Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Acta Trop ; 257: 107283, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955322

RESUMO

Toxoplasmosis, a zoonotic parasitic disease caused by Toxoplasma gondii (T. gondii), is prevalent worldwide. The fact should be emphasized that a considerable proportion of individuals infected with T. gondii may remain asymptomatic; nevertheless, the condition can have severe implications for pregnant women or immunocompromised individuals. The current treatment of toxoplasmosis primarily relies on medication; however, traditional anti-toxoplasmosis drugs exhibit significant limitations in terms of efficacy, side effects, and drug resistance. The life cycles of T. gondii are characterized by distinct stages and its body morphology goes through dynamic alterations during the growth cycle that are intricately governed by a wide array of post-translational modifications (PTMs). Ubiquitin (Ub) signaling and ubiquitin-like (Ubl) signaling are two crucial post-translational modification pathways within cells, regulating protein function, localization, stability, or interactions by attaching Ub or ubiquitin-like proteins (Ubls) to target proteins. While these signaling mechanisms share some functional similarities, they have distinct regulatory mechanisms and effects. T. gondii possesses both Ub and Ubls and plays a significant role in regulating the parasite's life cycle and maintaining its morphology through PTMs of substrate proteins. Investigating the role and mechanism of protein ubiquitination in T. gondii will provide valuable insights for preventing and treating toxoplasmosis. This review explores the distinctive characteristics of Ub and Ubl signaling in T. gondii, with the aim of inspiring research ideas for the identification of safer and more effective drug targets against toxoplasmosis.


Assuntos
Transdução de Sinais , Toxoplasma , Toxoplasmose , Ubiquitina , Toxoplasma/metabolismo , Toxoplasma/fisiologia , Toxoplasma/efeitos dos fármacos , Ubiquitina/metabolismo , Humanos , Toxoplasmose/parasitologia , Toxoplasmose/tratamento farmacológico , Toxoplasmose/metabolismo , Animais , Proteínas de Protozoários/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Estágios do Ciclo de Vida
2.
Cell Mol Life Sci ; 81(1): 294, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977495

RESUMO

The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.


Assuntos
Movimento Celular , Células Dendríticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Camundongos , Quinases Associadas a rho/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Camundongos Endogâmicos C57BL
3.
J Cell Mol Med ; 28(14): e18542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046369

RESUMO

This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.


Assuntos
Epilepsia , Proteína HMGB1 , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Toxoplasmose , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Masculino , Feminino , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/parasitologia , Adulto , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Toxoplasmose/complicações , Toxoplasmose/sangue , Toxoplasmose/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Antígenos de Neoplasias , Proteínas Quinases Ativadas por Mitógeno
4.
mBio ; 15(8): e0072724, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38975793

RESUMO

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular parasite that infects warm-blooded vertebrates across the world. In humans, seropositivity rates of T. gondii range from 10% to 90% across communities. Despite its prevalence, few studies address how T. gondii infection changes the metabolism of host cells. In this study, we investigate how T. gondii manipulates the host cell metabolic environment by monitoring the metabolic response over time using noninvasive autofluorescence lifetime imaging of single cells, metabolite analysis, extracellular flux analysis, and reactive oxygen species (ROS) production. Autofluorescence lifetime imaging indicates that infected host cells become more oxidized and have an increased proportion of bound NAD(P)H compared to uninfected controls. Over time, infected cells also show decreases in levels of intracellular glucose and lactate, increases in oxygen consumption, and variability in ROS production. We further examined changes associated with the pre-invasion "kiss and spit" process using autofluorescence lifetime imaging, which also showed a more oxidized host cell with an increased proportion of bound NAD(P)H over 48 hours compared to uninfected controls, suggesting that metabolic changes in host cells are induced by T. gondii kiss and spit even without invasion.IMPORTANCEThis study sheds light on previously unexplored changes in host cell metabolism induced by T. gondii infection using noninvasive, label-free autofluorescence imaging. In this study, we use optical metabolic imaging (OMI) to measure the optical redox ratio (ORR) in conjunction with fluorescence lifetime imaging microscopy (FLIM) to noninvasively monitor single host cell response to T. gondii infection over 48 hours. Collectively, our results affirm the value of using autofluorescence lifetime imaging to noninvasively monitor metabolic changes in host cells over the time course of a microbial infection. Understanding this metabolic relationship between the host cell and the parasite could uncover new treatment and prevention options for T. gondii infections worldwide.


Assuntos
Imagem Óptica , Espécies Reativas de Oxigênio , Toxoplasma , Toxoplasma/metabolismo , Imagem Óptica/métodos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Animais , NADP/metabolismo , Oxirredução , Glucose/metabolismo , Interações Hospedeiro-Parasita
5.
mBio ; 15(8): e0121124, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38995035

RESUMO

Intracellular infection by a pathogen induces significant rewiring of host cell signaling and biological processes. Understanding how an intracellular pathogen such as Toxoplasma gondii modulates host cell metabolism with single-cell resolution has been challenged by the variability of infection within cultures and difficulties in separating host and parasite metabolic processes. A new study from Gallego-Lopez and colleagues (G. M. Gallego-López, E. C. Guzman, D. E. Desa, L. J. Knoll, M. C. Skala, mBio e00727-24, 2024, https://doi.org/10.1128/mbio.00727-24) applies a quantitative imaging approach to evaluate the host cell metabolism during intracellular infection with Toxoplasma. This study provides important insights into host metabolic responses to Toxoplasma infection and offers a valuable tool to dissect the mechanisms underlying parasite infection and pathophysiology.


Assuntos
Toxoplasma , Toxoplasmose , Toxoplasma/metabolismo , Toxoplasma/genética , Humanos , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Interações Hospedeiro-Parasita , Animais
6.
mSphere ; 9(7): e0036924, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980070

RESUMO

Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE: Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite's persistence within the host during latent infection.


Assuntos
Aminoácidos , Autofagia , Retículo Endoplasmático , Toxoplasma , Toxoplasma/fisiologia , Aminoácidos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Humanos , Encéfalo/parasitologia , Interações Hospedeiro-Parasita
7.
PLoS Biol ; 22(6): e3002690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857298

RESUMO

As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.


Assuntos
Interferon gama , Oxigênio , Proteínas de Protozoários , Toxoplasma , Animais , Toxoplasma/patogenicidade , Interferon gama/metabolismo , Camundongos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Virulência , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Feminino , Encéfalo/parasitologia , Encéfalo/metabolismo , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/metabolismo , Toxoplasmose Animal/parasitologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
8.
PLoS Pathog ; 20(6): e1011979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900808

RESUMO

The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.


Assuntos
Acetilglucosamina , Glucose-6-Fosfato , Toxoplasma , Toxoplasma/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/análogos & derivados , Acetilglucosamina/metabolismo , Acetilação , Animais , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Humanos , Glucosamina/metabolismo , Glucosamina/análogos & derivados , Camundongos , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
9.
Sci Rep ; 14(1): 13600, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38866852

RESUMO

We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.


Assuntos
Imunoglobulina G , Imunoglobulina M , Inflamação , Saliva , Toxoplasma , Toxoplasmose , Humanos , Masculino , Saliva/metabolismo , Feminino , Adulto , Toxoplasmose/tratamento farmacológico , Toxoplasmose/sangue , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Imunoglobulina G/sangue , Estudos Transversais , Inflamação/metabolismo , Imunoglobulina M/sangue , Imunoglobulina M/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Antiprotozoários/imunologia , Simulação por Computador , Estudos Soroepidemiológicos , Adolescente , Simulação de Acoplamento Molecular
10.
mBio ; 15(6): e0295423, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747593

RESUMO

The protozoan parasite Toxoplasma gondii causes serious opportunistic disease due to its ability to persist in patients as latent tissue cysts. The molecular mechanisms coordinating conversion between proliferative parasites (tachyzoites) and latent cysts (bradyzoites) are not fully understood. We previously showed that phosphorylation of eIF2α accompanies bradyzoite formation, suggesting that this clinically relevant process involves regulation of mRNA translation. In this study, we investigated the composition and role of eIF4F multi-subunit complexes in translational control. Using CLIPseq, we find that the cap-binding subunit, eIF4E1, localizes to the 5'-end of all tachyzoite mRNAs, many of which show evidence of stemming from heterogeneous transcriptional start sites. We further show that eIF4E1 operates as the predominant cap-binding protein in two distinct eIF4F complexes. Using genetic and pharmacological approaches, we found that eIF4E1 deficiency triggers efficient spontaneous formation of bradyzoites without stress induction. Consistent with this result, we also show that stress-induced bradyzoites exhibit reduced eIF4E1 expression. Overall, our findings establish a novel role for eIF4F in translational control required for parasite latency and microbial persistence. IMPORTANCE: Toxoplasma gondii is an opportunistic pathogen important to global human and animal health. There are currently no chemotherapies targeting the encysted form of the parasite. Consequently, a better understanding of the mechanisms controlling encystation is required. Here we show that the mRNA cap-binding protein, eIF4E1, regulates the encystation process. Encysted parasites reduce eIF4E1 levels, and depletion of eIF4E1 decreases the translation of ribosome-associated machinery and drives Toxoplasma encystation. Together, these data reveal a new layer of mRNA translational control that regulates parasite encystation and latency.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas de Protozoários , RNA Mensageiro , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Biossíntese de Proteínas , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Humanos , Animais , Camundongos , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo
11.
BMC Infect Dis ; 24(1): 490, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741041

RESUMO

BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.


Assuntos
Fatores de Transcrição Forkhead , MicroRNAs , Toxoplasmose , Animais , Feminino , Camundongos , Gravidez , Regiões 3' não Traduzidas , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Resultado da Gravidez , Linfócitos T Reguladores/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Toxoplasmose/genética , Toxoplasmose/metabolismo
12.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714696

RESUMO

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Assuntos
Astrócitos , Encéfalo , Toxoplasma , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Astrócitos/patologia , Camundongos , Toxoplasma/patogenicidade , Toxoplasma/fisiologia , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Doença Crônica , Polaridade Celular , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia , Toxoplasmose Cerebral/metabolismo
13.
PLoS Pathog ; 20(5): e1012269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814984

RESUMO

Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Toxoplasmose/genética , Estágios do Ciclo de Vida
14.
Nat Commun ; 15(1): 4385, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782906

RESUMO

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Camundongos , Mutação , Ribossomos/metabolismo , Biossíntese de Proteínas , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Diferenciação Celular , Humanos
15.
Cell Syst ; 15(5): 425-444.e9, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703772

RESUMO

The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.


Assuntos
Placenta , Análise de Célula Única , Humanos , Feminino , Gravidez , Placenta/microbiologia , Placenta/imunologia , Análise de Célula Única/métodos , Plasmodium falciparum , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/fisiologia , Toxoplasma/patogenicidade , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Inflamação
16.
Brain Behav Immun ; 119: 394-407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608743

RESUMO

Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Disbiose , Microbioma Gastrointestinal , Hipocampo , Toxoplasma , Toxoplasmose , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/microbiologia , Toxoplasmose/metabolismo , Toxoplasmose/complicações , Disbiose/metabolismo , Humanos , Masculino , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal/métodos , Butiratos/metabolismo , Feminino , Cognição/fisiologia
17.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632598

RESUMO

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Assuntos
Fatores de Transcrição Forkhead , MicroRNAs , Toxoplasma , Animais , Feminino , Camundongos , Gravidez , Regiões 3' não Traduzidas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Placenta/metabolismo , Placenta/parasitologia , Placenta/patologia , PPAR gama/genética , PPAR gama/metabolismo , Transdução de Sinais , Toxoplasma/patogenicidade , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Toxoplasmose/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia
18.
Methods Mol Biol ; 2776: 197-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502506

RESUMO

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Parasitos/metabolismo , Plastídeos/metabolismo , Ácidos Graxos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas de Protozoários/metabolismo
19.
J Immunol ; 212(7): 1161-1171, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372637

RESUMO

Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1ß. We previously showed that IL-1ß release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1ß release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells. Genetic ablation of caspase-1 or -8, but not caspase-4 or -5, decreased IL-1ß release during T. gondii infection without affecting cell death. In contrast, TNF-α and IL-6 secretion were unperturbed in caspase-8 KO cells during T. gondii infection. Dual pharmacological inhibition of caspase-8 and RIPK1 in primary monocytes also decreased IL-1ß release without affecting cell viability or parasite infection. Caspase-8 was also required for the release of active caspase-1 from T. gondii-infected cells and for IL-1ß release during infection with the related apicomplexan parasite Neospora caninum. Surprisingly, caspase-8 deficiency did not impair synthesis or cleavage of pro-IL-1ß, but resulted in the retention of mature IL-1ß within cells. Generation of gasdermin E KO and ATG7 KO THP-1 cells revealed that the release of IL-1ß was not dependent on gasdermin E or ATG7. Collectively, our data indicate that during T. gondii Infection of human monocytes, caspase-8 functions in a novel gasdermin-independent mechanism controlling IL-1ß release from viable cells. This study expands on the molecular pathways that promote IL-1ß in human immune cells and provides evidence of a role for caspase-8 in the mechanism of IL-1ß release during infection.


Assuntos
Caspase 8 , Interleucina-1beta , Toxoplasma , Toxoplasmose , Humanos , Caspase 1/metabolismo , Caspase 8/metabolismo , Gasderminas , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Toxoplasmose/metabolismo
20.
Cytokine ; 177: 156545, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368695

RESUMO

The symptomatology of COVID-19 is dependent on the immune status and the cytokine response of the host. The cytokine level of the host is influenced by the presence of chronic persistent or latent infections with co-pathogens. Parasitic diseases are known to induce host immune-modulation which may impact the response to co-infection. Toxoplasmosis is a widespread protozoal infection that remains quiescent in its latent form to be re-activated during states of immune depression. Clinical data on the relation between toxoplasmosis and COVID-19 cytokine profile and symptomatology are still insufficient. Seventy-nine subjects were included in this study. Patients were diagnosed with COVID-19 by PCR. Serological testing for toxoplasmosis was performed by the detection of anti-Toxoplasma IgG antibodies, in addition to IgG avidity testing. IFN-γ and TNF-α levels were determined by RT-PCR. Among patients diagnosed with COVID-19, 67.1% were seronegative for anti-Toxoplasma IgG, while 32.9% were seropositive. High avidity was found in 10 cases (40% of seropositive cases), 4 of whom required ICU administration, while low avidity was found in 15 cases (60%), 7 of which were administered to the ICU. TNF-α and INF-γ levels were significantly higher in COVID-19 patients than in healthy control subjects. No significant association was found between the seroprevalence of toxoplasmosis and the presence of COVID-19 and its severity. Cytokines were significantly higher in both seropositive and seronegative COVID-19 patients than in their control counterparts. The high prevalence of toxoplasmosis merits further exploration of its relation to COVID-19 by mass studies.


Assuntos
COVID-19 , Coinfecção , SARS-CoV-2 , Toxoplasma , Toxoplasmose , Humanos , Anticorpos Antiprotozoários , Coinfecção/metabolismo , COVID-19/metabolismo , Citocinas , Imunoglobulina G , Gravidade do Paciente , Estudos Soroepidemiológicos , Toxoplasmose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...