Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.827
Filtrar
1.
Immunohorizons ; 8(7): 492-499, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008056

RESUMO

The transcription factor FOXN1 plays an established role in thymic epithelial development to mediate selection of maturing thymocytes. Patients with heterozygous loss-of-function FOXN1 variants are associated with T cell lymphopenia at birth and low TCR excision circles that can ultimately recover. Although CD4+ T cell reconstitution in these patients is not completely understood, a lower proportion of naive T cells in adults has suggested a role for homeostatic proliferation. In this study, we present an immunophenotyping study of fraternal twins with low TCR excision circles at birth. Targeted primary immunodeficiency testing revealed a heterozygous variant of uncertain significance in FOXN1 (c.1205del, p.Pro402Leufs*148). We present the immune phenotypes of these two patients, as well as their father who carries the same FOXN1 variant, to demonstrate an evolving immune environment over time. While FOXN1 haploinsufficiency may contribute to thymic defects and T cell lymphopenia, we characterized the transcriptional activity and DNA binding of the heterozygous FOXN1 variant in 293T cells and found the FOXN1 variant to have different effects across several target genes. These data suggest multiple mechanisms for similar FOXN1 variants pathogenicity that may be mutation specific. Increased understanding of how these variants drive transcriptional regulation to impact immune cell populations will guide the potential need for therapeutics, risk for infection or autoimmunity over time, and help inform clinical decisions for other variants that might arise.


Assuntos
Fatores de Transcrição Forkhead , Heterozigoto , Imunofenotipagem , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , Feminino , Linfopenia/genética , Linfopenia/imunologia , Mutação , Adulto , Haploinsuficiência , Linfócitos T/imunologia , Células HEK293 , Recém-Nascido , Timo/imunologia , Timo/metabolismo
2.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
3.
Sci Rep ; 14(1): 10045, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698013

RESUMO

Chronic stress has been implicated in mental illnesses and depressive behaviors. Somatostatin 4 receptor (SSTR4) has been shown to mediate anxiolytic and depression-like effects. Here, we aimed to explore the potential of SSTR4 as a diagnostic marker for chronic stress in mice. The mice were divided into single stress, chronic restraint stress, and control groups, and Sstr4 mRNA expression in the pituitary, lungs, and thymus, its protein expression in the thymus, were analyzed. Compared to controls, Sstr4 mRNA expression decreased significantly in the pituitary gland of the chronic and single-stress groups (P = 0.0181 and 0.0022, respectively) and lungs of the single-stress group (P = 0.0124), whereas it significantly increased in the thymus of the chronic-stress group (P = 0.0313). Thymic SSTR4 expression did not decrease significantly in stress groups compared to that in the control group (P = 0.0963). These results suggest that SSTR4 expression fluctuates in response to stress. Furthermore, Sstr4 mRNA expression dynamics in each organ differed based on single or chronic restraint stress-loading periods. In conclusion, this study suggests that investigating SSTR4 expression in each organ could allow for its use as a stress marker to estimate the stress-loading period and aid in diagnosing chronic stress.


Assuntos
Biomarcadores , Receptores de Somatostatina , Estresse Psicológico , Timo , Animais , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Camundongos , Estresse Psicológico/metabolismo , Masculino , Biomarcadores/metabolismo , Timo/metabolismo , Hipófise/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Pulmão/metabolismo , Doença Crônica , Estresse Fisiológico , Restrição Física
4.
Proc Natl Acad Sci U S A ; 121(20): e2320268121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709934

RESUMO

Insulin is a central autoantigen in the pathogenesis of T1D, and thymic epithelial cell expression of insulin under the control of the Autoimmune Regulator (Aire) is thought to be a key component of maintaining tolerance to insulin. In spite of this general working model, direct detection of this thymic selection on insulin-specific T cells has been somewhat elusive. Here, we used a combination of highly sensitive T cell receptor transgenic models for detecting thymic selection and sorting and sequencing of Insulin-specific CD4+ T cells from Aire-deficient mice as a strategy to further define their selection. This analysis revealed a number of unique t cell receptor (TCR) clones in Aire-deficient hosts with high affinity for insulin/major histocompatibility complex (MHC) ligands. We then modeled the thymic selection of one of these clones in Aire-deficient versus wild-type hosts and found that this model clone could escape thymic negative selection in the absence of thymic Aire. Together, these results suggest that thymic expression of insulin plays a key role in trimming and removing high-affinity insulin-specific T cells from the repertoire to help promote tolerance.


Assuntos
Proteína AIRE , Insulina , Receptores de Antígenos de Linfócitos T , Timo , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Clonais , Tolerância Imunológica , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Timo/metabolismo , Timo/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
J Agric Food Chem ; 72(23): 13382-13392, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814005

RESUMO

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.


Assuntos
Cádmio , Galinhas , Isotiocianatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sulfóxidos , Timo , Animais , Isotiocianatos/farmacologia , Cádmio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Timo/efeitos dos fármacos , Timo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino
6.
Sci Rep ; 14(1): 10636, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724644

RESUMO

Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.


Assuntos
Sistemas CRISPR-Cas , Fatores de Transcrição Forkhead , RNA Guia de Sistemas CRISPR-Cas , Animais , Camundongos , Ratos , RNA Guia de Sistemas CRISPR-Cas/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo , Modelos Animais , Blastocisto/metabolismo
7.
Cell Death Dis ; 15(5): 352, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773063

RESUMO

Within the thymus, thymic epithelial cells (TECs) create dedicated microenvironments for T cell development and selection. Considering that TECs are sensitive to distinct pathophysiological conditions, uncovering the molecular elements that coordinate their thymopoietic role has important fundamental and clinical implications. Particularly, medullary thymic epithelial cells (mTECs) play a crucial role in central tolerance. Our previous studies, along with others, suggest that mTECs depend on molecular factors linked to genome-protecting pathways, but the precise mechanisms underlying their function remain unknown. These observations led us to examine the role of Foxo3, as it is expressed in TECs and involved in DNA damage response. Our findings show that mice with TEC-specific deletion of Foxo3 (Foxo3cKO) displayed a disrupted mTEC compartment, with a more profound impact on the numbers of CCL21+ and thymic tuft mTEClo subsets. At the molecular level, Foxo3 controls distinct functional modules in the transcriptome of cTECs and mTECs under normal conditions, which includes the regulation of ribosomal biogenesis and DNA damage response, respectively. These changes in the TEC compartment resulted in a reduced total thymocyte cellularity and specific changes in regulatory T cell and iNKT cell development in the Foxo3cKO thymus. Lastly, the thymic defects observed in adulthood correlated with mild signs of altered peripheral immunotolerance in aged Foxo3cKO mice. Moreover, the deficiency in Foxo3 moderately aggravated the autoimmune predisposition observed in Aire-deficient mice. Our findings highlight the importance of Foxo3 in preserving the homeostasis of TECs and in supporting their role in T cell development and tolerance.


Assuntos
Células Epiteliais , Proteína Forkhead Box O3 , Homeostase , Timo , Animais , Timo/metabolismo , Timo/citologia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células Epiteliais/metabolismo , Camundongos , Camundongos Knockout , Diferenciação Celular , Linfócitos T/metabolismo , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL
9.
Aging (Albany NY) ; 16(8): 7009-7021, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637117

RESUMO

BACKGROUND: Reduced numbers and dysfunction of thymic epithelial cells (TECs) are important factors of thymic degeneration. Previous studies have found that umbilical cord mesenchymal stem cells (UCMSCs) reverse the structure and function of the senescent thymus in vivo. However, the transcriptomic regulation mechanism is unclear. METHODS: TECs were cultured with H2O2 for 72 hours to induce senescence. UCMSCs were cocultured with senescent TECs for 48 hours to detect SA-ß-gal, P16 and Ki67. The cocultured TECs were collected for lncRNA, mRNA and miRNA sequencing to establish a competitive endogenous regulatory network (ceRNA). And RT-qPCR, immunofluorescence staining, and western blot were used to identified key genes. RESULTS: Our results showed that H2O2 induced TEC aging and that UCMSCs reversed these changes. Compared with those in aged TECs, 2260 DE mRNAs, 1033 DE lncRNAs and 67 DE miRNAs were differentially expressed, and these changes were reversed by coculturing the cells with UCMSCs. Differential mRNA enrichment analysis of ceRNA regulation revealed that the PI3K-AKT pathway was a significant signaling pathway. UCMSC coculture upregulated VEGFA, which is the upstream factor of the PI3K-AKT signaling pathway, and the expression of the key proteins PI3K and AKT. Thus, the expression of the cell cycle suppressor P27, which is downstream of the PI3K-AKT signaling pathway, was downregulated, while the expression of the cell cycle regulators CDK2 and CCNE was upregulated. CONCLUSION: UCMSC coculture upregulated the expression of VEGFA, activated the PI3K-AKT signaling pathway, increased the expression of CDK2 and CCNE, decreased the expression of P27, and promoted the proliferation of TECs.


Assuntos
Senescência Celular , Técnicas de Cocultura , Células Epiteliais , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , MicroRNAs , Proteínas Oncogênicas , Timo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Humanos , Células Epiteliais/metabolismo , Cordão Umbilical/citologia , Timo/citologia , Timo/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclina E/metabolismo , Ciclina E/genética , Biomarcadores/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
10.
Protein J ; 43(3): 447-463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622349

RESUMO

The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.


Assuntos
Proteostase , Células Estromais , Timo , Humanos , Timo/metabolismo , Timo/citologia , Células Estromais/metabolismo , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia
11.
Front Immunol ; 15: 1364957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650932

RESUMO

Introduction: CARD11 is a lymphoid lineage-specific scaffold protein regulating the NF-κB activation downstream of the antigen receptor signal pathway. Defective CARD11 function results in abnormal development and differentiation of lymphocytes, especially thymic regulatory T cells (Treg). Method: In this study, we used patients' samples together with transgenic mouse models carrying pathogenic CARD11 mutations from patients to explore their effects on Treg development. Immunoblotting and a GFP receptor assay were used to evaluate the activation effect of CARD11 mutants on NF-κB signaling. Then the suppressive function of Tregs carrying distinct CARD11 mutations was measured by in vitro suppression assay. Finally, we applied the retroviral transduced bone marrow chimeras to rescue the Treg development in an NF-κB independent manner. Results and discuss: We found CARD11 mutations causing hyper-activated NF-κB signals also gave rise to compromised Treg development in the thymus, similar to the phenotype in Card11 deficient mice. This observation challenges the previous view that CARD11 regulates Treg lineage dependent on the NF-kB activation. Mechanistic investigations reveal that the noncanonical function CARD11, which negatively regulates the AKT/ FOXO1 signal pathway, is responsible for regulating Treg generation. Moreover, primary immunodeficiency patients carrying CARD11 mutation, which autonomously activates NF-κB, also represented the reduced Treg population in their peripheral blood. Our results propose a new regulatory function of CARD11 and illuminate an NF-κB independent pathway for thymic Treg lineage commitment.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Guanilato Ciclase , Mutação , NF-kappa B , Transdução de Sinais , Linfócitos T Reguladores , Timo , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , Humanos , Camundongos , Timo/imunologia , Timo/citologia , Timo/metabolismo , Camundongos Transgênicos , Diferenciação Celular/imunologia , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/genética , Masculino
12.
Front Immunol ; 15: 1331846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605970

RESUMO

Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.


Assuntos
Autoimunidade , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo
13.
Cell Rep ; 43(4): 114072, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581680

RESUMO

Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.


Assuntos
Proteína AIRE , Tolerância Central , Células Epiteliais , Proteínas do Tecido Nervoso , Timo , Fatores de Transcrição , Animais , Células Epiteliais/metabolismo , Timo/citologia , Timo/metabolismo , Timo/imunologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tolerância a Antígenos Próprios
14.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635416

RESUMO

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Assuntos
Proteína AIRE , Elementos de DNA Transponíveis , Camundongos , Humanos , Animais , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Timócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL
15.
Leukemia ; 38(5): 951-962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553571

RESUMO

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Timo/metabolismo , Timo/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
16.
Sci Adv ; 10(11): eadj2802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489359

RESUMO

Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.


Assuntos
Fator de Transcrição Ikaros , Proteínas de Membrana , Células T Matadoras Naturais , Timo , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Fator de Transcrição Ikaros/metabolismo , Timo/citologia , Timo/metabolismo
17.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466627

RESUMO

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Assuntos
Timócitos , Fatores de Transcrição , Camundongos , Animais , Timócitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Timo/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo
18.
Nat Commun ; 15(1): 2194, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467629

RESUMO

The regulation of thymocyte development by RNA-binding proteins (RBPs) is largely unexplored. We identify 642 RBPs in the thymus and focus on Arpp21, which shows selective and dynamic expression in early thymocytes. Arpp21 is downregulated in response to T cell receptor (TCR) and Ca2+ signals. Downregulation requires Stim1/Stim2 and CaMK4 expression and involves Arpp21 protein phosphorylation, polyubiquitination and proteasomal degradation. Arpp21 directly binds RNA through its R3H domain, with a preference for uridine-rich motifs, promoting the expression of target mRNAs. Analysis of the Arpp21-bound transcriptome reveals strong interactions with the Rag1 3'-UTR. Arpp21-deficient thymocytes show reduced Rag1 expression, delayed TCR rearrangement and a less diverse TCR repertoire. This phenotype is recapitulated in Rag1 3'-UTR mutant mice harboring a deletion of the Arpp21 response region. These findings show how thymocyte-specific Arpp21 promotes Rag1 expression to enable TCR repertoire diversity until signals from the TCR terminate Arpp21 and Rag1 activities.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Animais , Camundongos , Diferenciação Celular/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Timócitos/metabolismo , Timo/metabolismo
19.
Annu Rev Immunol ; 42(1): 427-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360547

RESUMO

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.


Assuntos
Proteína AIRE , Autoimunidade , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Timo/imunologia , Timo/metabolismo , Mutação , Tolerância Imunológica , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo
20.
Front Immunol ; 15: 1322214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318192

RESUMO

Thymus is the main immune organ which is responsible for the production of self-tolerant and functional T cells, but it shrinks rapidly with age after birth. Although studies have researched thymus development and involution in mouse, the critical regulators that arise with age in human thymus remain unclear. We collected public human single-cell transcriptomic sequencing (scRNA-seq) datasets containing 350,678 cells from 36 samples, integrated them as a cell atlas of human thymus. Clinical samples were collected and experiments were performed for validation. We found early thymocyte-specific signaling and regulons which played roles in thymocyte migration, proliferation, apoptosis and differentiation. Nevertheless, signaling patterns including number, strength and path completely changed during aging, Transcription factors (FOXC1, MXI1, KLF9, NFIL3) and their target gene, IGFBP5, were resolved and up-regulated in aging thymus and involved in promoting epithelial-mesenchymal transition (EMT), responding to steroid and adipogenesis process of thymic epithelial cell (TECs). Furthermore, we validated that IGFBP5 protein increased at TECs and Hassall's corpuscle in both human and mouse aging thymus and knockdown of IGFBP5 significantly increased the expression of proliferation-related genes in thymocytes. Collectively, we systematically explored cell-cell communications and regulons of early thymocytes as well as age-related differences in human thymus by using both bioinformatic and experimental verification, indicating IGFBP5 as a functional marker of thymic involution and providing new insights into the mechanisms of thymus involution.


Assuntos
Envelhecimento , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Timócitos , Timo , Humanos , Envelhecimento/genética , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais , Timócitos/metabolismo , Timo/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...