Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.690
Filtrar
1.
J Opioid Manag ; 20(4): B1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39321055

RESUMO

BACKGROUND: In this talk we will delve deep into the pharmacology of this drug and how it's receptor interactions are unique and then we will take that understanding and apply it to clinical usage to see how this drug behaves in a variety of situations. PURPOSE/HYPOTHESIS: Specifically we will look at the safety profile of this drug, including it's ceiling effect on respiratory depression. Then we will look at efficacy, how well does this drug work in the treatment of pain. We will look at analgesia, tolerance and anti-hyperalgesic properties of buprenorphine. We will discus why this drug is so versatile anyhow versatility is a key asset when it comes to using buprenorphine for the treatment of pain. CONCLUSIONS/APPLICATIONS: The last section of this talk will look at the specific area of preoperative use of buprenorphine and why buprenorphine should be continued throughout the pre- operative period.


Assuntos
Analgésicos Opioides , Buprenorfina , Buprenorfina/uso terapêutico , Buprenorfina/efeitos adversos , Buprenorfina/administração & dosagem , Humanos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Tolerância a Medicamentos , Dor/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Animais , Resultado do Tratamento
2.
Nat Rev Cancer ; 24(10): 694-717, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39223250

RESUMO

The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Tolerância a Medicamentos
3.
Front Immunol ; 15: 1429544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238635

RESUMO

Background: Adalimumab induces the production of anti-drug antibodies (ADA) that may lead to reduced drug concentration and loss-of-response, posing significant clinical challenges. However, traditional immunoassays have limitations in terms of sensitivity and drug-tolerance, hindering the insights of ADA response. Methods: Herein, we developed an integrated immunoassay platform combining the electrochemiluminescence immunoassay with immunomagnetic separation strategy. A longitudinal cohort study involving 49 patients with ankylosing spondylitis was carried out to analyze the dynamic profiles of ADA and to investigate the impact of ADA on adalimumab pharmacokinetics using a population pharmacokinetic model. Additionally, cross-sectional data from 12 patients were collected to validate the correlation between ADA levels and disease relapse. Results: The ADA assay demonstrated high sensitivity (0.4 ng/mL) and drug-tolerance (100 µg/mL), while the neutralizing antibodies (NAB) assay showed a sensitivity of 100 ng/mL and drug-tolerance of 20 µg/mL. Analysis of the longitudinal cohort revealed that a majority of patients (44/49, 90%) developed persistent ADA within the first 24 weeks of treatment. ADA levels tended to plateau over time after an initial increase during the early immune response phase. Further, nearly all of the tested patients (26/27, 96%) were classified as NAB positive, with a strong correlation between ADA levels and neutralization capacity (R2 = 0.83, P < 0.001). Population pharmacokinetic modeling revealed a significant positive association between model-estimated individual clearance and observed ADA levels. Higher ADA levels were associated with adalimumab clearance and disease relapse in a cross-sectional cohort, suggesting a promising ADA threshold of 10 for potential clinical application. Moreover, the IgG class was the primary contributor to ADA against adalimumab and the apparent affinity exhibited an increasing trend over time, indicating a T-cell dependent mechanism for ADA elicitation by adalimumab. Conclusion: In summary, this integrated immunoassay platform shows promise for in-depth analysis of ADA against biologics, offering fresh insights into immunogenicity and its clinical implications.


Assuntos
Adalimumab , Espondilite Anquilosante , Adalimumab/imunologia , Adalimumab/farmacocinética , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Espondilite Anquilosante/tratamento farmacológico , Espondilite Anquilosante/imunologia , Estudos Longitudinais , Estudos Transversais , Imunoensaio/métodos , Tolerância a Medicamentos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Antirreumáticos/imunologia , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico
4.
Forensic Sci Int ; 363: 112187, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154523

RESUMO

Knowledge of opioid tolerance in a deceased person is important for distinguishing between therapeutic and toxic opioid concentrations for that particular individual when interpreting postmortem toxicological results. However, no biomarkers for opioid tolerance are currently available. This review aimed to study the existing literature on mechanisms or changes in signaling pathways related to chronic opioid use, which could be relevant for further studies to identify biomarkers for opioid tolerance. We performed a systematic literature search using the PRISMA 2020 guidelines using the MeSH terms "opioid tolerance AND biomarkers" in PubMed, Embase, WebofScience, and the Cochrane library. A review of the search results yielded seven studies on animal models or humans, identifying and evaluating thirteen possible biomarkers in terms of specificity for changes induced by opioids and other aspects to be considered as potential biomarkers. We evaluated nine potential biomarkers as unlikely to be specific for opioid tolerance, and one had contradictory results in terms of upregulation or downregulation. However, methylation of the promoter region of the µ-opioid receptor gene, increased activity of soluble puromycin-sensitive aminopeptidase, altered miRNA profile, or other multiple component profiling may be interesting to study further as biomarkers for opioid tolerance in forensic postmortem cases.


Assuntos
Analgésicos Opioides , Biomarcadores , Tolerância a Medicamentos , Toxicologia Forense , Animais , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Biomarcadores/análise , Toxicologia Forense/métodos , MicroRNAs/análise , Receptores Opioides mu/análise , Receptores Opioides mu/genética
5.
J Neurophysiol ; 132(3): 968-978, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110512

RESUMO

How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprising both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole cell patch-clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine-treated mice. We found that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.NEW & NOTEWORTHY Opioid signaling within the anterior cingulate cortex (ACC) is important for opioid modulation of affective pain. Glutamatergic medial thalamus (MThal) neurons synapse in the ACC and opioids, acting through mu opioid receptors (MORs), acutely inhibit synaptic transmission from MThal synapses. However, the effect of chronic opioid exposure on MThal-ACC synaptic transmission is not known. Here, we demonstrate that chronic morphine treatment induces cellular tolerance at these synapses in a sex-specific and phosphorylation-dependent manner.


Assuntos
Analgésicos Opioides , Morfina , Receptores Opioides mu , Tálamo , Animais , Receptores Opioides mu/metabolismo , Morfina/farmacologia , Morfina/administração & dosagem , Masculino , Feminino , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Tálamo/efeitos dos fármacos , Tálamo/fisiologia , Tálamo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Giro do Cíngulo/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Tolerância a Medicamentos/fisiologia , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia
6.
Elife ; 132024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093940

RESUMO

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.


Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.


Assuntos
Aminoglicosídeos , Antibacterianos , Escherichia coli , Proteínas Ribossômicas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Metabolismo Energético/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Tolerância a Medicamentos , Proteômica , Ciclo do Ácido Cítrico/efeitos dos fármacos
7.
Nutrients ; 16(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39203757

RESUMO

Morphine is an important pain reliever employed in pain management, its extended utilize is hindered by the onset of analgesic tolerance and oxidative stress. Long-term morphine administration causes elevated production of reactive oxygen species (ROS), disrupting mitochondrial function and inducing oxidation. Sirtuin 3 (SIRT3), a mitochondrial protein, is essential in modulating ROS levels by regulating mitochondrial antioxidant enzymes as manganese superoxide dismutase (MnSOD). Our investigation focused on the impact of SIRT3 on hyperalgesia and morphine tolerance in mice, as evaluating the antioxidant effect of the polyphenolic fraction of bergamot (BPF). Mice were administered morphine twice daily for four consecutive days (20 mg/kg). On the fifth day, mice received an acute dose of morphine (3 mg/kg), either alone or in conjunction with BPF or Mn (III)tetrakis (4-benzoic acid) porphyrin (MnTBAP). We evaluated levels of malondialdehyde (MDA), nitration, and the activity of SIRT3, MnSOD, glutamine synthetase (GS), and glutamate 1 transporter (GLT1) in the spinal cord. Our findings demonstrate that administering repeated doses of morphine led to the development of antinociceptive tolerance in mice, accompanied by increased superoxide production, nitration, and inactivation of mitochondrial SIRT3, MnSOD, GS, and GLT1. The combined administration of morphine with either BPF or MnTBAP prevented these effects.


Assuntos
Tolerância a Medicamentos , Hiperalgesia , Mitocôndrias , Morfina , Estresse Oxidativo , Polifenóis , Sirtuína 3 , Animais , Morfina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Polifenóis/farmacologia , Sirtuína 3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Antioxidantes/farmacologia , Analgésicos Opioides/farmacologia , Malondialdeído/metabolismo , Glutamato-Amônia Ligase/metabolismo , Metaloporfirinas/farmacologia
8.
Curr Opin Anaesthesiol ; 37(5): 575-580, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39011659

RESUMO

PURPOSE OF REVIEW: Kratom is used commonly in the United States, usually to mitigate pain, opioid withdrawal, or fatigue. A comprehensive discussion on kratom, tailored to pain management physicians, is needed, given its associated risks and potential interactions. RECENT FINDINGS: Kratom and its main metabolites, mitragynine and 7-OH-mitragynine, bind to a variety of receptors including mu opioid receptors. Still, kratom cannot be described as a classic opioid. Kratom has been utilized without FDA approval as an alternative to traditional medications for opioid use disorder and opioid withdrawal. Lower doses of kratom typically cause opioid-like effects while higher doses can have sedating effects. Tolerance, dependence and withdrawal still occur, although kratom withdrawal appears to be more moderate than opioid withdrawal. Contamination with heavy metals and biological toxins is concerning and there is potential for serious complications, including seizures and death. SUMMARY: The use of kratom as an opioid-sparing alternative as a part of a multimodal pain regimen is not without significant risks. It is of utmost importance for pain physicians to be aware of the risks and adverse effects associated with kratom use.


Assuntos
Analgésicos Opioides , Mitragyna , Manejo da Dor , Humanos , Mitragyna/química , Mitragyna/efeitos adversos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/administração & dosagem , Manejo da Dor/métodos , Manejo da Dor/efeitos adversos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/prevenção & controle , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Alcaloides de Triptamina e Secologanina/efeitos adversos , Alcaloides de Triptamina e Secologanina/administração & dosagem , Dor/tratamento farmacológico , Extratos Vegetais/efeitos adversos , Extratos Vegetais/administração & dosagem , Tolerância a Medicamentos
9.
Genes Brain Behav ; 23(1): e12884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38968320

RESUMO

Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.


Assuntos
Drosophila melanogaster , Tolerância a Medicamentos , Etanol , Fenótipo , Animais , Drosophila melanogaster/genética , Etanol/farmacologia , Tolerância a Medicamentos/genética , Mutação
10.
Genes (Basel) ; 15(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062685

RESUMO

Lung cancer patients treated with targeted therapies frequently respond well but invariably relapse due to the development of drug resistance. Drug resistance is in part mediated by a subset of cancer cells termed "drug-tolerant persisters" (DTPs), which enter a dormant, slow-cycling state that enables them to survive drug exposure. DTPs also exhibit stem cell-like characteristics, broad epigenetic reprogramming, altered metabolism, and a mutagenic phenotype mediated by adaptive mutability. While several studies have characterised the transcriptional changes that lead to the altered phenotypes exhibited in DTPs, these studies have focused predominantly on protein coding changes. As long non-coding RNAs (lncRNAs) are also implicated in the phenotypes altered in DTPs, it is likely that they play a role in the biology of drug tolerance. In this review, we outline how lncRNAs may contribute to the key characteristics of DTPs, their potential roles in tolerance to targeted therapies, and the emergence of genetic resistance in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Tolerância a Medicamentos/genética
11.
Front Cell Infect Microbiol ; 14: 1392564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983116

RESUMO

Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.


Assuntos
Aneuploidia , Antifúngicos , Calcineurina , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Proteínas de Choque Térmico HSP90 , Miconazol , Testes de Sensibilidade Microbiana , Miconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Antifúngicos/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Calcineurina/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Tolerância a Medicamentos
12.
AAPS J ; 26(4): 84, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009791

RESUMO

Measurement of anti-drug antibodies (ADA) to assess the incidence of ADA in a clinical trial is a critical step in immunogenicity assessment during the development of a protein therapeutic. We developed novel graphical approaches to illustrate clinical trial ADA data for the PD-L1 inhibitor atezolizumab (Tecentriq) that included a systematic analysis of the impact of the timing of ADA sampling and ADA assay drug tolerance on reported ADA incidence. We found that approaches used across the industry for ADA incidence analysis provide a limited view of immunogenicity in oncology studies, where ADA detection may be confounded by both drug dosage and patient attrition. Moreover, these approaches can miss important temporal information about the immune response. Our results demonstrated that the methodology of ADA assessment for the atezolizumab program was specifically designed to capture most ADA responses to ensure accurate reporting of ADA incidence. We further showed that the use of sparse sampling and/or ADA test methods with insufficient drug tolerance may result in a significant underreporting of ADA incidence. We conclude that the comparison of ADA incidence between different drugs can be highly misleading and that a test method with appropriate sensitivity in the presence of the drug and a clinical sampling scheme that is aligned with ADA responses to a drug is required to accurately report ADA incidence.


Assuntos
Anticorpos Monoclonais Humanizados , Humanos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos/imunologia , Tolerância a Medicamentos/imunologia , Inibidores de Checkpoint Imunológico/imunologia
13.
Lung Cancer ; 194: 107885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002493

RESUMO

The advent of targeted therapies revolutionized treatments of advanced oncogene-driven non-small cell lung cancer (NSCLC). Nonetheless, despite initial dramatic responses, development of drug resistance is inevitable. Although mechanisms underlying acquired resistance, such as on-target mutations, bypass pathways, or lineage transformation, have been described, overcoming drug resistance remains challenging. Recent evidence suggests that drug-tolerant persister (DTP) cells, which are tumor cells tolerant to initial drug exposure, give rise to cells that acquire drug resistance. Thus, the possibility of eradicating cancer by targeting DTP cells is under investigation, and various strategies are proposed. Here, we review overall features of DTP cells, current efforts to define DTP markers, and potential therapeutic strategies to target and eradicate DTP cells in oncogene-driven NSCLC. We also discuss future challenges in the field.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Animais , Tolerância a Medicamentos , Biomarcadores Tumorais/genética , Mutação
14.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999947

RESUMO

Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.


Assuntos
Caenorhabditis elegans , Etanol , Plasticidade Neuronal , Transmissão Sináptica , Animais , Plasticidade Neuronal/efeitos dos fármacos , Etanol/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tolerância a Medicamentos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Alcoolismo/metabolismo , Drosophila/fisiologia , Humanos , Invertebrados/fisiologia
15.
Sci Rep ; 14(1): 14715, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926482

RESUMO

Opioids are the gold standard for the treatment of chronic pain but are limited by adverse side effects. In our earlier work, we showed that Heat shock protein 90 (Hsp90) has a crucial role in regulating opioid signaling in spinal cord; Hsp90 inhibition in spinal cord enhances opioid anti-nociception. Building on these findings, we injected the non-selective Hsp90 inhibitor KU-32 by the intrathecal route into male and female CD-1 mice, showing that morphine anti-nociceptive potency was boosted by 1.9-3.5-fold in acute and chronic pain models. At the same time, tolerance was reduced from 21-fold to 2.9 fold and established tolerance was rescued, while the potency of constipation and reward was unchanged. These results demonstrate that spinal Hsp90 inhibition can improve the therapeutic index of morphine. However, we also found that systemic non-selective Hsp90 inhibition blocked opioid pain relief. To avoid this effect, we used selective small molecule inhibitors and CRISPR gene editing to identify 3 Hsp90 isoforms active in spinal cord (Hsp90α, Hsp90ß, and Grp94) while only Hsp90α was active in brain. We thus hypothesized that a systemically delivered selective inhibitor to Hsp90ß or Grp94 could selectively inhibit spinal cord Hsp90 activity, resulting in enhanced opioid therapy. We tested this hypothesis using intravenous delivery of KUNB106 (Hsp90ß) and KUNG65 (Grp94), showing that both drugs enhanced morphine anti-nociceptive potency while rescuing tolerance. Together, these results suggest that selective inhibition of spinal cord Hsp90 isoforms is a novel, translationally feasible strategy to improve the therapeutic index of opioids.


Assuntos
Analgésicos Opioides , Proteínas de Choque Térmico HSP90 , Morfina , Medula Espinal , Animais , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Camundongos , Analgésicos Opioides/farmacologia , Masculino , Feminino , Morfina/farmacologia , Isoformas de Proteínas/metabolismo , Tolerância a Medicamentos , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Modelos Animais de Doenças , Injeções Espinhais
16.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850666

RESUMO

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Assuntos
Tolerância a Medicamentos , Morfina , Neuralgia , Paclitaxel , Receptor CB2 de Canabinoide , Células Receptoras Sensoriais , Animais , Masculino , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Feminino , Morfina/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Tolerância a Medicamentos/fisiologia , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Camundongos Knockout , Agonistas de Receptores de Canabinoides/farmacologia
17.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928105

RESUMO

Alcohol use disorder (AUD) is a chronic neurobehavioral condition characterized by a cycle of tolerance development, increased consumption, and reinstated craving and seeking behaviors during withdrawal. Understanding the intricate mechanisms of AUD necessitates reliable animal models reflecting its key features. Caenorhabditis elegans (C. elegans), with its conserved nervous system and genetic tractability, has emerged as a valuable model organism to study AUD. Here, we employ an ethanol vapor exposure model in Caenorhabditis elegans, recapitulating AUD features while maintaining high-throughput scalability. We demonstrate that ethanol vapor exposure induces intoxication-like behaviors, acute tolerance, and ethanol preference, akin to mammalian AUD traits. Leveraging this model, we elucidate the conserved role of c-jun N-terminal kinase (JNK) signaling in mediating acute ethanol tolerance. Mutants lacking JNK signaling components exhibit impaired tolerance development, highlighting JNK's positive regulation. Furthermore, we detect ethanol-induced JNK activation in C. elegans. Our findings underscore the utility of C. elegans with ethanol vapor exposure for studying AUD and offer novel insights into the molecular mechanisms underlying acute ethanol tolerance through JNK signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Tolerância a Medicamentos , Etanol , Sistema de Sinalização das MAP Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Alcoolismo/metabolismo , Alcoolismo/genética , Modelos Animais de Doenças
18.
Neuropharmacology ; 257: 110052, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936657

RESUMO

The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.


Assuntos
Analgésicos Opioides , Tolerância a Medicamentos , Morfina , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide , Síndrome de Abstinência a Substâncias , Animais , Receptor CB1 de Canabinoide/metabolismo , Masculino , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Regulação Alostérica/efeitos dos fármacos , Camundongos , Morfina/farmacologia , Ratos , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
Eur J Pharmacol ; 978: 176775, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38925288

RESUMO

The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by µ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.


Assuntos
Neurotensina , Receptores de Neurotensina , Animais , Masculino , Camundongos , Neurotensina/análogos & derivados , Neurotensina/farmacologia , Neurotensina/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/agonistas , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/administração & dosagem , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Tolerância a Medicamentos , Dor/tratamento farmacológico
20.
Aging (Albany NY) ; 16(11): 9859-9875, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843390

RESUMO

BACKGROUND: Morphine tolerance refers to gradual reduction in response to drug with continuous or repeated use of morphine, requiring higher doses to achieve same effect. METHODS: The morphine tolerance dataset GSE7762 profiles, obtained from gene expression omnibus (GEO) database, were used to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) was applied to explore core modules of DEGs related to morphine tolerance. Core genes were input into Comparative Toxicogenomics Database (CTD). Animal experiments were performed to validate role of Tsc22d3 in morphine tolerance and its relationship with ferroptosis-related pathway. RESULTS: 500 DEGs were identified. DEGs were primarily enriched in negative regulation of brain development, neuronal apoptosis processes, and neurosystem development. Core gene was identified as Tsc22d3. Tsc22d3 gene-associated miRNAs were mmu-miR-196b-5p and mmu-miR-196a-5p. Compared to Non-morphine tolerant group, Tsc22d3 expression was significantly upregulated in Morphine tolerant group. Tsc22d3 expression was upregulated in Morphine tolerant+Tsc22d3_OE, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway showed a more pronounced decrease. As Tsc22d3 expression was downregulated in Morphine tolerant+Tsc22d3_KO, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway exhibited a more pronounced increase. Upregulation of Tsc22d3 in Morphine tolerant+Tsc22d3_OE led to a more pronounced increase in expression of apoptosis proteins (P53, Caspase-3, Bax, SMAC, FAS). The expression of inflammatory factors (IL6, TNF-alpha, CXCL1, CXCL2) showed a more pronounced increase with upregulated Tsc22d3 expression in Morphine tolerant+Tsc22d3_OE. CONCLUSIONS: Tsc22d3 is highly expressed in brain tissue of morphine-tolerant mice, activating ferroptosis pathway, enhancing apoptosis, promoting inflammatory responses in brain cells.


Assuntos
Tolerância a Medicamentos , Ferroptose , Morfina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Morfina/farmacologia , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Tolerância a Medicamentos/genética , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...