Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980292

RESUMO

In the vertebrate immune system, thymus stromal microenvironments support the generation of αßT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.


Assuntos
Células Epiteliais , Timo , Timo/citologia , Timo/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Animais , Humanos , Diferenciação Celular , Regeneração/fisiologia , Timócitos/citologia , Timócitos/metabolismo , Timócitos/imunologia
2.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980291

RESUMO

During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.


Assuntos
Linhagem da Célula , Linfócitos T Reguladores , Timo , Animais , Timo/imunologia , Timo/citologia , Humanos , Linfócitos T Reguladores/imunologia , Linhagem da Célula/imunologia , Diferenciação Celular/imunologia , Linfócitos T CD8-Positivos/imunologia , Timócitos/imunologia , Timócitos/citologia , Timócitos/metabolismo , Linfócitos T CD4-Positivos/imunologia
3.
Nat Immunol ; 25(8): 1367-1382, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992254

RESUMO

Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.


Assuntos
Apresentação de Antígeno , Autoantígenos , Linfócitos T CD8-Positivos , Inflamação , Timócitos , Timo , Animais , Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Timo/imunologia , Inflamação/imunologia , Apresentação de Antígeno/imunologia , Timócitos/imunologia , Timócitos/metabolismo , Camundongos Endogâmicos C57BL , Imunidade Inata , Autoimunidade/imunologia , Tolerância Imunológica/imunologia , Camundongos Transgênicos , Camundongos Knockout , Ativação Linfocitária/imunologia , Eosinófilos/imunologia
4.
J Reprod Immunol ; 164: 104288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924811

RESUMO

Thymic atrophy affects T cell generation and migration to the periphery, thereby affecting T cell pool diversity. However, the mechanisms underlying thymic atrophy have not been fully elucidated. Here, gonadotropin-releasing hormone (GnRH) immunization and surgical castration did not affect thymocyte proliferation, but significantly reduced the apoptosis and increased the survival rate of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes. Following testosterone supplementation in rats subjected to GnRH immunization and surgical castration, thymocyte proliferation remained unchange, but the apoptosis of CD4-CD8-, CD4+CD8+, CD4+CD8-, and CD4-CD8+ thymocytes significantly increased. Transcriptome analyses of the thymus after GnRH immunization and surgical castration showed a significant reduction in the thymus's response to corticosterone. Cholesterol metabolism and the synthesis and secretion of corticosterone were significantly reduced. Analysis of the enzyme levels involved in the corticosterone synthesis pathway revealed that corticosterone synthesis in thymocytes was significantly reduced after GnRH immunization and surgical castration, whereas exogenous testosterone supplementation relieved this process. Testosterone promoted thymocyte apoptosis in a concentration-dependent manner, and induced corticosterone secretion in vitro. Blocking the intracellular androgen receptor (AR) signaling pathway did not significantly affect thymocyte apoptosis, but blocking the glucocorticoid receptor (GR) signaling pathway significantly reduced it. Our findings indicate that testosterone regulates thymus remodeling by affecting corticosterone synthesis in thymocytes, which activates GR signal transduction and promotes thymocyte apoptosis.


Assuntos
Apoptose , Receptores de Glucocorticoides , Transdução de Sinais , Testosterona , Timócitos , Timo , Animais , Masculino , Testosterona/metabolismo , Apoptose/imunologia , Ratos , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos dos fármacos , Timo/imunologia , Timo/metabolismo , Timo/patologia , Receptores de Glucocorticoides/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Corticosterona/metabolismo , Corticosterona/sangue , Células Cultivadas , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Orquiectomia
5.
Autoimmunity ; 57(1): 2347379, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38723105

RESUMO

Thymoma is closely associated with myasthenia gravis (MG). However, due to the heterogeneity of thymoma and the intricate pathogenesis of MG, it remains unclear why some patients with thymoma develop MG and others do not. In this study, we conducted a comparative phenotype analysis of thymocytes in type B thymomas in patients with MG (MG (+) thymomas) and without MG (MG (-) thymomas) via fluorescence-activated cell sorting (FACS). Our results show that the developmental stages defined by the expression of CD3, CD4, and CD8 were largely maintained in both MG (+) and MG (-) thymomas, with CD4+CD8+ cells constituting the majority of thymocytes in type B thymoma, and no significant difference between this cell population was observed in MG (+) and MG (-) thymomas.We discovered that CD4+CD8+ thymocytes in MG (+) thymomas expressed low levels of αß TCR and high levels of IL-7 receptor α (IL-7Rα), whereas in MG (-) thymomas, CD4+CD8+ thymocytes exhibited the opposite pattern of αß TCR and IL-7Rα expression. These results suggest that the positive and negative selection processes of CD4+CD8+ thymocytes might differ between MG (+) thymomas and MG (-) thymomas. The expression of the Helios transcription factor is induced during negative selection and marks a group of T cells that have undergone negative selection and are likely to be deleted due to strong TCR binding with self-peptides/MHC ligands. We observed that the percentage of Helios-positive CD4SP T cells was greater in MG (-) than in MG (+) thymomas. Thus, the differentially regulated selection process of CD4+CD8+ thymocytes, which involves TCR and IL-7/IL-7Rα signaling, is associated with the presence of MG in type B thymomas.


Assuntos
Miastenia Gravis , Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos , Timoma , Humanos , Timoma/imunologia , Timoma/patologia , Timoma/metabolismo , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Miastenia Gravis/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Masculino , Timócitos/imunologia , Timócitos/metabolismo , Feminino , Pessoa de Meia-Idade , Receptores de Interleucina-7/metabolismo , Receptores de Interleucina-7/imunologia , Adulto , Idoso , Neoplasias do Timo/imunologia , Neoplasias do Timo/patologia , Neoplasias do Timo/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunofenotipagem
6.
Immunol Lett ; 267: 106861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697225

RESUMO

Hematopoietic precursors (HPCs) entering into the thymus undergo a sequential process leading to the generation of a variety of T cell subsets. This developmental odyssey unfolds in distinct stages within the thymic cortex and medulla, shaping the landscape of T cell receptor (TCR) expression and guiding thymocytes through positive and negative selection. Initially, early thymic progenitors (ETPs) take residence in the thymic cortex, where thymocytes begin to express their TCR and undergo positive selection. Subsequently, thymocytes transition to the thymic medulla, where they undergo negative selection. Both murine and human thymocyte development can be broadly classified into distinct stages based on the expression of CD4 and CD8 coreceptors, resulting in categorizations as double negative (DN), double positive (DP) or single positive (SP) cells. Thymocyte migration to the appropriate thymic microenvironment at the right differentiation stage is pivotal for the development and the proper functioning of T cells, which is critical for adaptive immune responses. The journey of lymphoid progenitor cells into the T cell developmental pathway hinges on an ongoing dialogue between the differentiating cell and the signals emanating from the thymus niche. Herein, we review the contribution of the key factors mentioned above for the localization, migration and emigration of thymocytes.


Assuntos
Diferenciação Celular , Movimento Celular , Timócitos , Timo , Timócitos/imunologia , Timócitos/citologia , Timócitos/metabolismo , Animais , Humanos , Timo/citologia , Timo/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Immunol Cell Biol ; 102(6): 448-451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650472

RESUMO

In this article for the Highlights of 2023 Series, we discuss four recent articles that investigated thymic B cells, in both mice and humans. These studies provide important novel insights into the biology of this unique B-cell population, from their activation and differentiation to their role in promoting the negative selection of thymocytes and the generation of regulatory T cells.


Assuntos
Linfócitos B , Tolerância Imunológica , Timo , Animais , Humanos , Camundongos , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologia
8.
Eur J Immunol ; 54(7): e2350624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655818

RESUMO

Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , Atrofia , COVID-19 , Interferon gama , Camundongos Transgênicos , SARS-CoV-2 , Timo , Animais , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Timo/patologia , Timo/imunologia , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Atrofia/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Feminino , Humanos , Masculino , Timócitos/imunologia , Apoptose , Linfócitos T CD8-Positivos/imunologia
10.
Nature ; 613(7944): 565-574, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410718

RESUMO

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Assuntos
Desdiferenciação Celular , Antígenos de Histocompatibilidade Classe I , Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
11.
Virology ; 567: 77-86, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032866

RESUMO

Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/ß expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαßR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.


Assuntos
Atrofia/virologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Timócitos/virologia , Timo/virologia , Animais , Atrofia/genética , Atrofia/imunologia , Atrofia/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Doença Crônica , Feminino , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Interferon-alfa/genética , Interferon beta/genética , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Depleção Linfocítica , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia , Análise de Célula Única , Timócitos/imunologia , Timócitos/patologia , Timo/imunologia , Timo/patologia
12.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055071

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by dysregulated T and B lymphocytes. Type I interferons (IFN-I) have been shown to play important pathogenic roles in both SLE patients and mouse models of lupus. Recent studies have shown that B cell intrinsic responses to IFN-I are enough to drive B cell differentiation into autoantibody-secreting memory B cells and plasma cells, although lower levels of residual auto-reactive cells remain present. We speculated that IFN-I stimulation of T cells would similarly drive specific T-cell associated lupus phenotypes including the upregulation of T follicular helper cells and Th17, thereby affecting autoantibody production and the development of glomerulonephritis. Using the B6.Nba2 mouse model of lupus, we evaluated disease parameters in T cell specific IFN-I receptor (IFNAR)-deficient mice (cKO). Surprisingly, all measured CD4+ T cell abnormalities and associated intra-splenic cytokine levels (IFNγ, IL-6, IL-10, IL-17, IL-21) were unchanged and thus independent of IFN-I. In contrast B6.Nba2 cKO mice displayed reduced levels of effector CD8+ T cells and increased levels of Foxp3+ CD8+ regulatory T cells, suggesting that IFN-I induced signaling specifically affecting CD8+ T cells. These data suggest a role for both pathogenic and immunosuppressive CD8+ T cells in Nba2-driven autoimmunity, providing a model to further evaluate the role of these cell subsets during lupus-like disease development in vivo.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Autoimunidade , Biomarcadores , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Citocinas , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imuno-Histoquímica , Imunofenotipagem , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos/imunologia , Fenótipo , Receptor de Interferon alfa e beta/genética , Esplenomegalia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo
13.
J Immunol ; 208(4): 910-928, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082160

RESUMO

Enhancers activate transcription through long-distance interactions with their cognate promoters within a particular subtopologically associated domain (sub-TAD). The TCRα enhancer (Eα) is located at the sub-TAD boundary between the TCRα and DAD1 genes and regulates transcription toward both sides in an ∼1-Mb region. Analysis of Eα activity in transcribing the unrearranged TCRα gene at the 5'-sub-TAD has defined Eα as inactive in CD4-CD8- thymocytes, active in CD4+CD8+ thymocytes, and strongly downregulated in CD4+ and CD8+ thymocytes and αß T lymphocytes. Despite its strongly reduced activity, Eα is still required for high TCRα transcription and expression of TCRαß in mouse and human T lymphocytes, requiring collaboration with distant sequences for such functions. Because VαJα rearrangements in T lymphocytes do not induce novel long-range interactions between Eα and other genomic regions that remain in cis after recombination, strong Eα connectivity with the 3'-sub-TAD might prevent reduced transcription of the rearranged TCRα gene. Our analyses of transcriptional enhancer dependence during T cell development and non-T lineage tissues at the 3'-sub-TAD revealed that Eα can activate the transcription of specific genes, even when it is inactive to transcribe the TCRα gene at the 5'-sub-TAD. Hence distinct requirements for Eα function are necessary at specific genes at both sub-TADs, implying that enhancers do not merely function as chromatin loop anchors that nucleate the formation of factor condensates to increase gene transcription initiated at their cognate promoters. The observed different regulated Eα activity for activating specific genes at its flanking sub-TADs may be a general feature for enhancers located at sub-TAD boundaries.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Diferenciação Celular/genética , Mapeamento Cromossômico , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Loci Gênicos , Humanos , Células Jurkat , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
14.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34910107

RESUMO

The Tcra repertoire is generated by multiple rounds of Vα-Jα rearrangement. However, Tcrd recombination precedes Tcra recombination within the complex Tcra-Tcrd locus. Here, by ablating Tcrd recombination, we report that Tcrd rearrangement broadens primary Vα use to diversify the Tcra repertoire in mice. We reveal that use of Trav15-dv6 family V gene segments in Tcrd recombination imparts diversity in the Tcra repertoire by instigating use of central and distal Vα segments. Moreover, disruption of the regions containing these genes and their cis-regulatory elements identifies the Trav15-dv6 family as being responsible for driving central and distal Vα recombinations beyond their roles as substrates for Tcrd recombination. Our study demonstrates an indispensable role for Tcrd recombination in general, and the Trav15-dv6 family in particular, in the generation of a combinatorially diverse Tcra repertoire.


Assuntos
Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Recombinação V(D)J
15.
Transl Res ; 239: 103-123, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461306

RESUMO

CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. To that aim, parental donor WT (wild-type) or CD160 KO (knock-out) T cells were adoptively transferred into non-irradiated semiallogeneic F1 recipients, in which donor alloreactive CD160 KO CD4 T cells and CD8 T cells clonally expanded less vigorously than in WT T cell counterparts. This differential proliferative response rate at the early phase of T cell expansion influenced the course of CD8 T cell differentiation and the composition of the effector T cell pool that led to a significant decreased of the memory precursor effector cells (MPECs) / short-lived effector cells (SLECs) ratio in CD160 KO CD8 T cells compared to WT CD8 T cells. Despite these differences in T cell proliferation and differentiation, allogeneic MHC class I mismatched (bm1) skin allograft survival in CD160 KO recipients was comparable to that of WT recipients. However, the administration of CTLA-4.Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/etiologia , Receptores Imunológicos/imunologia , Ligante 4-1BB/metabolismo , Aloenxertos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Genes MHC Classe I , Rejeição de Enxerto/imunologia , Células Matadoras Naturais/imunologia , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos , Camundongos Knockout , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transplante de Pele , Timócitos/imunologia
16.
Scand J Immunol ; 94(4): e13094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34780092

RESUMO

The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.


Assuntos
Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Epiteliais/classificação , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Homeostase , Humanos , Masculino , Modelos Imunológicos , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/imunologia , Gravidez , Transdução de Sinais/imunologia , Linfócitos T Reguladores/classificação , Timócitos/classificação , Timócitos/citologia , Timócitos/imunologia , Timoma/imunologia , Timo/citologia , Timo/imunologia , Neoplasias do Timo/imunologia
17.
Nat Commun ; 12(1): 6230, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711828

RESUMO

T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi. This pathway depends on a subset of thymus-resident DCs, distinct from both parenchymal and circulating migratory DCs, that are positioned in immediate proximity to thymic microvessels where they extend cellular processes across the endothelial barrier into the blood stream. Transendothelial positioning of DCs depends on DC-expressed CX3CR1 and its endothelial ligand, CX3CL1, and disrupting this chemokine pathway prevents thymic acquisition of circulating proteins and compromises negative selection of Ag-reactive thymocytes. Thus, transendothelial DCs represent a mechanism by which the thymus can actively acquire blood-borne Ags to induce and maintain central tolerance.


Assuntos
Sangue/imunologia , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Autoantígenos/imunologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Diferenciação Celular , Movimento Celular , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/imunologia , Células Dendríticas/citologia , Células Endoteliais/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tolerância a Antígenos Próprios , Timócitos/citologia , Timo/citologia
18.
Iran J Allergy Asthma Immunol ; 20(5): 623-634, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664821

RESUMO

The rates of invariant natural killer T (iNKT) cells in vivo are very low, and the amounts of cells obtained directly from the body are hard enough to fulfill their potential in clinical application. To overcome this problem, we subcutaneously injected alpha-galactosylceramide (α-GalCer) into DBA/1 mice and thymic single cells were isolated and cultured in vitro. Fluorescence-activated cell sorting was used to detect the iNKT cells and their subsets in the thymus after the injection of α-GalCer by different methods. In addition, in vitro changes of single-cell suspensions and their cytokines in culture supernatants were assessed. Compared with the α-GalCer multiple subcutaneous injection group, the rates of iNKT cells in the α-GalCer single subcutaneous injection group were markedly higher at each time point, while the highest levels of iNKT1 and iNKT2 cells were observed on day 4 and  8, respectively. In α-GalCer single subcutaneous injection for 8 days and thymic mononuclear cell cultured for 14 days group, the expansion rate of iNKT cells was significantly faster than the other groups, while it reached a peak for iNKT1 cells. Interferon-gamma was consistent with the development of iNKT1 cells, however no difference was found between the cultured iNKT cells in vitro and the natural iNKT cells in vivo in terms of cytokine production. Herein, we introduced a method in which antigenic stimulation in vivo and directed induction in vitro yielded high levels of iNKT cells with specific functions.


Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Animais , Antígenos/metabolismo , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Camundongos , Células T Matadoras Naturais/citologia , Timócitos/citologia
19.
Front Immunol ; 12: 716661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394122

RESUMO

Although metabolic pathways have been shown to control differentiation and activation in peripheral T cells, metabolic studies on thymic T cell development are still lacking, especially in human tissue. In this study, we use transcriptomics and extracellular flux analyses to investigate the metabolic profiles of primary thymic and in vitro-derived mouse and human thymocytes. Core metabolic pathways, specifically glycolysis and oxidative phosphorylation, undergo dramatic changes between the double-negative (DN), double-positive (DP), and mature single-positive (SP) stages in murine and human thymus. Remarkably, despite the absence of the complex multicellular thymic microenvironment, in vitro murine and human T cell development recapitulated the coordinated decrease in glycolytic and oxidative phosphorylation activity between the DN and DP stages seen in primary thymus. Moreover, by inducing in vitro T cell differentiation from Rag1-/- mouse bone marrow, we show that reduced metabolic activity at the DP stage is independent of TCR rearrangement. Thus, our findings suggest that highly conserved metabolic transitions are critical for thymic T cell development.


Assuntos
Diferenciação Celular , Metabolismo Energético , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Evolução Biológica , Biomarcadores , Linhagem Celular , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfopoese , Metaboloma , Metabolômica/métodos , Camundongos , Organoides , Timócitos/imunologia , Técnicas de Cultura de Tecidos
20.
Front Immunol ; 12: 668528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220815

RESUMO

The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Células-Tronco/fisiologia , Timo/fisiologia , Fatores Etários , Animais , Microambiente Celular , Células Epiteliais/imunologia , Humanos , Tolerância a Antígenos Próprios , Células-Tronco/imunologia , Linfócitos T/imunologia , Timócitos/imunologia , Timo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...