RESUMO
Phenothiazines inhibit antioxidant enzymes in trypanosomatids. However, potential interferences with host cell antioxidant defenses are central concerns in using these drugs to treat Trypanosoma cruzi-induced infectious myocarditis. Thus, the interaction of thioridazine (TDZ) with T. cruzi and cardiomyocytes antioxidant enzymes, and its impact on cardiomyocytes and cardiac infection was investigated in vitro and in vivo. Cardiomyocytes and trypomastigotes in culture, and mice treated with TDZ and benznidazole (Bz, reference antiparasitic drug) were submitted to microstructural, biochemical and molecular analyses. TDZ was more cytotoxic and less selective against T. cruzi than Bz in vitro. TDZ-pretreated cardiomyocytes developed increased infection rate, reactive oxygen species (ROS) production, lipid and protein oxidation; similar catalase (CAT) and superoxide dismutase (SOD) activity, and reduced glutathione's (peroxidase - GPx, S-transferase - GST, and reductase - GR) activity than infected untreated cells. TDZ attenuated trypanothione reductase activity in T. cruzi, and protein antioxidant capacity in cardiomyocytes, making these cells more susceptible to H2O2-based oxidative challenge. In vivo, TDZ potentiated heart parasitism, total ROS production, myocarditis, lipid and protein oxidation; as well as reduced GPx, GR, and GST activities compared to untreated mice. Benznidazole decreased heart parasitism, total ROS production, heart inflammation, lipid and protein oxidation in T. cruzi-infected mice. Our findings indicate that TDZ simultaneously interact with enzymatic antioxidant targets in cardiomyocytes and T. cruzi, potentiating the infection by inducing antioxidant fragility and increasing cardiomyocytes and heart susceptibility to parasitism, inflammation and oxidative damage.
Assuntos
Antioxidantes , Cardiomiopatia Chagásica , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Tioridazina , Trypanosoma cruzi , Animais , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tioridazina/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Miocardite/parasitologia , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocardite/patologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Masculino , Tripanossomicidas/farmacologia , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Catalase/metabolismo , Ratos , NADH NADPH Oxirredutases/metabolismoRESUMO
BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Vincristina/farmacologia , Aripiprazol/farmacologia , Vinorelbina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Vimblastina/farmacologia , Células MCF-7 , Tioridazina/farmacologia , Trifluoperazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologiaRESUMO
The recent increase in the drug (liposomal amphotericin-B) unresponsive cases becomes hostile for the visceral leishmaniasis (VL) elimination target. The quest for new antileishmanial drugs is on the way and may demand more time. Meanwhile, drug repurposing is a quite promising option to explore further. We made such an attempt with thioridazine (TRZ), a first-line antipsychotic drug, which was reported for antimicrobial activity. In this study, we evaluated the drug activity of TRZ against amphotericin-B (Amp-B) sensitive and unresponsive Leishmania donovani promastigotes, as well as intracellular amastigotes (drug sensitive). We observed a potent antileishmanial activity of TRZ with significantly low half maximal inhibitory concentrations (IC50) on both the variants of promastigotes (0.61 ± 0.15 µM). These concentrations are comparable to the previously reported IC50 concentration of the current antileishmanial drug (Amp-B) against L. donovani. Light microscopy reveals the perturbations in promastigote morphology upon TRZ treatment. The in vitro studies on human macrophage cell lines determine the 50% cytotoxicity concentration (CC50) of TRZ on host cells as 20.046 µM and a half maximal effective concentration (EC50) as 0.91 µM during L. donovani infection, in turn selectivity index (SI) was calculated as 22.03 µM. Altogether, the results demonstrate that TRZ has the potential for drug repurposing and further studies on animal models could provide better insights for VL treatment.
Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Animais , Humanos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Tioridazina/farmacologia , Tioridazina/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/tratamento farmacológicoRESUMO
BACKGROUND: Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2 (HER-2)-positive gastric cancer (GC). However, the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance. While S-phase kinase associated protein 2 (Skp2) overexpression has been implicated in the malignant progression of GC, its role in regulating trastuzumab resistance in this context remains uncertain. Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products, there has been a lack of successful commercialization of drugs specifically targeting Skp2. AIM: To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment. METHODS: Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells. Q-PCR, western blot, and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression. A cell counting kit-8 assay, flow cytometry, a amplex red glucose/glucose oxidase assay kit, and a lactate assay kit were utilized to measure the proliferation, apoptosis, and glycolytic activity of GC cells in vitro. A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo. RESULTS: The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab. Thioridazine demonstrated the ability to directly bind to Skp2, resulting in a reduction in Skp2 expression at both the transcriptional and translational levels. Moreover, thioridazine effectively inhibited cell proliferation, exhibited antiapoptotic properties, and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways. The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo, surpassing the efficacy of either monotherapy. CONCLUSION: Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance, particularly when used in conjunction with lapatinib. This compound has potential benefits for patients with Skp2-proficient tumors.
Assuntos
Neoplasias Gástricas , Tioridazina , Humanos , Animais , Camundongos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Tioridazina/farmacologia , Tioridazina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Camundongos Nus , Receptor ErbB-2/metabolismo , Proliferação de Células , Glicólise , Lactatos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MamíferosRESUMO
BACKGROUND: Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS: In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS: THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS: Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.
Assuntos
Neoplasias Colorretais , Tioridazina , Animais , Camundongos , Tioridazina/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Reposicionamento de Medicamentos , Morte Celular Imunogênica , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Apoptose , Linhagem Celular TumoralRESUMO
INTRODUCTION: Enterococcus faecium is a major cause of community and hospital-acquired infections. Due to limited options for infection with fluoroquinolones-resistant Enterococci, novel therapeutics are urgently needed. Efflux pumps are contributed to fluoroquinolones resistance phenotype in this bacterium and novel inhibitors that target these efflux pumps could be effective in patients. In this research, the possible synergistic effect of an efflux pump inhibitor (EPI), thioridazine, with ciprofloxacin was investigated against clinical isolates of E. faecium. METHODOLOGY: A total of 88 isolates of E. faecium from clinical specimens were studied from August 2017 to September 2018. Conventional phenotypic and molecular methods characterized all the isolates. Standard susceptibility tests and molecular assays determined the antibiotic resistance profiles and the frequency of efflux pump genes. Minimum inhibitory concentrations (MICs) to ciprofloxacin (CIP) in the presence and absence of thioridazine were measured by the micro-broth dilution method. RESULTS: The highest antibiotic resistance rate among E. faecium isolates was related to ciprofloxacin (96.8%), levofloxacin (94.3%), and imipenem (90.9%), respectively. The highest frequency of efflux pump determinants was related to efmA (60, 68%), followed by emeA (48, 54.5%), and efrA and/or efrB genes (45, 51%). The efflux pump inhibitor showed ≥ 2-fold decrease in the MIC value of ciprofloxacin in 48.2% of the isolates. CONCLUSIONS: Efflux pump inhibitor genes efrAB, efmA, and emeA are common among the E. faecium clinical isolates. Our results supported the administration of thioridazine, as an efflux pump inhibitor, in fluoroquinolone-resistant E. faecium infections due to its synergistic effect with CIP.
Assuntos
Antibacterianos , Enterococcus faecium , Antibacterianos/farmacologia , Tioridazina/farmacologia , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos , Fluoroquinolonas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVES: Mycobacterium abscessus is an opportunistic respiratory pathogen in patients with underlying lung disease. It is infamously known for its low treatment success rates because of its resistance to multiple classes of antibiotics. Further insight into M. abscessus resistance mechanisms is needed to improve treatment options. In this in vitro study, the role of efflux pumps in reaction to antibiotic stress is explored, as well as the ability of the putative efflux inhibitors, thioridazine and verapamil, to potentiate the activity of guideline-recommended antibiotics. METHODS: To evaluate the effects of antibiotic stress on mycobacterial efflux pumps, M. abscessus subspecies abscessus was exposed to amikacin, cefoxitin, clarithromycin, clofazimine, and tigecycline for 24 hours. Transcriptomic responses were measured by RNA sequencing to gain insight into upregulation of efflux pump encoding genes. Subsequently, in time-kill kinetics assays, the above-mentioned antibiotics were combined with thioridazine and verapamil to evaluate their potentiating capacity. RESULTS: All five antibiotics led to a fold change of ≥2 Log2 in expression of one or more genes encoding transporter systems. This effect was most pronounced for the ribosome-targeting antibiotics amikacin, clarithromycin, and tigecycline. Time-kill kinetics assays demonstrated synergy between amikacin, tigecycline, clofazimine, cefoxitin, and both thioridazine and verapamil. CONCLUSION: Antibiotic stressors induce expression of efflux pump encoding genes in M. abscessus, especially antibiotics that target the ribosome. Putative efflux inhibitors thioridazine and verapamil show synergy with various guideline-recommended antibiotics, making them interesting candidates for the improvement of M. abscessus treatment.
Assuntos
Mycobacterium abscessus , Humanos , Mycobacterium abscessus/genética , Amicacina/farmacologia , Claritromicina/farmacologia , Tigeciclina/farmacologia , Clofazimina/farmacologia , Cefoxitina/farmacologia , Testes de Sensibilidade Microbiana , Tioridazina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Verapamil/farmacologiaRESUMO
Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the combinations of doxorubicin (DOX) + artesunate, DOX + chloroquine, paclitaxel (PTX) + fluoxetine, PTX + fluphenazine, and PTX + benztropine induce significant cytotoxicity in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Furthermore, it was found that 5-FU + thioridazine and 5-fluorouracil (5-FU) + sertraline can synergistically induce a reduction in the viability of human colorectal adenocarcinoma cell line (HT-29). In this study, we aim to (1) evaluate the biosafety profile of these drug combinations for non-tumoral cells and (2) determine their mechanism of action in cancer cells. To do so, human fetal lung fibroblast cells (MRC-5) fibroblast cells were incubated for 48 h with all drugs, alone and in combination in concentrations of 0.25, 0.5, 1, 2, and 4 times their half-maximal inhibitory concentration (IC50). Cell morphology and viability were evaluated. Next, we designed and constructed a cell microarray to perform immunohistochemistry studies for the evaluation of palmitoyl-protein thioesterase 1 (PPT1), Ki67, cleaved-poly (ADP-ribose) polymerase (cleaved-PARP), multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp), and nuclear factor-kappa-B (NF-kB) p65 expression. We demonstrate that these combinations are cytotoxic for cancer cells and safe for non-tumoral cells at lower concentrations. Furthermore, it is also demonstrated that PPT1 may have an important role in the mechanism of action of these combinations, as demonstrated by their ability to decrease PPT1 expression. These results support the use of antimalarial and central nervous system (CNS) drugs in combination regimens with chemotherapeutic agents; nevertheless, additional studies are recommended to further explore their complete mechanisms of action.
Assuntos
Antimaláricos , Antineoplásicos , Neoplasias da Mama , Neoplasias do Colo , Humanos , Feminino , Células MCF-7 , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antígeno Ki-67/metabolismo , Contenção de Riscos Biológicos , Tioridazina/farmacologia , Tioridazina/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , NF-kappa B/metabolismo , Flufenazina/farmacologia , Flufenazina/uso terapêutico , Benzotropina/farmacologia , Benzotropina/uso terapêutico , Sertralina/farmacologia , Sertralina/uso terapêutico , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Michigan , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ribose/farmacologia , Ribose/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Paclitaxel/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Cloroquina/farmacologia , Difosfato de Adenosina , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular TumoralRESUMO
AIMS: To investigate the priming effects of sub-inhibitory concentrations of biocides on antibiotic resistance in bacteria. METHODS AND RESULTS: Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were exposed to sub-inhibitory concentrations of biocides via a gradient plate method. Minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined, and efflux pump inhibitors (thioridazine and chlorpromazine) were used to investigate antibiotic resistance mechanism(s). Escherichia coli displayed a twofold increase in MIC (32-64 mg l-1 ) to H2 O2 which was stable after 15 passages, but lost after 6 weeks, and P. aeruginosa displayed a twofold increase in MIC (64-128 mg l-1 ) to BZK which was also stable for 15 passages. There were no other tolerances observed to biocides in E. coli, P. aeruginosa or S. aureus; however, stable cross-resistance to antibiotics was observed in the absence of a stable increased tolerance to biocides. Sixfold increases in MIC to cephalothin and fourfold to ceftriaxone and ampicillin were observed in hydrogen peroxide primed E. coli. Chlorhexidine primed S. aureus showed a fourfold increase in MIC to oxacillin, and glutaraldehyde-primed P. aeruginosa showed fourfold (sulphatriad) and eightfold (ciprofloxacin) increases in MIC. Thioridazine increased the susceptibility of E. coli to cephalothin and cefoxitin by fourfold and twofold, respectively, and both thioridazine and chlorpromazine increased the susceptibility S. aureus to oxacillin by eightfold and fourfold, respectively. CONCLUSIONS: These findings demonstrate that sub-inhibitory concentrations of biocides can prime bacteria to become resistant to antibiotics even in the absence of stable biocide tolerance and suggests activation of efflux mechanisms may be a contributory factor. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the effects of low-level exposure of biocides (priming) on antibiotic resistance even in the absence of obvious increased biocidal tolerance.
Assuntos
Desinfetantes , Antibacterianos/farmacologia , Cefalotina/farmacologia , Clorpromazina/farmacologia , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus , Tioridazina/farmacologiaRESUMO
Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.
Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Digoxina/metabolismo , Digoxina/farmacologia , Humanos , Retina/metabolismo , Citrato de Sildenafila/metabolismo , Citrato de Sildenafila/farmacologia , Tioridazina/metabolismo , Tioridazina/farmacologiaRESUMO
TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported inâ vitro by SPR experiments to be in the â¼30-50â µM Kd range (Amson etâ al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent â¼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.
Assuntos
Antineoplásicos/farmacologia , Sertralina/farmacologia , Tioridazina/farmacologia , Proteína Tumoral 1 Controlada por Tradução/antagonistas & inibidores , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Sertralina/química , Relação Estrutura-Atividade , Tioridazina/química , Proteína Tumoral 1 Controlada por Tradução/isolamento & purificação , Proteína Tumoral 1 Controlada por Tradução/metabolismoRESUMO
Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.
Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Antagonistas de Dopamina/uso terapêutico , Proteínas de Drosophila/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Tioridazina/uso terapêutico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Drosophila , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tioridazina/farmacologiaRESUMO
Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.
Assuntos
Aldeído Oxidase/antagonistas & inibidores , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Benzamidinas/química , Benzamidinas/farmacologia , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Cloridrato de Raloxifeno/química , Moduladores Seletivos de Receptor Estrogênico/química , Tioridazina/química , Tioridazina/farmacologiaRESUMO
ABBREVIATIONS: CCK8: Cell Counting Kit-8; CDK: cyclin-dependent kinase; DRD2: dopamine D2 receptor; ERK1/2: extracellular signal-regulated kinase 1/2; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; H&E: hematoxylin and eosin; MMP: membrane potential; NAC: N-acetyl-L-cysteine; PI: Propidium iodide; Rh123: rhodamine-123; ROS: reactive oxygen species; TBST: tris-buffered saline containing 0.1% Tween 20 TNBC: Triple-negative breast cancer; Thi-hyd: Thioridazine hydrochloride.
Assuntos
Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Tioridazina/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Antipsicóticos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioridazina/uso terapêutico , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1-240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV-Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.
Assuntos
Antibacterianos/farmacologia , Antibacterianos/efeitos da radiação , Antipsicóticos/farmacologia , Antipsicóticos/efeitos da radiação , Reposicionamento de Medicamentos/métodos , Lasers , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tioridazina/farmacologia , Tioridazina/efeitos da radiação , Farmacorresistência Bacteriana , Soluções , ÁguaRESUMO
In 2020 the whole world focused on antivirus drugs towards SARS-CoV-2. Most of the researchers focused on drugs used in other viral infections or malaria. We have not seen such mobilization towards one topic in this century. The whole situation makes clear that progress needs to be made in antiviral drug development. The first step to do it is to characterize the potential antiviral activity of new or already existed drugs on the market. Phenothiazines are antipsychotic agents used previously as antiseptics, anthelminthics, and antimalarials. Up to date, they are tested for a number of other disorders including the broad spectrum of viruses. The goal of this paper was to summarize the current literature on activity toward RNA-viruses of such drugs like chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine. We identified 49 papers, where the use of the phenothiazines for 23 viruses from different families were tested. Chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine possess anti-viral activity towards different types of viruses. These drugs inhibit clathrin-dependent endocytosis, cell-cell fusion, infection, replication of the virus, decrease viral invasion as well as suppress entry into the host cells. Additionally, since the drugs display activity at nontoxic concentrations they have therapeutic potential for some viruses, still, further research on animal and human subjects are needed in this field to verify cell base research.
Assuntos
Antipsicóticos/farmacologia , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fenotiazinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Vírus de RNA/efeitos dos fármacos , Animais , Antipsicóticos/uso terapêutico , Antivirais/uso terapêutico , COVID-19 , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Flufenazina/farmacologia , Flufenazina/uso terapêutico , Humanos , Pandemias , Perfenazina/farmacologia , Perfenazina/uso terapêutico , Fenotiazinas/uso terapêutico , Proclorperazina/farmacologia , Proclorperazina/uso terapêutico , SARS-CoV-2 , Tioridazina/farmacologia , Tioridazina/uso terapêutico , Tratamento Farmacológico da COVID-19RESUMO
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Assuntos
Antineoplásicos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Extremidade Inferior , Paralisia/tratamento farmacológico , Tioridazina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Camundongos , Tioridazina/farmacologiaRESUMO
Treatment of Mycobacterium avium complex pulmonary disease (MAC-PD) is challenging partly due to high efflux pump expression. Thioridazine might block these efflux pumps. We explore the efficacy of thioridazine against M. avium isolates using MICs, time-kill combination assays, ex vivo macrophage infection assays, and efflux assays. Thioridazine is bactericidal against M. avium, inhibits intracellular growth at 2× MIC, and blocks ethidium bromide efflux. However, its toxicity and low plasma concentrations make it unlikely to add efficacy to MAC-PD therapy.
Assuntos
Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Tioridazina/farmacologiaRESUMO
This study explored a potential treatment against methicillin-resistant Staphylococcus aureus (MRSA) infections that combines thioridazine (TZ), an efflux pump inhibitor, and miconazole (MCZ), an autolysis inducer, with the anti-microbial drug cloxacillin (CXN). In vitro, the combination treatment of TZ and MCZ significantly reduced 4096-fold (Σ (FIC) = 0.1 - 1.25) the MIC value of CXN against S. aureus. In vivo, the combination therapy significantly relieved breast redness and swelling in mice infected with either clinical or standard strains of S. aureus. Meanwhile, the number of bacteria isolated from the MRSA135-infected mice decreased significantly (p = 0.0427 < 0.05) after the combination therapy when compared to monotherapy. Moreover, the number of bacteria isolated from the mice infected with a reference S. aureus strain also decreased significantly (p = 0.0191 < 0.05) after the combination therapy when compared to monotherapy. The pathological changes were more significant in the CXN-treated group when compared to mice treated with a combination of three drugs. In addition, we found that combination therapy reduced the release of the bacteria-stimulated cytokines such as IL-6, IFN-γ, and TNF-α. Cytokine assays in serum revealed that CXN alone induced IL-6, IFN-γ, and TNF-α in the mouse groups infected with ATCC 29213 or MRSA135, and the combination of these three drugs significantly reduced IL-6, IFN-γ, and TNF-α concentrations. Also, the levels of TNF-α and IFN-γ in mice treated with a combination of three drugs were significantly lower than in the CXN-treated group. Given the synergistic antibacterial activity of CXN, we concluded that the combination of CXN with TZ, and MCZ could be developed as a novel therapeutic strategy against S. aureus.This study explored a potential treatment against methicillin-resistant Staphylococcus aureus (MRSA) infections that combines thioridazine (TZ), an efflux pump inhibitor, and miconazole (MCZ), an autolysis inducer, with the anti-microbial drug cloxacillin (CXN). In vitro, the combination treatment of TZ and MCZ significantly reduced 4096-fold (Σ (FIC) = 0.1 1.25) the MIC value of CXN against S. aureus. In vivo, the combination therapy significantly relieved breast redness and swelling in mice infected with either clinical or standard strains of S. aureus. Meanwhile, the number of bacteria isolated from the MRSA135-infected mice decreased significantly (p = 0.0427 < 0.05) after the combination therapy when compared to monotherapy. Moreover, the number of bacteria isolated from the mice infected with a reference S. aureus strain also decreased significantly (p = 0.0191 < 0.05) after the combination therapy when compared to monotherapy. The pathological changes were more significant in the CXN-treated group when compared to mice treated with a combination of three drugs. In addition, we found that combination therapy reduced the release of the bacteria-stimulated cytokines such as IL-6, IFN-γ, and TNF-α. Cytokine assays in serum revealed that CXN alone induced IL-6, IFN-γ, and TNF-α in the mouse groups infected with ATCC 29213 or MRSA135, and the combination of these three drugs significantly reduced IL-6, IFN-γ, and TNF-α concentrations. Also, the levels of TNF-α and IFN-γ in mice treated with a combination of three drugs were significantly lower than in the CXN-treated group. Given the synergistic antibacterial activity of CXN, we concluded that the combination of CXN with TZ, and MCZ could be developed as a novel therapeutic strategy against S. aureus.
Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Cloxacilina/farmacologia , Quimioterapia Combinada , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Miconazol/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tioridazina/farmacologiaRESUMO
Several recent publications demonstrated that DRD2-targeting antipsychotics such as thioridazine induce proliferation arrest and apoptosis in diverse cancer cell types including those derived from brain, lung, colon, and breast. While most studies show that 10-20 µM thioridazine leads to reduced proliferation or increased apoptosis, here we show that lower doses of thioridazine (1-2 µM) target the self-renewal of basal-like breast cancer cells, but not breast cancer cells of other subtypes. We also show that all breast cancer cell lines tested express DRD2 mRNA and protein, regardless of thioridazine sensitivity. Further, DRD2 stimulation with quinpirole, a DRD2 agonist, promotes self-renewal, even in cell lines in which thioridazine does not inhibit self-renewal. This suggests that DRD2 is capable of promoting self-renewal in these cell lines, but that it is not active. Further, we show that dopamine can be detected in human and mouse breast tumor samples. This observation suggests that dopamine receptors may be activated in breast cancers, and is the first time to our knowledge that dopamine has been directly detected in human breast tumors, which could inform future investigation into DRD2 as a therapeutic target for breast cancer.