RESUMO
Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).
Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Microscopia Crioeletrônica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Animais , Clostridioides difficile/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Camundongos , Feminino , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Ligação Proteica , Humanos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos MolecularesRESUMO
The type VI secretion system (T6SS) is a molecular machine utilised by many Gram-negative bacteria to deliver antibacterial toxins into adjacent cells. Here we present the structure of Tse15, a T6SS Rhs effector from the nosocomial pathogen Acinetobacter baumannii. Tse15 forms a triple layered ß-cocoon Rhs domain with an N-terminal α-helical clade domain and an unfolded C-terminal toxin domain inside the Rhs cage. Tse15 is cleaved into three domains, through independent auto-cleavage events involving aspartyl protease activity for toxin self-cleavage and a nucleophilic glutamic acid for N-terminal clade cleavage. Proteomic analyses identified that significantly more peptides from the N-terminal clade and toxin domains were secreted than from the Rhs cage, suggesting toxin delivery often occurs without the cage. We propose the clade domain acts as an internal chaperone to mediate toxin tethering to the T6SS machinery. Conservation of the clade domain in other Gram-negative bacteria suggests this may be a common mechanism for delivery.
Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Toxinas Bacterianas , Domínios Proteicos , Sistemas de Secreção Tipo VI , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Proteômica/métodos , Sequência de Aminoácidos , Cristalografia por Raios XRESUMO
Alpha toxin has become the subject of research in recent years. The objective of this article was to review and summarize recent research on the molecular structure and biological function of the alpha toxin of Clostridium perfringens. This includes the work of our research team, as well as that of other researchers. Clostridium perfringens is an anaerobic, spore-forming, Gram-positive bacillus. It can cause various intestinal diseases, such as gas gangrene, food poisoning, non-foodborne diarrhea, and enteritis. Clostridium perfringens can be classified into 5 toxinotypes A, B, C, D, and E, based on the production of major toxins. Each type of C. perfringens produces alpha toxin, which is one of the most important lethal and dermonecrotic toxins and is considered a primary virulence factor. Alpha toxin is a multifunctional metalloenzyme with phospholipase C and sphingomyelinase activities that simultaneously hydrolyze phosphatidylcholine and sphingomyelin. It can therefore destroy the integrity of cell membranes and eventually cause cell lysis. The clinical effects of alpha toxins are characterized by cytotoxicity, hemolytic activity, lethality, skin necrosis, platelet aggregation, and increased vascular permeability. Future research will concentrate on the pathogenesis of a lpha toxin exposure, clarifying the interaction between alpha toxin and the cell membrane and investigating the mechanism of activating platelet function. This research will have substantial theoretical and practical value in controlling disease progression, identifying targeted therapeutic sites, and reducing the toxic effects of vaccines.
La toxine alpha est devenue l'objet de recherches ces dernières années. L'objectif de cet article était de passer en revue et de résumer les recherches récentes sur la structure moléculaire et la fonction biologique de la toxine alpha de Clostridium perfringens. Cela inclut les travaux de notre équipe de recherche, ainsi que ceux d'autres chercheurs. Clostridium perfringens est un bacille anaérobie, sporulé et à Gram positif. Il peut provoquer diverses maladies intestinales, telles que la gangrène gazeuse, une intoxication alimentaire, de la diarrhée non alimentaire et une entérite. Clostridium perfringens peut être classé en 5 toxinotypes A, B, C, D et E, en fonction de la production des principales toxines. Chaque type de C. perfringens produit de la toxine alpha, qui est l'une des toxines létales et dermonécrotiques les plus importantes et est considérée comme un facteur de virulence primaire. La toxine alpha est une métalloenzyme multifonctionnelle possédant des activités de phospholipase C et de sphingomyélinase qui hydrolysent simultanément la phosphatidylcholine et la sphingomyéline. Elle peut donc détruire l'intégrité des membranes cellulaires et éventuellement provoquer une lyse cellulaire. Les effets cliniques des toxines alpha sont caractérisés par une cytotoxicité, une activité hémolytique, une létalité, une nécrose cutanée, une agrégation plaquettaire et une augmentation de la perméabilité vasculaire. Les recherches futures se concentreront sur la pathogénèse de l'exposition à la toxine alpha, en clarifiant l'interaction entre la toxine alpha et la membrane cellulaire et en étudiant le mécanisme d'activation de la fonction plaquettaire. Ces recherches auront une valeur théorique et pratique substantielle pour contrôler la progression de la maladie, identifier les sites thérapeutiques ciblés et réduire les effets toxiques des vaccins.(Traduit par Docteur Serge Messier).
Assuntos
Toxinas Bacterianas , Clostridium perfringens , Fosfolipases Tipo C , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Clostridium perfringens/patogenicidade , Animais , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/química , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genéticaRESUMO
Infection by enterotoxigenic Escherichia coli (ETEC) causes severe watery diarrhea and dehydration in humans. Heat-labile enterotoxin (LT) is a major virulence factor produced by ETEC. LT is one of AB5-type toxins, such as Shiga toxin (Stx) and cholera toxin (Ctx), and the B-subunit pentamer is responsible for high affinity binding to the LT-receptor, ganglioside GM1, through multivalent interaction. In this report, we found that Glu51 of the B-subunit plays an essential role in receptor binding compared with other amino acids, such as Glu11, Arg13, and Lys91, all of which were previously shown to be involved in the binding. By targeting Glu51, we identified four tetravalent peptides that specifically bind to the B-subunit pentamer with high affinity by screening tetravalent random-peptide libraries, which were tailored to bind to the B-subunit through multivalent interaction. One of these peptides, GGR-tet, efficiently inhibited the cell-elongation phenotype and the elevation of cellular cAMP levels, both induced by LT. Furthermore, GGR-tet markedly inhibited LT-induced fluid accumulation in the mouse ileum. Thus, GGR-tet represents a novel therapeutic agent against ETEC infection.
Assuntos
Toxinas Bacterianas , Enterotoxinas , Peptídeos , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Enterotoxinas/química , Animais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Camundongos , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Ligação Proteica , Sítios de Ligação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Sequência de Aminoácidos , Subunidades Proteicas/metabolismo , Subunidades Proteicas/químicaRESUMO
Over the past five decades, DNA restriction enzymes have revolutionized biotechnology. While these enzymes are widely used in DNA research and DNA engineering, the emerging field of RNA and mRNA therapeutics requires sequence-specific RNA endoribonucleases. Here, we describe EcoToxN1, a member of the type III toxin-antitoxin family of sequence-specific RNA endoribonucleases, and its use in RNA and mRNA analysis. This enzyme recognizes a specific pentamer in a single-stranded RNA and cleaves the RNA within this sequence. The enzyme is neither dependent on annealing of guide RNA or DNA oligos to the template nor does it require magnesium. Furthermore, it performs over a wide range of temperatures. With its unique functions and characteristics, EcoToxN1 can be classified as an RNA restriction enzyme. EcoToxN1 enables new workflows in RNA analysis and biomanufacturing, meeting the demand for faster, cheaper, and more robust analysis methods.
Assuntos
Endorribonucleases , RNA , RNA/metabolismo , RNA/química , Endorribonucleases/metabolismo , Endorribonucleases/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Análise de Sequência de RNARESUMO
Clostridioides difficile is a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6). IP6 binds to a cysteine protease domain (CPD) on the toxin, inducing autoproteolysis, which liberates a virulence factor in the cell cytosol. We developed second-generation IP6 analogs designed to induce autoproteolysis in the gut lumen, prior to toxin uptake, circumventing pathogenesis. We synthesized a panel of thiophosphate-/sulfate-containing IP6 analogs and characterized their toxin binding affinity, autoproteolysis induction, and cation interactions. Our top candidate was soluble in extracellular cation concentrations, unlike IP6. The IP6 analogs were more negatively charged than IP6, which improved affinity and stabilization of the CPD, enhancing toxin autoproteolysis. Our data illustrate the optimization of IP6 with thiophosphate biomimetic which are more capable of inducing toxin autoproteolysis than the native ligand, warranting further studies in vivo.
Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Relação Estrutura-Atividade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Fosfatos de Inositol/metabolismo , FosfatosRESUMO
Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
Assuntos
Domínio Catalítico , Mycobacterium tuberculosis , Nucleotidiltransferases , Fosforilação , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares , RNA de Transferência/metabolismo , RNA de Transferência/genética , Cristalografia por Raios XRESUMO
Cholesterol-dependent cytolysins (CDCs) are the distinct class of ß-barrel pore-forming toxins (ß-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane ß-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.
Assuntos
Toxinas Bacterianas , Colesterol , Proteínas de Choque Térmico , Proteínas Hemolisinas , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/químicaRESUMO
Tuberculosis is a worldwide plague caused by the pathogen Mycobacterium tuberculosis (M. tb). Toxin-antitoxin (TA) systems are genetic elements abundantly present in prokaryotic organisms and regulate important cellular processes. MazEF is a TA system implicated in the formation of "persisters cells" of M. tb, which contain more than 10 such members. However, the exact function and inhibition mode of each MazF are not fully understood. Here we report crystal structures of MazF-mt3 in its apo form and in complex with the C-terminal half of MazE-mt3. Structural analysis suggested that two long but disordered ß1-ß2 loops would interfere with the binding of the cognate MazE-mt3 antitoxin. Similar loops are also present in the MazF-mt1 and -mt9 but are sustainably shortened in other M. tb MazF members, and these TA pairs behave distinctly in terms of their binding modes and their RNase activities. Systematic crystallographic and biochemical studies further revealed that the biochemical activities of M. tb toxins were combined results between the interferences from the characteristic loops and the electrostatic interactions between the cognate TA pairs. This study provides structural insight into the binding mode and the inhibition mechanism of the MazE/F TA pairs, which facilitate the structure-based peptide designs.
Assuntos
Proteínas de Bactérias , Endorribonucleases , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Endorribonucleases/química , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Ligação Proteica , Cristalografia por Raios X , Modelos Moleculares , Antitoxinas/química , Antitoxinas/metabolismo , Antitoxinas/genética , Sequência de AminoácidosRESUMO
The CcdAB system expressed in the E.coli cells is a prototypical example of the bacterial toxin-antitoxin (TA) systems that ensure the survival of the bacterial population under adverse environmental conditions. The solution and crystal structures of CcdA, CcdB and of CcdB in complex with the toxin-binding C-terminal domain of CcdA have been reported. Our interest lies in the dynamics of CcdB-CcdA complex formation. Solution NMR studies have shown that CcdB_G100T, in presence of saturating concentrations of CcdA-c, a truncated C-terminal fragment of CcdA exists in equilibrium between two major populations. Sequence specific backbone resonance assignments of both equilibrium forms of the ~ 27 kDa complex, have been obtained from a suite of triple resonance NMR experiments acquired on 2H, 13C, 15N enriched samples of CcdB_G100T. Analysis of 1H, 13Cα, 13Cß secondary chemical shifts, shows that both equilibrium forms of CcdB_G100T have five beta-strands and one alpha-helix as the major secondary structural elements in the tertiary structure. The results of these studies are presented below.
Assuntos
Toxinas Bacterianas , Escherichia coli , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Toxinas Bacterianas/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Sequência de AminoácidosRESUMO
Contact-dependent inhibition (CDI) is a mechanism of interbacterial competition in Gram-negative bacteria. Bacteria that contain CDI systems produce a large, filamentous protein, CdiA, on their cell surfaces. CdiA contains a C-terminal toxin domain that is transported across the outer membranes (OMs) of neighboring bacteria. Once inside a target bacterium, the toxin is released from the CdiA protein via a proteolytic mechanism that has not been well characterized. We have developed an in vitro assay to monitor this toxin release process and have identified several conserved amino acids that play critical roles in the autocatalytic mechanism. Our results indicate that a hydrophobic, membrane-like environment is required for CdiA to fold, and the proteolysis occurs through an asparagine cyclization mechanism. Our in vitro assay thus provides a starting point for analyzing the conformational state of the CdiA protein when it is inserted into a target cell's OM and engaged in transporting the toxin across that membrane. IMPORTANCE: It is challenging to develop new antibiotics capable of killing Gram-negative bacteria because their outer membranes are impermeable to many small molecules. Some Gram-negative bacteria, however, deliver much larger protein toxins through the outer membranes of competing bacteria in their environments using contact-dependent inhibition (CDI) systems. How these toxins traverse the outer membranes of their targets is not well understood. We have therefore developed a method to study the toxin delivery process in a highly simplified system using a fragment of a CDI protein. Our results indicate that the CDI protein assembles into a structure in the target membrane that catalyzes the release of the toxin. This CDI protein fragment enables further studies of the toxin delivery mechanism.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteólise , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de MembranaRESUMO
Bacteria and their viruses (bacteriophages or phages) are engaged in an intense evolutionary arms race1-5. While the mechanisms of many bacterial antiphage defence systems are known1, how these systems avoid toxicity outside infection yet activate quickly after infection is less well understood. Here we show that the bacterial phage anti-restriction-induced system (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefence protein Ocr. Using cryo-electron microscopy, we show that AriA is related to SMC-family ATPases but assembles into a distinctive homohexameric complex through two oligomerization interfaces. In uninfected cells, the AriA hexamer binds to up to three monomers of AriB, maintaining them in an inactive state. After Ocr binding, the AriA hexamer undergoes a structural rearrangement, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease, the activation of which arrests cell growth and inhibits phage propagation by globally inhibiting protein translation through specific cleavage of a lysine tRNA. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defence system triggered by a phage counterdefence protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.
Assuntos
Toxinas Bacterianas , Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas Virais , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Bacteriófago T7/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Multimerização Proteica , RNA de Transferência de Lisina , Sistemas Toxina-Antitoxina/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestruturaRESUMO
The crucial molecular factors that shape the interfaces of lipid-binding proteins with their target ligands and surfaces remain unknown due to the complex makeup of biological membranes. Cholesterol, the major modulator of bilayer structure in mammalian cell membranes, is recognized by various proteins, including the well-studied cholesterol-dependent cytolysins. Here, we use in vitro evolution to investigate the molecular adaptations that preserve the cholesterol specificity of perfringolysin O, the prototypical cholesterol-dependent cytolysin from Clostridium perfringens. We identify variants with altered membrane-binding interfaces whose cholesterol-specific activity exceeds that of the wild-type perfringolysin O. These novel variants represent alternative evolutionary outcomes and have mutations at conserved positions that can only accumulate when epistatic constraints are alleviated. Our results improve the current understanding of the biochemical malleability of the surface of a lipid-binding protein.
Assuntos
Toxinas Bacterianas , Colesterol , Clostridium perfringens , Proteínas Hemolisinas , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Colesterol/metabolismo , Colesterol/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Epistasia Genética , Ligação Proteica , Motivos de Aminoácidos , MutaçãoRESUMO
The multifunctional autoprocessing repeat-in-toxin (MARTX) toxin is the primary virulence factor of Vibrio vulnificus displaying cytotoxic and hemolytic properties. The cysteine protease domain (CPD) is responsible for activating the MARTX toxin by cleaving the toxin precursor and releasing the mature toxin fragments. To investigate the structural determinants for inositol hexakisphosphate (InsP6)-mediated activation of the CPD, we determined the crystal structures of unprocessed and ß-flap truncated MARTX CPDs of Vibrio vulnificus strain MO6-24/O in complex with InsP6 at 1.3 and 2.2Å resolution, respectively. The CPD displays a conserved domain with a central seven-stranded ß-sheet flanked by three α-helices. The scissile bond Leu3587-Ala3588 is bound in the catalytic site of the InsP6-loaded form of the Cys3727Ala mutant. InsP6 interacts with the conserved basic cleft and the ß-flap inducing the active conformation of catalytic residues. The ß-flap of the post-CPD is flexible in the InsP6-unbound state. The structure of the CPD Δß-flap showed an inactive conformation of the catalytic residues due to the absence of interaction between the active site and the ß-flap. This study confirms the InsP6-mediated activation of the MARTX CPDs in which InsP6-binding induces conformational changes of the catalytic residues and the ß-flap that holds the N terminus of the CPD in the active site, facilitating hydrolysis of the scissile bond.
Assuntos
Ácido Fítico , Vibrio vulnificus , Vibrio vulnificus/enzimologia , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo , Ácido Fítico/metabolismo , Domínio Catalítico , Cisteína Proteases/metabolismo , Cisteína Proteases/química , Cisteína Proteases/genética , Cristalografia por Raios X , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Domínios Proteicos , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sequência de AminoácidosRESUMO
Thermostable direct hemolysin (TDH) is a key virulence factor of Vibrio parahaemolyticus, capable of causing seafood-mediated outbreaks of gastroenteritis, posing a threat to the aquatic environment and global public health. In the present study, we explored a multivalent aptamer-mediated inhibition strategy to mitigate TDH toxicity. Based on the characteristic structure of TDH, a stable multivalent aptamer, Ap3-5, was rationally designed by truncation, key fragment evolution, and end fixation. Ap3-5 exhibited strong affinity (Kd=39.24 nM), and thermal (Tm=57.6 °C) and enzymatic stability. In silico studies also revealed that Ap3-5 occupied more active sites of TDH and covered its central pore, indicating its potential as a blocking agent for inhibiting TDH toxicity. In the hemolysis assay, Ap3-5 significantly suppressed the hemolytic effect of TDH. A cellular study revealed a substantial (â¼80 %) reduction in TDH cytotoxicity. Supporting these findings, in vivo trials confirmed the inhibitory action of Ap3-5 on both the acute and intestinal toxicity of TDH. Overall, benefiting from the strong binding affinity, high stability, and multisite occupation of the multivalent aptamer with TDH, Ap3-5 displayed robust potential against TDH toxicity by inhibiting membrane pore formation, providing a new approach for alleviating bacterial infections.
Assuntos
Aptâmeros de Nucleotídeos , Toxinas Bacterianas , Proteínas Hemolisinas , Hemólise , Vibrio parahaemolyticus , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/química , Aptâmeros de Nucleotídeos/química , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Hemólise/efeitos dos fármacos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Proteínas de Bactérias/genéticaRESUMO
Immunotoxins (ITs) are recombinant chimeric proteins that combine a protein toxin with a targeting moiety to facilitate the selective delivery of the toxin to cancer cells. Here, we present a novel strategy to enhance the cytosolic access of ITs by promoting their dissociation from target receptors under the reducing conditions of the endocytic pathway. We engineered monobodySS, a human fibronectin type III domain-based monobody with disulfide bond (SS)-containing paratopes, targeting receptors such as EGFR, EpCAM, Her2, and FAP. MonobodySS exhibited SS-dependent target receptor binding with a significant reduction in binding under reducing conditions. We then created monobodySS-based ITs carrying a 25 kDa fragment of Pseudomonas exotoxin A (PE25), termed monobodySS-PE25. These ITs showed dose-dependent cytotoxicity against target receptor-expressing cancer cells and a wider therapeutic window due to higher efficacy at lower doses compared to controls with SS reduction inhibited. ERSS/28-PE25, with a KD of 28 nM for EGFR, demonstrated superior tumor-killing potency compared to ER/21-PE25, which lacks an SS bond, at equivalent and lower doses. In vivo, ERSS/28-PE25 outperformed ER/21-PE25 in suppressing tumor growth in EGFR-overexpressing xenograft mouse models. This study presents a strategy for developing solid tumor-targeting ITs using SS-containing paratopes to enhance cytosolic delivery and antitumor efficacy.
Assuntos
Endocitose , Exotoxinas , Imunotoxinas , Humanos , Imunotoxinas/farmacologia , Imunotoxinas/química , Animais , Endocitose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Exotoxinas/farmacologia , Exotoxinas/química , Exotoxina A de Pseudomonas aeruginosa , ADP Ribose Transferases/farmacologia , ADP Ribose Transferases/química , Ensaios Antitumorais Modelo de Xenoenxerto , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacologia , Oxirredução/efeitos dos fármacos , FemininoRESUMO
EmrE is a bacterial efflux protein in the small multidrug-resistant (SMR) family present in Escherichia coli. Due to its small size, 110 residues in each dimer subunit, it is an ideal model system to study ligand-protein-membrane interactions. Here in our work, we have calculated the free energy landscape of benzyltrimetylammonium (BTMA) and tetraphenyl phosphonium (TPP) binding to EmrE using the enhanced sampling method-multiple walker metadynamics. We estimate that the free energy of BTMA binding to EmrE is -21.2 ± 3.3 kJ/mol and for TPP is -43.6 ± 3.8 kJ/mol. BTMA passes through two metastable states to reach the binding pocket, while TPP has a more complex binding landscape with four metastable states and one main binding site. Our simulations show that the ligands interact with the membrane lipids at a distance 1 nm away from the binding site which forms a broad local minimum, consistent for both BTMA and TPP. This site can be an alternate entry point for ligands to partition from the membrane into the protein, especially for bulky and/or branched ligands. We also observed the membrane lipid and C-terminal 110HisA form salt-bridge interactions with the helix-1 residue 22LysB. Our free energy estimates and clusters are in close agreement with experimental data and give us an atomistic view of the ligand-protein-lipid interactions. Understanding the binding pathway of these ligands can guide us in future design of ligands that can alter or halt the function of EmrE.
Assuntos
Antiporters , Proteínas de Escherichia coli , Simulação de Dinâmica Molecular , Compostos Organofosforados , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Antiporters/química , Antiporters/metabolismo , Termodinâmica , Escherichia coli/metabolismo , Sítios de Ligação , Ligação Proteica , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Compostos de Amônio Quaternário/química , Ligantes , OniocompostosRESUMO
Pathogenic Bacillus and clostridial (i.e., Clostridium and Clostridioides) bacteria express a diverse repertoire of effector proteins to promote disease. This includes production of binary toxins, which enter host epithelial cells and seriously damage the intestinal tracts of insects, animals, and humans. In particular, binary toxins form an AB-type complex composed of a catalytic subunit that is toxic (A) and an oligomeric cell-binding and delivery subunit (B), where upon delivery of A into the cytoplasm of the host cell it catalytically ADP-ribosylates actin and rapidly induces host cell death. In this review, binary toxins expressed by Bacillus thuringiensis, Clostridioides difficile, and Clostridium perfringens will be discussed, with particular focus placed upon the structural elucidations of their respective B subunits and how these findings help to deconvolute how toxic enzyme delivery into target host cells is achieved by these deadly bacteria.
Assuntos
Toxinas Bacterianas , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Humanos , Animais , Clostridium perfringens/metabolismo , Bacillus thuringiensis/metabolismo , Clostridioides difficile/metabolismoRESUMO
Biofilm-protected pathogenic Staphylococcus aureus causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-ß amyloid folds and is therefore a key element in initiating biofilm formation. However, the paucity of high-resolution structures hinders efforts to prevent amyloid assembly and biofilm formation. Here, we present a 3.5 Å resolution density map of the major PSMα1 fibril form revealing a left-handed cross-ß fibril composed of two C2-symmetric U-shaped protofilaments whose subunits are unusually tilted out-of-plane. Monomeric α-helical PSMα1 is extremely cytotoxic to cells, despite the moderate toxicity of the cross-ß fibril. We suggest mechanistic insights into the PSM functional amyloid formation and conformation transformation on the path from monomer-to-fibril formation. Details of PSMα1 assembly and fibril polymorphism suggest how S. aureus utilizes functional amyloids to form biofilms and establish a framework for developing therapeutics against infection and antimicrobial resistance.
Assuntos
Amiloide , Biofilmes , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento , Amiloide/metabolismo , Amiloide/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Conformação Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos MolecularesRESUMO
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.