Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.253
Filtrar
1.
J Craniofac Surg ; 35(4): 1292-1297, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829148

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) risk correlates with C-reactive protein (CRP) levels, suggesting systemic inflammation is present well before AMI. Studying different types of periodontal disease (PD), extremely common in individuals at risk for AMI, has been one important research topic. According to recent research, AMI and PD interact via the systemic production of certain proinflammatory and anti-inflammatory cytokines, small signal molecules, and enzymes that control the onset and development of both disorders' chronic inflammatory reactions. This study uses machine learning to identify the interactome hub biomarker genes in acute myocardial infarction and periodontitis. METHODS: GSE208194 and GSE222883 were chosen for our research after a thorough search using keywords related to the study's goal from the gene expression omnibus (GEO) datasets. DEGs were identified from the GEOR tool, and the hub gene was identified using Cytoscape-cytohubba. Using expression values, Random Forest, Adaptive Boosting, and Naive Bayes, widgets-generated transcriptomics data, were labelled, and divided into 80/20 training and testing data with cross-validation. ROC curve, confusion matrix, and AUC were determined. In addition, Functional Enrichment Analysis of Differentially Expressed Gene analysis was performed. RESULTS: Random Forest, AdaBoost, and Naive Bayes models with 99%, 100%, and 75% AUC, respectively. Compared to RF, AdaBoost, and NB classification models, AdaBoost had the highest AUC. Categorization algorithms may be better predictors than important biomarkers. CONCLUSIONS: Machine learning model predicts hub and non-hub genes from genomic datasets with periodontitis and acute myocardial infarction.


Assuntos
Aprendizado de Máquina , Infarto do Miocárdio , Periodontite , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Periodontite/genética , Periodontite/metabolismo , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Teorema de Bayes , Transcriptoma/genética
2.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830771

RESUMO

Dengue fever, a neglected tropical arboviral disease, has emerged as a global health concern in the past decade. Necessitating a nuanced comprehension of the intricate dynamics of host-virus interactions influencing disease severity, we analysed transcriptomic patterns using bulk RNA-seq from 112 age- and gender-matched NS1 antigen-confirmed hospital-admitted dengue patients with varying severity. Severe cases exhibited reduced platelet count, increased lymphocytosis, and neutropenia, indicating a dysregulated immune response. Using bulk RNA-seq, our analysis revealed a minimal overlap between the differentially expressed gene and transcript isoform, with a distinct expression pattern across the disease severity. Severe patients showed enrichment in retained intron and nonsense-mediated decay transcript biotypes, suggesting altered splicing efficiency. Furthermore, an up-regulated programmed cell death, a haemolytic response, and an impaired interferon and antiviral response at the transcript level were observed. We also identified the potential involvement of the RBM39 gene among others in the innate immune response during dengue viral pathogenesis, warranting further investigation. These findings provide valuable insights into potential therapeutic targets, underscoring the importance of exploring transcriptomic landscapes between different disease sub-phenotypes in infectious diseases.


Assuntos
Processamento Alternativo , Vírus da Dengue , Dengue Grave , Humanos , Processamento Alternativo/genética , Feminino , Masculino , Vírus da Dengue/genética , Adulto , Dengue Grave/genética , Dengue Grave/imunologia , Dengue Grave/virologia , Pessoa de Meia-Idade , Transcriptoma/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Perfilação da Expressão Gênica/métodos , Imunidade Inata/genética , Dengue/genética , Dengue/imunologia , Dengue/virologia , Adulto Jovem , Índice de Gravidade de Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
3.
BMC Res Notes ; 17(1): 154, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840260

RESUMO

OBJECTIVE: The IPEC-J2 cell line is used as an in vitro small intestine model for swine, but it is also used as a model for the human intestine, presenting a relatively unique setting. By combining electric cell-substrate impedance sensing, with next-generation-sequencing technology, we showed that mRNA gene expression profiles and related pathways can depend on the growth phase of IPEC-J2 cells. Our investigative approach welcomes scientists to reproduce or modify our protocols and endorses putting their gene expression data in the context of the respective growth phase of the cells. RESULTS: Three time points are presented: (TP1) 1 h after medium change (= 6 h after seeding of cells), (TP2) the time point of the first derivative maximum of the cell growth curve, and a third point at the beginning of the plateau phase (TP3). Significantly outstanding at TP1 compared to TP2 was upregulated PLEKHN1, further FOSB and DEGS2 were significantly downregulated at TP2 compared to TP3. Any provided data can be used to improve next-generation experiments with IPEC-J2 cells.


Assuntos
Proliferação de Células , Perfilação da Expressão Gênica , RNA Mensageiro , Animais , Linhagem Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Perfilação da Expressão Gênica/métodos , Proliferação de Células/genética , Intestino Delgado/metabolismo , Intestino Delgado/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Transcriptoma/genética
4.
Hum Genomics ; 18(1): 58, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840185

RESUMO

BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transplante de Fígado , Recidiva Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Transplante de Fígado/efeitos adversos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regulação Neoplásica da Expressão Gênica/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade
5.
J Headache Pain ; 25(1): 94, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840241

RESUMO

BACKGROUND: Migraine is a common neurological disorder with a strong genetic component. Despite the identification of over 100 loci associated with migraine susceptibility through genome-wide association studies (GWAS), the underlying causative genes and biological mechanisms remain predominantly elusive. METHODS: The FinnGen R10 dataset, consisting of 333,711 subjects (20,908 cases and 312,803 controls), was utilized in conjunction with the Genotype-Tissue Expression Project (GTEx) v8 EQTls files to conduct cross-tissue transcriptome association studies (TWAS). Functional Summary-based Imputation (FUSION) was employed to validate these findings in single tissues. Additionally, candidate susceptibility genes were screened using Gene Analysis combined with Multi-marker Analysis of Genomic Annotation (MAGMA). Subsequent Mendelian randomization (MR) and colocalization analyses were conducted. Furthermore, GeneMANIA analysis was employed to enhance our understanding of the functional implications of these susceptibility genes. RESULTS: We identified a total of 19 susceptibility genes associated with migraine in the cross-tissue TWAS analysis. Two novel susceptibility genes, REV1 and SREBF2, were validated through both single tissue TWAS and MAGMA analysis. Mendelian randomization and colocalization analyses further confirmed these findings. REV1 may reduce the migraine risk by regulating DNA damage repair, while SREBF2 may increase the risk of migraine by regulating cholesterol metabolism. CONCLUSION: Our study identified two novel genes whose predicted expression was associated with the risk of migraine, providing new insights into the genetic framework of migraine.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transtornos de Enxaqueca , Transcriptoma , Humanos , Transtornos de Enxaqueca/genética , Predisposição Genética para Doença/genética , Transcriptoma/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 114-121, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836671

RESUMO

Key features of Alzheimer's disease include neuronal loss, accumulation of beta-amyloid plaques, and formation of neurofibrillary tangles. These changes are due in part to abnormal protein metabolism, particularly the accumulation of amyloid beta. Mitochondria are the energy production centers within cells and are also the main source of oxidative stress. In AD, mitochondrial function is impaired, leading to increased oxidative stress and the production of more reactive oxidative substances, further damaging cells. Mitophagy is an important mechanism for maintaining mitochondrial health, helping to clear damaged mitochondria, prevent the spread of oxidative stress, and reduce abnormal protein aggregation. To this end, this article conducts an integrated analysis based on DNA methylation and transcriptome data of AD. After taking the intersection of the genes where the differential methylation sites are located and the differential genes, machine learning methods were used to build an AD diagnostic model. This article screened five diagnostic genes ATG12, CSNK2A2, CSNK2B, MFN1 and PGAM5 and conducted experimental verification. The diagnostic genes discovered and the diagnostic model constructed in this article can provide reference for the development of clinical diagnostic models for AD.


Assuntos
Doença de Alzheimer , Autofagia , Metilação de DNA , Mitocôndrias , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Autofagia/genética , Metilação de DNA/genética , Biomarcadores/metabolismo , Mitofagia/genética , Transcriptoma/genética , Aprendizado de Máquina , Multiômica
7.
Physiol Plant ; 176(1): e14130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842416

RESUMO

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.


Assuntos
Brassica napus , Secas , Regulação da Expressão Gênica de Plantas , Sementes , Estresse Fisiológico , Brassica napus/genética , Brassica napus/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodioforídeos/fisiologia , Transcriptoma/genética
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830769

RESUMO

The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.


Assuntos
Metilação de DNA , Gêmeos Monozigóticos , Cordão Umbilical , Humanos , Gêmeos Monozigóticos/genética , Metilação de DNA/genética , Feminino , Gravidez , Transcriptoma/genética , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Masculino
9.
JAMA Netw Open ; 7(6): e2417274, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38874922

RESUMO

Importance: Although tissue-based gene expression testing has become widely used for prostate cancer risk stratification, its prognostic performance in the setting of clinical care is not well understood. Objective: To develop a linkage between a prostate genomic classifier (GC) and clinical data across payers and sites of care in the US. Design, Setting, and Participants: In this cohort study, clinical and transcriptomic data from clinical use of a prostate GC between 2016 and 2022 were linked with data aggregated from insurance claims, pharmacy records, and electronic health record (EHR) data. Participants were anonymously linked between datasets by deterministic methods through a deidentification engine using encrypted tokens. Algorithms were developed and refined for identifying prostate cancer diagnoses, treatment timing, and clinical outcomes using diagnosis codes, Common Procedural Terminology codes, pharmacy codes, Systematized Medical Nomenclature for Medicine clinical terms, and unstructured text in the EHR. Data analysis was performed from January 2023 to January 2024. Exposure: Diagnosis of prostate cancer. Main Outcomes and Measures: The primary outcomes were biochemical recurrence and development of prostate cancer metastases after diagnosis or radical prostatectomy (RP). The sensitivity of the linkage and identification algorithms for clinical and administrative data were calculated relative to clinical and pathological information obtained during the GC testing process as the reference standard. Results: A total of 92 976 of 95 578 (97.2%) participants who underwent prostate GC testing were successfully linked to administrative and clinical data, including 53 871 who underwent biopsy testing and 39 105 who underwent RP testing. The median (IQR) age at GC testing was 66.4 (61.0-71.0) years. The sensitivity of the EHR linkage data for prostate cancer diagnoses was 85.0% (95% CI, 84.7%-85.2%), including 80.8% (95% CI, 80.4%-81.1%) for biopsy-tested participants and 90.8% (95% CI, 90.5%-91.0%) for RP-tested participants. Year of treatment was concordant in 97.9% (95% CI, 97.7%-98.1%) of those undergoing GC testing at RP, and 86.0% (95% CI, 85.6%-86.4%) among participants undergoing biopsy testing. The sensitivity of the linkage was 48.6% (95% CI, 48.1%-49.1%) for identifying RP and 50.1% (95% CI, 49.7%-50.5%) for identifying prostate biopsy. Conclusions and Relevance: This study established a national-scale linkage of transcriptomic and longitudinal clinical data yielding high accuracy for identifying key clinical junctures, including diagnosis, treatment, and early cancer outcome. This resource can be leveraged to enhance understandings of disease biology, patterns of care, and treatment effectiveness.


Assuntos
Neoplasias da Próstata , Transcriptoma , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Pessoa de Meia-Idade , Idoso , Transcriptoma/genética , Registros Eletrônicos de Saúde/estatística & dados numéricos , Estudos de Coortes , Estudos Longitudinais , Prostatectomia , Armazenamento e Recuperação da Informação , Algoritmos
10.
Med Sci Monit ; 30: e943369, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877693

RESUMO

BACKGROUND Osteoarthritis (OA) is a chronic degenerative disease characterized by synovitis and has been implicated in sphingolipid metabolism disorder. However, the role of sphingolipid metabolism pathway (SMP)-related genes in the occurrence of OA and synovial immune dysregulation remains unclear. MATERIAL AND METHODS In this study, we obtained synovium-related databases from GEO (n=40 for both healthy controls and OA) and analyzed the expression levels of SMP-related genes. Using 2 algorithms, we identified hub genes and developed a diagnostic model incorporating these hub genes to predict the occurrence of OA. Subsequently, the hub genes were further validated in peripheral blood samples from OA patients. Additionally, CIBERSORT and MCP-counter analyses were employed to explore the correlation between hub genes and immune dysregulation in OA synovium. WGCNA was used to determine enriched modules in different clusters. RESULTS Overall, the expression levels of SMP genes were upregulated in OA synovium. We identified 6 hub genes of SMP and constructed an excellent diagnostic model (AUC=0.976). The expression of re-confirmed hub genes showed associations with immune-related cell infiltration and levels of inflammatory cytokines. Furthermore, we observed heterogeneity in the expression patterns of hub genes across different clusters of OA. Notably, older patients displayed increased susceptibility to elevated levels of pain-related inflammatory cytokines and infiltration of immune cells. CONCLUSIONS The SMP-related hub genes have the potential to serve as diagnostic markers for OA patients. Moreover, the 4 hub genes of SMP demonstrate wide participation in immune dysregulation in OA synovium. The activation of different pathways is observed among different populations of patients with OA.


Assuntos
Osteoartrite , Esfingolipídeos , Membrana Sinovial , Humanos , Membrana Sinovial/metabolismo , Osteoartrite/genética , Osteoartrite/diagnóstico , Osteoartrite/metabolismo , Osteoartrite/imunologia , Esfingolipídeos/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Masculino , Feminino , Transcriptoma/genética , Bases de Dados Genéticas , Pessoa de Meia-Idade , Estudos de Casos e Controles
11.
J Vis Exp ; (207)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38829108

RESUMO

Many sex-specific biomarkers have been recently revealed in Alzheimer's disease (AD); however, cerebral glial cells were rarely reported. This study analyzed 220,095 single-nuclei transcriptomes from the frontal cortex of thirty-three AD individuals in the GEO database. Sex-specific Differentially Expressed Genes (DEGs) were identified in glial cells, including 243 in astrocytes, 1,154 in microglia, and 572 in oligodendrocytes. Gene Ontology (GO) functional annotation analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed functional concentration in synaptic, neural, and hormone-related pathways. Protein-protein interaction network (PPI) identified MT3, CALM2, DLG2, KCND2, PAKACB, CAMK2D, and NLGN4Y in astrocytes, TREM2, FOS, APOE, APP, and NLGN4Y in microglia, and GRIN2A, ITPR2, GNAS, and NLGN4Y in oligodendrocytes as key genes. NLGN4Y was the only gene shared by the three glia and was identified as the biomarker for the gender specificity of AD. Gene-transcription factor (TF)-miRNA coregulatory network identified key regulators for NLGN4Y and its target TCMs. Ecklonia kurome Okam (Kunbu) and Herba Ephedrae (Mahuang) were identified, and the effects of the active ingredients on AD were displayed. Finally, enrichment analysis of Kunbu and Mahuang suggested that they might act as therapeutic candidates for gender specificity of AD.


Assuntos
Doença de Alzheimer , Neuroglia , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Transcriptoma/genética , Feminino , Neuroglia/metabolismo , Masculino , Biomarcadores/metabolismo , Biomarcadores/análise
12.
Nat Commun ; 15(1): 4881, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849358

RESUMO

N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.


Assuntos
Adenosina , Arabidopsis , Regulação da Expressão Gênica de Plantas , Oryza , RNA Mensageiro , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regiões 3' não Traduzidas/genética , Perfilação da Expressão Gênica/métodos , Estabilidade de RNA/genética , Éxons/genética , Códon de Terminação/genética
13.
Cell Mol Neurobiol ; 44(1): 50, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856921

RESUMO

In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.


Assuntos
Bibliometria , Transcriptoma , Humanos , Transcriptoma/genética , Publicações , Animais
14.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848676

RESUMO

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Assuntos
Modelos Biológicos , Neoplasias , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/genética , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Análise de Célula Única , Transcriptoma/genética , Células-Tronco Neoplásicas/patologia
15.
Nat Commun ; 15(1): 4950, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862496

RESUMO

The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We perform long-read, direct RNA nanopore sequencing, as well as Ultima high-coverage RNA-sequencing, of whole blood sampled longitudinally from four SpaceX Inspiration4 astronauts at seven timepoints, spanning pre-flight, day of return, and post-flight recovery. We report key genetic pathways, including changes in erythrocyte regulation, stress induction, and immune changes affected by spaceflight. We also present the first m6A methylation profiles for a human space mission, suggesting a significant spike in m6A levels immediately post-flight. These data and results represent the first longitudinal long-read RNA profiles and RNA modification maps for each gene for astronauts, improving our understanding of the human transcriptome's dynamic response to spaceflight.


Assuntos
Astronautas , Análise de Sequência de RNA , Voo Espacial , Humanos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Ausência de Peso , Masculino , Hematopoese/genética , Sequenciamento por Nanoporos/métodos , Adulto , RNA/genética , RNA/sangue , Metilação , Pessoa de Meia-Idade
16.
Plant Cell Rep ; 43(7): 169, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864921

RESUMO

KEY MESSAGE: The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Glycine max , Nodulação , Raízes de Plantas , Silício , Fatores de Transcrição , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Silício/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
17.
Nat Commun ; 15(1): 5001, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866741

RESUMO

Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.


Assuntos
Genômica , Gryllidae , Animais , Gryllidae/genética , Gryllidae/fisiologia , Masculino , Genômica/métodos , Havaí , Adaptação Fisiológica/genética , Desequilíbrio de Ligação , Genoma de Inseto , Evolução Biológica , Feminino , Mutação , Seleção Genética , Evolução Molecular , Transcriptoma/genética
18.
BMC Bioinformatics ; 25(1): 209, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867193

RESUMO

BACKGROUND: Single-cell RNA sequencing (sc-RNASeq) data illuminate transcriptomic heterogeneity but also possess a high level of noise, abundant missing entries and sometimes inadequate or no cell type annotations at all. Bulk-level gene expression data lack direct information of cell population composition but are more robust and complete and often better annotated. We propose a modeling framework to integrate bulk-level and single-cell RNASeq data to address the deficiencies and leverage the mutual strengths of each type of data and enable a more comprehensive inference of their transcriptomic heterogeneity. Contrary to the standard approaches of factorizing the bulk-level data with one algorithm and (for some methods) treating single-cell RNASeq data as references to decompose bulk-level data, we employed multiple deconvolution algorithms to factorize the bulk-level data, constructed the probabilistic graphical models of cell-level gene expressions from the decomposition outcomes, and compared the log-likelihood scores of these models in single-cell data. We term this framework backward deconvolution as inference operates from coarse-grained bulk-level data to fine-grained single-cell data. As the abundant missing entries in sc-RNASeq data have a significant effect on log-likelihood scores, we also developed a criterion for inclusion or exclusion of zero entries in log-likelihood score computation. RESULTS: We selected nine deconvolution algorithms and validated backward deconvolution in five datasets. In the in-silico mixtures of mouse sc-RNASeq data, the log-likelihood scores of the deconvolution algorithms were strongly anticorrelated with their errors of mixture coefficients and cell type specific gene expression signatures. In the true bulk-level mouse data, the sample mixture coefficients were unknown but the log-likelihood scores were strongly correlated with accuracy rates of inferred cell types. In the data of autism spectrum disorder (ASD) and normal controls, we found that ASD brains possessed higher fractions of astrocytes and lower fractions of NRGN-expressing neurons than normal controls. In datasets of breast cancer and low-grade gliomas (LGG), we compared the log-likelihood scores of three simple hypotheses about the gene expression patterns of the cell types underlying the tumor subtypes. The model that tumors of each subtype were dominated by one cell type persistently outperformed an alternative model that each cell type had elevated expression in one gene group and tumors were mixtures of those cell types. Superiority of the former model is also supported by comparing the real breast cancer sc-RNASeq clusters with those generated by simulated sc-RNASeq data. CONCLUSIONS: The results indicate that backward deconvolution serves as a sensible model selection tool for deconvolution algorithms and facilitates discerning hypotheses about cell type compositions underlying heterogeneous specimens such as tumors.


Assuntos
Algoritmos , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Humanos , Perfilação da Expressão Gênica/métodos , Animais , Camundongos , Análise da Expressão Gênica de Célula Única
19.
J Transl Med ; 22(1): 560, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867219

RESUMO

BACKGROUND: Cardiac fibrosis after myocardial infarction (MI) has been considered an important part of cardiac pathological remodeling. Immune cells, especially macrophages, are thought to be involved in the process of fibrosis and constitute a niche with fibroblasts to promote fibrosis. However, the diversity and variability of fibroblasts and macrophages make it difficult to accurately depict interconnections. METHODS: We collected and reanalyzed scRNA-seq and snRNA-seq datasets from 12 different studies. Differentiation trajectories of these subpopulations after MI injury were analyzed by using scVelo, PAGA and Slingshot. We used CellphoneDB and NicheNet to infer fibroblast-macrophage interactions. Tissue immunofluorescence staining and in vitro experiments were used to validate our findings. RESULTS: We discovered two subsets of ECM-producing fibroblasts, reparative cardiac fibroblasts (RCFs) and matrifibrocytes, which appeared at different times after MI and exhibited different transcriptional profiles. We also observed that CTHRC1+ fibroblasts represent an activated fibroblast in chronic disease states. We identified a macrophage subset expressing the genes signature of SAMs conserved in both human and mouse hearts. Meanwhile, the SPP1hi macrophages were predominantly found in the early stages after MI, and cell communication analysis indicated that SPP1hi macrophage-RCFs interactions are mainly involved in collagen deposition and scar formation. CONCLUSIONS: Overall, this study comprehensively analyzed the dynamics of fibroblast and macrophage subsets after MI and identified specific subsets of fibroblasts and macrophages involved in scar formation and collagen deposition.


Assuntos
Fibroblastos , Macrófagos , Infarto do Miocárdio , Análise de Célula Única , Transcriptoma , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Macrófagos/metabolismo , Animais , Transcriptoma/genética , Humanos , Comunicação Celular , Camundongos , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica
20.
J Transl Med ; 22(1): 563, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867230

RESUMO

In recent years, single-cell analyses have revealed the heterogeneity of the tumour microenvironment (TME) at the genomic, transcriptomic, and proteomic levels, further improving our understanding of the mechanisms of tumour development. Single-cell RNA sequencing (scRNA-seq) technology allow analysis of the transcriptome at the single-cell level and have unprecedented potential for exploration of the characteristics involved in tumour development and progression. These techniques allow analysis of transcript sequences at higher resolution, thereby increasing our understanding of the diversity of cells found in the tumour microenvironment and how these cells interact in complex tumour tissue. Although scRNA-seq has emerged as an important tool for studying the tumour microenvironment in recent years, it cannot be used to analyse spatial information for cells. In this regard, spatial transcriptomics (ST) approaches allow researchers to understand the functions of individual cells in complex multicellular organisms by understanding their physical location in tissue sections. In particular, in related research on tumour heterogeneity, ST is an excellent complementary approach to scRNA-seq, constituting a new method for further exploration of tumour heterogeneity, and this approach can also provide unprecedented insight into the development of treatments for pancreatic cancer (PC). In this review, based on the methods of scRNA-seq and ST analyses, research progress on the tumour microenvironment and treatment of pancreatic cancer is further explained.


Assuntos
Neoplasias Pancreáticas , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Microambiente Tumoral/genética , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transcriptoma/genética , Perfilação da Expressão Gênica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA