Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.487
Filtrar
1.
Microbiologyopen ; 13(3): e23, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867416

RESUMO

The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Toxinas Bacterianas , Proteínas Hemolisinas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Staphylococcus aureus , Proteína ADAM10/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Toxinas Bacterianas/metabolismo , Células THP-1 , Receptores de Estrogênio/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , Caspase 1/metabolismo , Trifosfato de Adenosina/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Dipeptídeos , Ácidos Hidroxâmicos
2.
Cell Host Microbe ; 32(6): 779-781, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870893

RESUMO

In a recent issue of Nature, Zhao et al. have demonstrated that Streptomyces spp. produce "umbrella"-shaped polymorphic toxin particles, a novel class of non-lethal toxins that gently inhibit competitors by arresting hyphal growth in closely related bacteria, unveiling a unique bacterial defense strategy in microbial ecological interactions.1.


Assuntos
Toxinas Bacterianas , Streptomyces , Streptomyces/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Antibiose , Hifas/crescimento & desenvolvimento , Interações Microbianas
3.
Nat Commun ; 15(1): 5028, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866748

RESUMO

Cholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death. The CDCL-producing Bacteroides is protected from the effects of its own CDCL by the presence of a surface lipoprotein that blocks CDCL pore formation. These studies suggest a prevalent mode of bacterial antagonism by a family of two-component CDCLs that function like mammalian MAC and that are wide-spread in the gut microbiota of diverse human populations.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Citotoxinas/metabolismo , Microbioma Gastrointestinal , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/imunologia , Animais , Células Eucarióticas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(25): e2316143121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861595

RESUMO

Vibrio vulnificus causes life-threatening wound and gastrointestinal infections, mediated primarily by the production of a Multifunctional-Autoprocessing Repeats-In-Toxin (MARTX) toxin. The most commonly present MARTX effector domain, the Makes Caterpillars Floppy-like (MCF) toxin, is a cysteine protease stimulated by host adenosine diphosphate (ADP) ribosylation factors (ARFs) to autoprocess. Here, we show processed MCF then binds and cleaves host Ras-related proteins in brain (Rab) guanosine triphosphatases within their C-terminal tails resulting in Rab degradation. We demonstrate MCF binds Rabs at the same interface occupied by ARFs. Moreover, we show MCF preferentially binds to ARF1 prior to autoprocessing and is active to cleave Rabs only subsequent to autoprocessing. We then use structure prediction algorithms to demonstrate that structural composition, rather than sequence, determines Rab target specificity. We further determine a crystal structure of aMCF as a swapped dimer, revealing an alternative conformation we suggest represents the open, activated state of MCF with reorganized active site residues. The cleavage of Rabs results in Rab1B dispersal within cells and loss of Rab1B density in the intestinal tissue of infected mice. Collectively, our work describes an extracellular bacterial mechanism whereby MCF is activated by ARFs and subsequently induces the degradation of another small host guanosine triphosphatase (GTPase), Rabs, to drive organelle damage, cell death, and promote pathogenesis of these rapidly fatal infections.


Assuntos
Toxinas Bacterianas , Vibrio vulnificus , Proteínas rab de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Células HEK293 , Camundongos Endogâmicos ICR , Proteólise , Proteínas rab de Ligação ao GTP/metabolismo , Vibrioses/microbiologia , Vibrioses/metabolismo , Vibrio vulnificus/metabolismo , Vibrio vulnificus/patogenicidade
5.
Cell Host Microbe ; 32(6): 794-803, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870897

RESUMO

Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.


Assuntos
Bactérias , Toxinas Bacterianas , Bactérias/imunologia , Bactérias/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/imunologia , Transferência Genética Horizontal , Humanos , Viabilidade Microbiana , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
6.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698905

RESUMO

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Assuntos
Toxinas Bacterianas , SARS-CoV-2 , Sinaptogirinas , Internalização do Vírus , Humanos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sinaptogirinas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Jurkat , Aggregatibacter actinomycetemcomitans/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Microdomínios da Membrana/metabolismo
7.
Chem Biol Interact ; 397: 111046, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735451

RESUMO

Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 µM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).


Assuntos
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Metabolismo dos Lipídeos , Fígado , Uracila , Humanos , Alcaloides/farmacologia , Toxinas Bacterianas/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Células Hep G2 , Fígado/metabolismo , Fígado/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Proteômica , Lipidômica , Lipogênese/efeitos dos fármacos
8.
Microbiol Spectr ; 12(6): e0397323, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700352

RESUMO

Plasmids play important roles in microbial ecosystems, serving as carriers of antibiotic resistance and virulence. In the laboratory, they are essential tools for genetic manipulation and recombinant protein expression. We uncovered an intriguing survival phenotype in a fraction of the bacterial population while using plasmid-mediated arabinose-inducible gene expression to monitor the production of toxic ParE proteins. This phenotype was not correlated with changes to the plasmid sequence and could not be rescued by increasing arabinose uptake. Instead, survival correlates with a marked reduction in plasmid copy number (PCN). Reduced PCN is reproducible, not a function of the pre-existing population, and can be sequentially enriched by continual passage with induction. The reduction in PCN appears to allow mitigation of toxicity from the expression of ParE proteins while balancing the need to maintain a threshold PCN to withstand selection conditions. This indicates an adaptive cellular response to stressful conditions, likely by altering the regulation of plasmid replication. Furthermore, this survival mechanism appears to not be limited to a specific bacterial strain of Escherichia coli or ParE toxin family member, suggesting a generalized response. Finally, bacterial whole genome sequencing indicated an N845S residue substitution in DNA polymerase I, which correlates with the observed reduction in PCN and has been previously reported to impact plasmid replication. Further understanding this molecular mechanism has broader implications for this adaptive response of the dynamics of plasmid-mediated gene expression, microbial adaptation, and genetic engineering methodologies. IMPORTANCE: This research has increased our understanding of how bacteria respond to the pressure from plasmid-borne toxic genes, such as those found in toxin-antitoxin systems. Surprisingly, we found that bacteria survived toxic ParE protein expression by reducing the number of these plasmids in the cells. This discovery reveals another way in which bacteria can balance toxin expression with antibiotic selection to attenuate the effects of deleterious genes. This insight is not only valuable for understanding bacterial survival strategies but may also influence the development of better tools in biotechnology, where plasmids are often used to study the functional roles of genes.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Arabinose/metabolismo , Dosagem de Genes
9.
Cell Rep ; 43(5): 114245, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38761377

RESUMO

Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Centro Germinativo , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/imunologia , Centro Germinativo/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Clostridioides difficile/imunologia , Clostridioides difficile/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiocina CXCL12/metabolismo , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Memória Imunológica , Feminino , Formação de Anticorpos/imunologia
10.
Microbiol Spectr ; 12(6): e0035424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38709085

RESUMO

Paeniclostridium sordellii hemorrhagic toxin (TcsH) and Clostridioides difficile toxin A (TcdA) are two major members of the large clostridial toxin (LCT) family. These two toxins share ~87% similarity and are known to cause severe hemorrhagic pathology in animals. Yet, the pathogenesis of their hemorrhagic toxicity has been mysterious for decades. Here, we examined the liver injury after systemic exposure to different LCTs and found that only TcsH and TcdA induce overt hepatic hemorrhage. By investigating the chimeric and truncated toxins, we demonstrated that the enzymatic domain of TcsH alone is not sufficient to determine its potent hepatic hemorrhagic toxicity in mice. Likewise, the combined repetitive oligopeptide (CROP) domain of TcsH/TcdA alone also failed to explain their strong hemorrhagic activity in mice. Lastly, we showed that disrupting the first two short repeats of CROPs in TcsH and TcdA impaired hemorrhagic toxicity without causing overt changes in cytotoxicity and lethality. These findings lead to a deeper understanding of toxin-induced hemorrhage and the pathogenesis of LCTs and could be insightful in developing therapeutic avenues against clostridial infections. IMPORTANCE: Paeniclostridium sordellii and Clostridioides difficile infections often cause hemorrhage in the affected tissues and organs, which is mainly attributed to their hemorrhagic toxins, TcsH and TcdA. In this study, we demonstrate that TcsH and TcdA, but not other related toxins. including Clostridioides difficile toxin B and TcsL, induce severe hepatic hemorrhage in mice. We further determine that a small region in TcsH and TcdA is critical for the hemorrhagic toxicity but not cytotoxicity or lethality of these toxins. Based on these results, we propose that the hemorrhagic toxicity of TcsH and TcdA is due to an uncharacterized mechanism, such as the presence of an unknown receptor, and future studies to identify the interactive host factors are warranted.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Enterotoxinas , Hemorragia , Animais , Camundongos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Enterotoxinas/toxicidade , Enterotoxinas/genética , Enterotoxinas/metabolismo , Fígado/patologia , Infecções por Clostridium/microbiologia , Humanos , Feminino
11.
Toxins (Basel) ; 16(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787054

RESUMO

Pathogenic bacteria produce diverse protein toxins to disturb the host's defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to enter mammalian cells, where they catalyze the modification of cellular proteins. The enzymatic activity is diverse and ranges from ribosyl- or glycosyl-transferase activity, the deamidation of proteins, and adenylate-cyclase activity to proteolytic cleavage. Protein toxins are highly active enzymes often with tight specificity for an intracellular protein or a protein family coupled with the intrinsic capability of entering mammalian cells. A broad understanding of their molecular mechanisms established bacterial toxins as powerful tools for cell biology. Both the enzymatic part and the pore-forming/protein transport capacity are currently used as tools engineered to study signaling pathways or to transport cargo like labeled compounds, nucleic acids, peptides, or proteins directly into the cytosol. Using several representative examples, this review is intended to provide a short overview of the state of the art in the use of bacterial toxins or parts thereof as tools.


Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Humanos , Animais , Transporte Proteico , Bactérias/metabolismo
12.
Toxins (Basel) ; 16(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787060

RESUMO

Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR ("NAD- and ADP-ribose"-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin-antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin-antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects.


Assuntos
ADP-Ribosilação , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Toxinas Bacterianas/metabolismo , Adenosina Difosfato Ribose/metabolismo , Filogenia , Sistemas Toxina-Antitoxina/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , DNA/metabolismo
13.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757742

RESUMO

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Assuntos
Insulina , Agregados Proteicos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Humanos , Insulina/metabolismo , Insulina/química , Agregados Proteicos/efeitos dos fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Amiloide/química , Amiloide/metabolismo
14.
Cell Mol Life Sci ; 81(1): 230, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780625

RESUMO

Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.


Assuntos
Defensinas , Proteínas de Drosophila , Drosophila , Drosophila/classificação , Drosophila/genética , Drosophila/imunologia , Drosophila/microbiologia , Defensinas/química , Defensinas/genética , Defensinas/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Animais , Deleção de Genes , Duplicação Gênica , Feminino , Dobramento de Proteína , Motivos de Aminoácidos , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/fisiologia
15.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791369

RESUMO

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Assuntos
Apoptose , Proteínas de Bactérias , Toxinas Bacterianas , Interleucina-8 , Pasteurella multocida , Interleucina-8/metabolismo , Interleucina-8/genética , Animais , Pasteurella multocida/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Apoptose/genética , Suínos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Caspase 8/metabolismo , Caspase 8/genética , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas
16.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791367

RESUMO

The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three ß-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these ß-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.


Assuntos
Bacillus cereus , Toxinas Bacterianas , Proteínas Hemolisinas , Staphylococcus aureus , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Bacillus cereus/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Hemólise , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Modelos Moleculares , Animais , Anticorpos Monoclonais/química , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
17.
Nature ; 629(8010): 165-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632398

RESUMO

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Assuntos
Antibiose , Proteínas de Bactérias , Toxinas Bacterianas , Streptomyces , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Microscopia Crioeletrônica , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efeitos dos fármacos , Streptomyces griseus/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo
18.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670939

RESUMO

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Proteínas Hemolisinas , Hemólise , Streptococcus pneumoniae , Estreptolisinas , Estreptolisinas/metabolismo , Estreptolisinas/química , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Streptococcus pneumoniae/efeitos dos fármacos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/antagonistas & inibidores , Hemólise/efeitos dos fármacos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Células A549 , Colesterol/metabolismo , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fatores de Virulência/metabolismo
19.
Anaerobe ; 87: 102856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609034

RESUMO

Clostridium perfringens, a Gram-positive bacterium, causes intestinal diseases in humans and livestock through its toxins, related to alpha toxin (CPA), beta toxin (CPB), C. perfringens enterotoxin (CPE), epsilon toxin (ETX), Iota toxin (ITX), and necrotic enteritis B-like toxin (NetB). These toxins disrupt intestinal barrier, leading to various cell death mechanisms such as necrosis, apoptosis, and necroptosis. Additionally, non-toxin factors like adhesins and degradative enzymes contribute to virulence by enhancing colonization and survival of C. perfringens. A vicious cycle of intestinal barrier breach, misregulated cell death, and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. Understanding these mechanisms is essential for developing targeted therapies against C. perfringens-associated intestinal diseases.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Clostridium perfringens , Células Epiteliais , Humanos , Animais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Clostridium perfringens/patogenicidade , Clostridium perfringens/fisiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
20.
Toxins (Basel) ; 16(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668620

RESUMO

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Assuntos
Proteínas de Bactérias , Clostridium perfringens , Enterotoxinas , Histidina Quinase , Esporos Bacterianos , Clostridium perfringens/genética , Clostridium perfringens/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Enterotoxinas/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Regulação Bacteriana da Expressão Gênica , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA