Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985801

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic loss to tomato production, and the Sw-5b resistance gene is widely deployed for management. Here, we show (i) the emergence of resistance-breaking (RB) TSWV strains in processing and fresh market tomato production in California over the past ten years, and (ii) evolutionary relationships with RB strains from other areas. A specific RT-PCR test was used to show the C118Y RB strain that emerged in Fresno County in 2016 quickly became predominant in the central production area and remained so through this study. In 2021, the C118Y strain was detected in the Northern production area, and was predominant in 2022. However, in 2023, the C118Y strain was unexpectedly detected in fewer spotted wilt samples from resistant varieties. This was due to emergence of the T120N RB strain, previously known to occur in Spain. A specific RT-PCR test was developed and used to show that the T120N RB strain was predominant in Colusa and Sutter counties (detected in 75-80% of samples), and detected in ~50% of samples from Yolo County. Pathogenicity tests confirmed California isolates of the T120N strain infected Sw-5b tomato varieties and induced severe symptoms. Another RB strain, C118F, was associated with spotted wilt samples of Sw-5 varieties from fresh market tomato production in southern California. Phylogenetic analyses with complete NSm sequences revealed that the C118Y and T120N RB strains infecting resistant processing tomato in California emerged locally, whereas those from fresh market production were more closely related to isolates from Mexico. Thus, widespread deployment of this single dominant resistance gene in California has driven the local emergence of multiple RB strains in different tomato production areas and types. These results further emphasize the need for ongoing monitoring for RB strains, and identification of sources of resistance to these strains.


Assuntos
Resistência à Doença , Doenças das Plantas , Solanum lycopersicum , Tospovirus , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , California , Doenças das Plantas/virologia , Doenças das Plantas/genética , Tospovirus/genética , Tospovirus/patogenicidade , Resistência à Doença/genética , Filogenia
2.
Microb Pathog ; 193: 106716, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848932

RESUMO

The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Tospovirus , Índia , Tisanópteros/virologia , Animais , Cebolas/virologia , Cebolas/parasitologia , Doenças das Plantas/virologia , Tospovirus/genética , Tospovirus/isolamento & purificação , Tospovirus/fisiologia , Tospovirus/patogenicidade , Filogenia , Insetos Vetores/virologia , Insetos Vetores/parasitologia
3.
Infect Genet Evol ; 122: 105608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796047

RESUMO

Several studies have showed that the nucleotide and dinucleotide composition of viruses possibly follows their host species or protein coding region. Nevertheless, the influence of viral segment on viral nucleotide and dinucleotide composition is still unknown. Here, we explored through tomato spotted wilt virus (TSWV), a segmented virus that seriously threatens the production of tomatoes all over the world. Through nucleotide composition analysis, we found the same over-representation of A across all viral segments at the first and second codon position, but it exhibited distinct in segments at the third codon position. Interestingly, the protein coding regions which encoded by the same or different segments exhibit obvious distinct nucleotide preference. Then, we found that the dinucleotides UpG and CpU were overrepresented and the dinucleotides UpA, CpG and GpU were underrepresented, not only in the complete genomic sequences, but also in different segments, protein coding regions and host species. Notably, 100% of the data investigated here were predicted to the correct viral segment and protein coding region, despite the fact that only 67% of the data analyzed here were predicted to the correct viral host species. In conclusion, in case study of TSWV, nucleotide composition and dinucleotide preference of segment viruses are more strongly dependent on segment and protein coding region than on host species. This research provides a novel perspective on the molecular evolutionary mechanisms of TSWV and provides reference for future research on genetic diversity of segmented viruses.


Assuntos
Genoma Viral , Nucleotídeos , Solanum lycopersicum , Tospovirus , Tospovirus/genética , Solanum lycopersicum/virologia , Nucleotídeos/genética , Doenças das Plantas/virologia , RNA Viral/genética
4.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717918

RESUMO

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Assuntos
Doenças das Plantas , Tisanópteros , Tospovirus , Tospovirus/imunologia , Tospovirus/fisiologia , Tospovirus/genética , Animais , Tisanópteros/virologia , Tisanópteros/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Capsicum/virologia , Capsicum/imunologia , Replicação Viral , Interferência de RNA , Insetos Vetores/virologia , Insetos Vetores/imunologia , Perfilação da Expressão Gênica , Transdução de Sinais
5.
J Virol Methods ; 327: 114924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574773

RESUMO

Tomato, an extensively cultivated vegetable crop produces miRNAs in response to infection with Groundnut bud necrosis orthotospovirus, a viral pathogen causing significant economic losses. High-throughput miRNA sequencing was performed on tomato leaves inoculated with GBNV and mock-inoculated leaves as controls. Analysis revealed 73 known miRNAs belonging to 24 miRNA families, with variable expression levels. Interestingly, 39 miRNAs were upregulated, and 34 were downregulated in response to GBNV infection. Stem-loop quantitative reverse transcription PCR validated the differential expression of selected miRNAs. Additionally, 30 miRNA encoded proteins were identified to be involved in disease resistance and susceptibility. The miRNA-target interactions were found to play significant roles in cellular and metabolic activities, as well as modulating signaling pathways during the plant-virus interaction. The findings shed light on the intricate regulatory network of miRNAs in tomato response to viral infection and may contribute to developing strategies for improving crop protection against viral diseases.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Doenças das Plantas , Folhas de Planta , Solanum lycopersicum , Tospovirus , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , MicroRNAs/genética , Doenças das Plantas/virologia , Tospovirus/genética , Folhas de Planta/virologia , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , RNA de Plantas/genética
6.
Arch Insect Biochem Physiol ; 115(3): e22102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500452

RESUMO

The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.


Assuntos
Tisanópteros , Tospovirus , Animais , Insetos Vetores/genética , Insetos , Filogenia , Tisanópteros/genética , Tospovirus/genética
7.
Virology ; 593: 110029, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382160

RESUMO

Orthotospoviruses, a genera of negative-sense ssRNA viruses transmitted by thrips, have gained significant attention in recent years due to their detrimental impact on diverse crops, causing substantial economic losses and posing threats to food security. Orthotospoviruses are characterised by a wide range of symptoms in plants, including chlorotic/necrotic spots, vein banding, and fruit deformation. Seven species, including four definite and three tentative species in the genus Orthotospovirus, have so far been documented on the crops of the Indian subcontinent. Management of Orthotospoviruses under field conditions is challenging since they have a wide host range, adaptation to versatile environmental conditions, a lack of promising resistance sources, and the ubiquitous nature of thrips and their transmission through a propagative manner. Our present review elucidates the significance, molecular biology and evolutionary relationship of Orthotospoviruses; vector population; and possible management strategies for Orthotospoviruses and their vectors in the scenario of the Indian subcontinent.


Assuntos
Tisanópteros , Tospovirus , Animais , Doenças das Plantas , Tospovirus/genética , Tisanópteros/genética , Produtos Agrícolas , Agricultura
8.
Virus Res ; 342: 199334, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325524

RESUMO

Tomato spotted wilt virus (TSWV) is ranked among the top 10 most destructive viruses globally. It results in abnormal leaf growth, stunting, and even death, significantly affecting crop yield and quality. Phytohormones play a crucial role in regulating plant-virus interactions. However, there is still limited research on the effect of TSWV on phytohormone levels, particularly growth hormones and genes involved in the phytohormone pathway. In our study, we combined phytohormone metabolomics and transcriptomics to examine the impact of TSWV infection on phytohormone content and gene expression profile. Metabolomic results showed that 41 metabolites, including major phytohormones and their precursors and derivatives were significantly altered after 14 days of TSWV inoculation tobacco plants cvK326, with 31 being significantly increased and 10 significantly reduced. Specifically, the levels of abscisic acid (ABA) and jasmonoyl-isoleucine (JA-Ile) were significantly reduced. The levels of indole-3-acetic acid (IAA) have remained unchanged. However, the levels of cytokinin isopentenyladenine (iP) and salicylic acid (SA) significantly increased. The transcriptome analysis revealed 2,746 genes with significant changes in expression. Out of these, 1,072 genes were significantly downregulated, while 1,674 genes were significantly upregulated. Among them, genes involved in ABA synthesis and signaling pathways, such as 9-cis-epoxycarotenoid dioxygenase (NCED), protein phosphatase 2C (PP2C), serine/threonine-protein kinase (SnRK2), and abscisic acid responsive element binding factor (ABF), exhibited significant downregulation. Additionally, expression of the lipoxygenase gene LOX, Jasmonate ZIM domain-containing protein gene JAZ, and transcription factor gene MYC were significantly down-regulated. In the cytokinin pathway, while there were no significant changes in the expression of the cytokinin synthesis genes, a significant downregulation of transcriptionally active factor type-B response regulators (type-B RRs) was observed. In terms of SA synthesis and signaling pathways, the isochorismate synthase gene ICS1 and the pathogenesis-related gene PR1 were significantly upregulated. These results can strengthen the theoretical foundation for understanding the interaction between TSWV and tobacco and provide new insights for the future prevention and control of TSWV.


Assuntos
Reguladores de Crescimento de Plantas , Tospovirus , Nicotiana , Tospovirus/genética , Ácido Abscísico , Perfilação da Expressão Gênica , Citocininas
9.
Plant Dis ; 108(6): 1769-1775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240655

RESUMO

Watermelon silver mottle virus (WSMoV), a potentially invasive virus, is known to reduce the yield and degrade the quality of infected crops in Cucurbitaceae and Solanaceae families, resulting in significant economic losses in limited areas of several Asian countries. WSMoV, previously detected on various crops in southern China, has now become more prevalent on watermelon and sweet pepper in the northern cities of China for the first time. A sequencing-based phylogenetic analysis has confirmed that the viral strains infecting cucumber, watermelon, and sweet pepper plants in Shandong Province are most closely related to those isolated from Guangdong, Guangxi, and Taiwan, suggesting a farther and continuous spread of WSMoV throughout China. To develop a fast, accurate, and practical protocol for WSMoV detection, we designed a set of primers from the conserved sequence of the WSMoV nucleocapsid protein (N) gene for a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The RT-LAMP assay was performed successfully for 50 min at 61°C and exhibited a highly specific result without cross-reactions with other similar viruses and a sensitivity that is 100-fold higher than that of the traditional RT-PCR. The confirmation of 26 WSMoV suspect samples collected from various regions in Shandong through the RT-LAMP testing has demonstrated that the assay is suitable and practical for detection of WSMoV in both laboratory and field settings.


Assuntos
Citrullus , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Doenças das Plantas , Doenças das Plantas/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Citrullus/virologia , China , Transcrição Reversa , Tospovirus/genética , Tospovirus/isolamento & purificação , Tospovirus/classificação , RNA Viral/genética , Capsicum/virologia , Técnicas de Diagnóstico Molecular
10.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
11.
Mol Plant Pathol ; 24(10): 1300-1311, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403515

RESUMO

The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118-120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.


Assuntos
Solanum lycopersicum , Tospovirus , Tospovirus/genética , Filogenia , México , Mutação/genética , Doenças das Plantas
12.
PeerJ ; 11: e15385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187513

RESUMO

The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tospovirus/genética , Doenças das Plantas , Insetos , Ubiquitina-Proteína Ligases/genética
13.
Dev Comp Immunol ; 144: 104706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019348

RESUMO

Tomato spotted wilt virus (TSWV) causes a serious plant disease and is transmitted by specific thrips including the western flower thrips, Frankliniella occidentalis. The persistent and circulative virus transmission suggests an induction of immune defenses in the thrips. We investigated the immune responses of F. occidentalis to TSWV infection. Immunofluorescence assay demonstrated viral infection in the larval midguts at early stage and subsequent propagation to the salivary gland in adults. In the larval midgut, TSWV infection led to the release of DSP1, a damage-associated molecular pattern, from the gut epithelium into the hemolymph. DSP1 up-regulated PLA2 activity, which would lead to biosynthesis of eicosanoids that activate cellular and humoral immune responses. Phenoloxidase (PO) activity was enhanced following induction of PO and its activating protease gene expressions. Antimicrobial peptide genes and dual oxidase, which produces reactive oxygen species, were induced by the viral infection. Expression of four caspase genes increased and TUNEL assay confirmed apoptosis in the larval midgut after the virus infection. These immune responses to viral infection were significantly suppressed by the inhibition of DSP1 release. We infer that TSWV infection induces F. occidentalis immune responses, which are activated by the release of DSP1 from the infection foci within midguts.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tisanópteros/metabolismo , Tospovirus/genética , Tospovirus/metabolismo , Larva , Flores , Doenças das Plantas
14.
J Virol ; 97(4): e0180922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022194

RESUMO

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Assuntos
Genética Reversa , Tospovirus , Replicação Viral , Animais , Genética Reversa/métodos , RNA Polimerase Dependente de RNA , Tospovirus/genética , Estados Unidos , Replicação Viral/genética , RNA Viral/genética , Proteínas do Nucleocapsídeo/genética
15.
Curr Opin Insect Sci ; 57: 101033, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030512

RESUMO

Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.


Assuntos
Tisanópteros , Tospovirus , Feminino , Animais , Tospovirus/genética
16.
Arch Insect Biochem Physiol ; 112(2): e21982, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36335566

RESUMO

Tomato spotted wilt virus is a single-stranded RNA virus and causes a serious plant disease. Its horizontal transmission depends on some thrips species including Frankliniella occidentalis. Its genome encodes a nonstructural protein, nonstructural (NSs), which acts as a silencing suppressor and plays a crucial role in the pathogenicity by defending antiviral immunity using RNA interference (RNAi) in plant hosts. However, its physiological function as a silencing suppressor was not well clarified in insect vectors. This study assessed any change of RNAi efficiencies in two other insect systems by NSs expression. To this end, the gene was cloned into a eukaryotic expression vector and transiently expressed in two different insect species via in vivo transient expression (IVTE). After feeding the recombinant construct to non-viruliferous F. occidentalis, NSs expression was observed for over 2 days in the thrips. Under this expression of NSs, thrips were rescued from a treatment of a toxic double stranded RNA specific to v-ATPase. Interestingly, the thrips treated with IVTE significantly suppressed the expression of RNAi machinery genes such as SID and Dicer-2. The recombinant vector expressing NSs was injected to a non-vector insect, Spodoptera exigua, larvae. The larvae expressing NSs by the IVTE were highly susceptible to an infection of a RNA virus called iflavirus. These suggest that NSs acts as a silencing suppressor in insects and would be used for a synergist for RNA pathogens to control insect pests.


Assuntos
Tisanópteros , Tospovirus , Animais , Interferência de RNA , Tospovirus/genética , Insetos/genética , Tisanópteros/genética , Larva , RNA de Cadeia Dupla
17.
J Exp Bot ; 74(5): 1372-1388, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472617

RESUMO

Plant immunity relies on nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that detect microbial patterns released by pathogens, and activate localized cell death to prevent the spread of pathogens. Tsw is the only identified resistance (R) gene encoding an NLR, conferring resistance to tomato spotted wilt orthotospovirus (TSWV) in pepper species (Capsicum, Solanaceae). However, molecular and cellular mechanisms of Tsw-mediated resistance are still elusive. Here, we analysed the structural and cellular functional features of Tsw protein, and defined a hydrophobic module to improve NLR-mediated virus resistance. The plasma membrane associated N-terminal 137 amino acid in the coiled-coil (CC) domain of Tsw is the minimum fragment sufficient to trigger cell death in Nicotiana benthamiana plants. Transient and transgenic expression assays in plants indicated that the amino acids of the hydrophobic groove (134th-137th amino acid) in the CC domain is critical for its full function and can be modified for enhanced disease resistance. Based on the structural features of Tsw, a super-hydrophobic funnel-like mutant, TswY137W, was identified to confer higher resistance to TSWV in a SGT1 (Suppressor of G-two allele of Skp1)-dependent manner. The same point mutation in a tomato Tsw-like NLR protein also improved resistance to pathogens, suggesting a feasible way of structure-assisted improvement of NLRs.


Assuntos
Vírus de Plantas , Tospovirus , Tospovirus/genética , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Aminoácidos , Doenças das Plantas , Proteínas de Plantas/genética
18.
Insect Sci ; 30(3): 741-757, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36342042

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast ß-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.


Assuntos
Solanum lycopersicum , Tisanópteros , Tospovirus , Produtos Agrícolas , Doenças das Plantas , Saccharomyces cerevisiae , Tospovirus/genética
19.
Genes Genomics ; 45(1): 23-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371493

RESUMO

BACKGROUND: Tomato spot wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV) are highly harmful viruses in agricultural production, which can cause serious economic losses to crops and even devastating consequences for vegetable yield in some countries and regions. Although the two viruses belong to different families and have different transmission vectors, they share most hosts. OBJECTIVE: This study aimed to examine the transcriptomic expression of single and mixed inoculations of TSWV and TYLCV, leading to antagonism using high-throughput RNA sequencing. METHODS: We confirmed the single and mixed infections of these viruses in Nicotiana benthamiana (N. benthamiana) by artificial inoculation. And the expression changes of related genes and their biological functions and pathways during the mixed infection of TSWV and TYLCV were analyzed by comparative transcriptome. RESULTS: Basically, similar symptoms were observed in the plants singly infected with TSWV and co-infected with TYLCV; the symptoms of TYLCV in the co-infected plants were not obvious compared with single TYLCV infections. When inoculated with TYLCV, the accumulation of the virus significantly reduced in single and mixed infections with TSWV; the TSWV accumulated slightly less in co-infection with TYLCV, whereas this reduction was much smaller than that of TYLCV. The results suggested that TSWV had an antagonistic effect on the accumulation of TYLCV in N. benthamiana. It mainly focused on the changes in unique differentially expressed genes (DEGs) caused by the co-infection of TSWV and TYLCV. The eight pathways enriched by upregulated DEGs mainly included amino acid biosynthesis, citrate cycle (or tricarboxylic acid cycle, TCA cycle), and so on. However, only pentose phosphate pathway (PPP) and peptidoglycan biosynthesis could be downregulated in the Kyoto Encyclopedia of Genes and Genomes pathway in which peptidoglycan biosynthesis was involved in upregulated and downregulated pathways. CONCLUSIONS: The antagonistic effect of TSWV on TYLCV in N.benthamiana and the change trends and specific pathways of DEGs in this process were found. Our study provided new insights into the host regulation and competition between viruses in response to TSWV and TYLCV mixed infection.


Assuntos
Coinfecção , Tospovirus , Humanos , Nicotiana/genética , Tospovirus/genética , Peptidoglicano , Perfilação da Expressão Gênica
20.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499398

RESUMO

Tomato spotted wilt virus (TSWV) causes severe viral diseases on many economically important plants of Solanaceae. During the infection process of TSWV, a series of 3'-truncated subgenomic RNAs (sgRNAs) relative to corresponding genomic RNAs were synthesized, which were responsible for the expression of some viral proteins. However, corresponding genomic RNAs (gRNAs) seem to possess the basic elements for expression of these viral proteins. In this study, molecular characteristics of sgRNAs superior to genomic RNAs in viral protein expression were identified. The 3' ends of sgRNAs do not cover the entire intergenic region (IGR) of TSWV genomic RNAs and contain the remarkable A-rich characteristics. In addition, the 3' terminal nucleotides of sgRNAs are conserved among different TSWV isolates. Based on the eIF4E recruitment assay and subsequent northern blot, it is suggested that the TSWV sgRNA, but not gRNA, is capped in vivo; this is why sgRNA is competent for protein expression relative to gRNA. In addition, the 5' and 3' untranslated region (UTR) of sgRNA-Ns can synergistically enhance cap-dependent translation. This study further enriched the understanding of sgRNAs of ambisense RNA viruses.


Assuntos
Tospovirus , Tospovirus/genética , RNA Subgenômico , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Northern Blotting
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...