células Hep G2 , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Mutagênicos/toxicidade , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Testes para Micronúcleos
19.
J Biotechnol ; 391: 64-71, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844247

RESUMO

We investigated suitable culture conditions for the production of the blue pigment phycocyanin (PC) from the unique filamentous cyanobacteria Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. White, green, or red LED irradiation at 30 µmol photons/m2/s was effective for phycocyanin production when compared with Arthrospira platensis (Spirulina) sp. NIES-39, which is generally grown under high light irradiation. To investigate the safety of the cyanobacteria, ABRG5-3 cells were subjected to Ames (reverse mutation) tests and single oral-dose rat studies, which revealed non-mutagenic and non-toxic properties. When three purified phycocyanins (abPC, skPC, and spPC) were subjected to agarose gel electrophoresis, they showed different mobility, indicating that each phycocyanin has unique properties. abPC exhibited strong antiglycation activities as novel function.


Assuntos
Cianobactérias , Ficocianina , Ficocianina/farmacologia , Cianobactérias/metabolismo , Animais , Ratos , Glicosilação , Masculino , Testes de Mutagenicidade
20.
Methods Mol Biol ; 2825: 309-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913318

RESUMO

Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Microscopia/métodos , Testes de Mutagenicidade/métodos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Mutagênicos/toxicidade , Testes para Micronúcleos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...