Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.701
Filtrar
1.
Curr Protoc ; 4(9): e70014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240247

RESUMO

Candida glabrata (Nakaseomyces glabratus) is an opportunistic fungal pathogen that has become a significant concern in clinical settings due to its increasing resistance to antifungal treatments. Understanding the genetic basis of its pathogenicity and resistance mechanisms is crucial for developing new therapeutic strategies. One powerful method of studying gene function is through targeted gene deletion. This paper outlines a comprehensive protocol for the deletion of genes in C. glabrata, encompassing primer design, preparation of electrocompetent cells, transformation, and finally confirmation of the gene deletion. The protocol begins with the identification and design of primers necessary for generating deletion constructs, involving the precise targeting of up- and downstream regions flanking the gene of interest to ensure high specificity and efficiency of homologous recombination. Followed is the preparation of electrocompetent cells, a critical step for successful transformation. Transformation of the competent cells is achieved through electroporation, facilitating the introduction of exogenous DNA into the cells. This is followed by the selection and confirmation of successfully transformed colonies. Confirmation involves the use of colony PCR to verify the correct integration of the NAT resistance cassette and deletion of the target gene. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Primer design for gene deletion in C. glabrata Basic Protocol 2: Preparing competent C. glabrata cells Basic Protocol 3: Transforming C. glabrata using electroporation Basic Protocol 4: Confirming deletion strains with colony PCR.


Assuntos
Candida glabrata , Deleção de Genes , Candida glabrata/genética , Candida glabrata/patogenicidade , Eletroporação , Transformação Genética , Recombinação Homóloga , Primers do DNA/genética
2.
PLoS One ; 19(9): e0306158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39255283

RESUMO

Plasmid-mediated DNA transformation is a foundational molecular technique and the basis for most CRISPR-Cas9 gene editing systems. While plasmid transformations are well established for many agricultural Phytophthora pathogens, development of this technique in forest Phytophthoras is lacking. Given our long-term research objective to develop CRISPR-Cas9 gene editing in a forest pathogenic Phytophthora species, we sought to establish the functionality of polyethylene glycol (PEG)-mediated plasmid transformation in five species: P. cactorum, P. cinnamomi, P. cryptogea, P. ramorum, and P. syringae. We used the agricultural pathogen P. sojae, a species for which PEG-mediated transformations are well-established, as a transformation control. Using a protocol previously optimized for P. sojae, we tested transformations in the five forest Phytophthoras with three different plasmids: two developed for CRISPR-Cas9 gene editing and one developed for fluorescent protein tagging. Out of the five species tested, successful transformation, as indicated by stable growth of transformants on a high concentration of antibiotic selective growth medium and diagnostic PCR, was achieved only with P. cactorum and P. ramorum. However, while transformations in P. cactorum were consistent and stable, transformations in P. ramorum were highly variable and yielded transformants with very weak mycelial growth and abnormal morphology. Our results indicate that P. cactorum is the best candidate to move forward with CRISPR-Cas9 protocol development and provide insight for future optimization of plasmid transformations in forest Phytophthoras.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Phytophthora , Plasmídeos , Polietilenoglicóis , Transformação Genética , Phytophthora/genética , Phytophthora/patogenicidade , Plasmídeos/genética , Polietilenoglicóis/farmacologia , Edição de Genes/métodos , Florestas , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia
3.
Mol Plant Pathol ; 25(9): e70006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39267531

RESUMO

The pathogen Agrobacterium tumefaciens is known for causing crown gall tumours in plants. However, it has also been harnessed as a valuable tool for plant genetic transformation. Apart from the T-DNA, Agrobacterium also delivers at least five virulence proteins into the host plant cells, which are required for an efficient infection. One of these virulence proteins is VirD5. F-box proteins, encoded in the host plant genome or the Ti plasmid, and the ubiquitin/26S proteasome system (UPS) also play an important role in facilitating Agrobacterium infection. Our study identified two Arabidopsis F-box proteins, D5BF1 and D5BF2, that bind VirD5 and facilitate its degradation via the UPS. Additionally, we found that Agrobacterium partially suppresses the expression of D5BF1 and D5BF2. Lastly, stable transformation and tumorigenesis efficiency assays revealed that D5BF1 and D5BF2 negatively regulate the Agrobacterium infection process, showing that the plant F-box proteins and UPS play a role in defending against Agrobacterium infection.


Assuntos
Agrobacterium tumefaciens , Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Transformação Genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidade , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Carcinogênese/genética , Tumores de Planta/microbiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação da Expressão Gênica de Plantas
4.
PLoS One ; 19(9): e0307706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39264978

RESUMO

Soybean is one of the most important food crops, breeding salt-tolerant soybean varieties is of great significance to alleviate soybean shortage. In this study, the F-box protein family homologous gene GmFBX322 was cloned from the soybean variety Williams 82 and overexpressed in the Shennong 9 soybean variety to further study and explore the physiological mechanism of soybean salt tolerance. GmFBX322 was constructed on the vector pTF101:35S, and integrated into the genome of Shennong 9 soybean variety by Agrobacterium EHA101-mediated cotyledonary node transformation technology, and 4 overexpressed transgenic lines were obtained, molecular assays were performed on the transformed plants. The expression of GmFBX322 was detected by qRT-PCR and it was found that the leaves of the 4 transgenic lines increased by 2.49, 2.46, 2.77, 2.95 times compared with the wild type; after salt treatment for 12 hours, it was found that the expression of wild type Shennong 9 Inducible expression of GmFBX322. After 72 hours of salt treatment, the leaves of wild-type Shennong 9 soybean plants showed obvious wilting and chlorosis, while the leaves of GmFBX322 plants overexpressing GmFBX322 showed no obvious changes. The leaves were taken at 0, 6, 12, 24, and 48 hours of salt stress to determine the antioxidant activity. Ability and osmotic adjustment level, etc. The results showed that the catalase activity in the leaves of the transgenic lines 2265, 2267, 2269, and 2271 was 2.47, 2.53, 3.59, 2.96 times that of the wild-type plant after 48 hours of salt treatment; the soluble sugar content was 1.22, 1.14, and 1.22 of the wild-type plant. 1.14, 1.57 times; the proline content is 2.20, 1.83, 1.65, 1.84 times of the wild type. After comparing the physiological indicators determined by the experiment, the transgenic lines performed better than the control group, indicating that overexpression of GmFBX322 can enhance the salt tolerance of soybean plants. To verify the function of GmFBX322 gene related to stress resistance, add it to the candidate gene of stress resistance, and provide scientific basis for the selection and breeding of salt-tolerant varieties.


Assuntos
Glycine max , Plantas Geneticamente Modificadas , Tolerância ao Sal , Transformação Genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
PLoS One ; 19(9): e0306008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292669

RESUMO

Genetic modification of plants fundamentally relies upon customized vector designs. The ever-increasing complexity of transgenic constructs has led to increased adoption of modular cloning systems for their ease of use, cost effectiveness, and rapid prototyping. GreenGate is a modular cloning system catered specifically to designing bespoke, single transcriptional unit vectors for plant transformation-which is also its greatest flaw. MultiGreen seeks to address GreenGate's limitations while maintaining the syntax of the original GreenGate kit. The primary limitations MultiGreen addresses are 1) multiplexing in series, 2) multiplexing in parallel, and 3) repeated cycling of transcriptional unit assembly through binary intermediates. MultiGreen efficiently concatenates bespoke transcriptional units using an additional suite of level 1acceptor vectors which serve as an assembly point for individual transcriptional units prior to final, level 2, condensation of multiple transcriptional units. Assembly with MultiGreen level 1 vectors scales at a maximal rate of 2*⌈log6n⌉+3 days per assembly, where n represents the number of transcriptional units. Further, MultiGreen level 1 acceptor vectors are binary vectors and can be used directly for plant transformation to further maximize prototyping speed. MultiGreen is a 1:1 expansion of the original GreenGate architecture's grammar and has been demonstrated to efficiently assemble plasmids with multiple transcriptional units. MultiGreen has been validated by using a truncated violacein operon from Chromobacterium violaceum in bacteria and by deconstructing the RUBY reporter for in planta functional validation. MultiGreen currently supports many of our in-house multi transcriptional unit assemblies and will be a valuable strategy for more complex cloning projects.


Assuntos
Clonagem Molecular , Vetores Genéticos , Clonagem Molecular/métodos , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética
6.
J Nanobiotechnology ; 22(1): 494, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160572

RESUMO

BACKGROUND: Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies. RESULTS: Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl3 and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1. CONCLUSIONS: Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.


Assuntos
Ascomicetos , Nanopartículas , Transformação Genética , Ascomicetos/genética , Nanopartículas/química , Pirimidinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196386

RESUMO

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Assuntos
Agrobacterium tumefaciens , Penicillium , Transformação Genética , Penicillium/genética , Penicillium/patogenicidade , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidade , Citrus/microbiologia , Virulência/genética , Mutação , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , DNA Bacteriano/genética , Mutagênese Insercional , Genes Fúngicos/genética
8.
Theor Appl Genet ; 137(9): 200, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122841

RESUMO

KEY MESSAGE: A stable Agrobacterium-mediated transformation system was constructed for B. juncea, and BjuLKP2 was overexpressed, leading to plant yellowing. A stable and efficient transformation system is necessary to verify gene functions in plants. To establish an Agrobacterium-mediated transformation system for B. juncea, various factors, including the explant types, hormone combination and concentration, infection time and concentration, were optimized. Eventually, a reliable system was established, and two BjuLKP2 overexpression (OE) lines, which displayed yellowing of cotyledons, shoot tips, leaves and flower buds, as well as a decrease in total chlorophyll content, were generated. qRT-PCR assays revealed significant upregulation of five chlorophyll synthesis genes and downregulation of one gene in the BjuLKP2 OE line. Furthermore, antioxidant capacity assays revealed reduced activities of APX, CAT and SOD, while POD activity increased in the BjuLKP2 OE26. Additionally, the kinetic determination of chlorophyll fluorescence induction suggested a decrease in the photosynthetic ability of BjuLKP2 OE26. GUS assays revealed the expression of BjuLKP2 in various tissues, including the roots, hypocotyls, cotyledons, leaf vasculature, trichomes, sepals, petals, filaments, styles and stigma bases, but not in seeds. Scanning electron revealed alterations in chloroplast ultrastructure in both the sponge and palisade tissue. Collectively, these findings indicate that BjuLKP2 plays a role in plant yellowing through a reduction in chlorophyll content and changes in chloroplasts structure.


Assuntos
Clorofila , Regulação da Expressão Gênica de Plantas , Mostardeira , Agrobacterium/genética , Clorofila/metabolismo , Mostardeira/genética , Fotossíntese , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética
9.
Plant Sci ; 348: 112209, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39098395

RESUMO

Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in e.g. European Union and Japan. In the current study, offspring lines (A11 and B3) of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus) were randomly selected to characterize the morphological traits, and analyze the implications of such morphological changes on plant drought resilience. It was found that the introduction of Ri-genes altered the biomass partitioning to above- and under-ground parts of oilseed rape plants. Compared to the wild type (WT), the A11 and B3 lines exhibited 1.2-4.0 folds lower leaf and stem dry weight, leaf area and plant height, but had 1.3-5.8 folds greater root dry weight, root length and root surface area, resulting in a significantly enhanced root: shoot dry mass ratio and root surface area: leaf area ratio. In addition, the introduction of Ri-genes conferred reduced stomatal pore aperture and increased stomatal density in the B3 line, and increased leaf thickness in A11 line, which could benefit plant drought resilience. Finally, the modulations in morphological traits as a consequence of transformation with Ri-genes are discussed concerning resilience in water-limited conditions. These findings reveal the potential of natural transformation with R. rhizogenes for drought-targeted breeding in crops.


Assuntos
Brassica napus , Raízes de Plantas , Brassica napus/genética , Brassica napus/microbiologia , Brassica napus/fisiologia , Brassica napus/anatomia & histologia , Raízes de Plantas/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Agrobacterium/fisiologia , Agrobacterium/genética , Plantas Geneticamente Modificadas/genética , Secas , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética , Transformação Genética
10.
Sci Rep ; 14(1): 19357, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169119

RESUMO

In recent decades an extensive mortality and decline of Quercus suber populations mainly caused by Phytophthora cinnamomi has been observed. In the current study, a chestnut gene homologous to ginkbilobin-2 (Cast_Gnk2-like), which in Ginkgo biloba codifies an antifungal protein, was transferred into cork oak somatic embryos of three different embryogenic lines by Agrobacterium mediated transformation. The transformation efficiency varied on the genotype from 2.5 to 9.2%, and a total of 22 independent transformed lines were obtained. The presence of Cast_Gnk2-like gene in transgenic embryos was verified in all lines by PCR. The number of transgene copies was estimated by qPCR in embryogenic lines with high proliferation ability and it varied between 1 and 5. In addition, the expression levels of Cast_Gnk2-like gene were determined in the embryogenic lines, with higher levels in lines derived from the genotype ALM6-WT. Transgenic plants were obtained from all transgenic lines and evaluated after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In vitro tolerance tests made under controlled conditions and following zoospore treatment showed that plants overexpressing Cast_Gnk2-like gene improved tolerance against Pc when compared to wild type ones.


Assuntos
Phytophthora , Doenças das Plantas , Plantas Geneticamente Modificadas , Quercus , Phytophthora/genética , Quercus/genética , Quercus/microbiologia , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Sementes/genética , Resistência à Doença/genética , Transformação Genética
11.
Plant Cell Rep ; 43(9): 223, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196398

RESUMO

KEY MESSAGE: Natural transformation with R. rhizogenes enhances osmotic stress tolerance in oilseed rape through increasing osmoregulation capacity, enhancing maintenance of hydraulic integrity and total antioxidant capacity. Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in, e.g., European Union and Japan. In this study, offspring lines of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus), i.e., A11 and B3 (termed root-inducing (Ri) lines), were investigated for osmotic stress resilience. Under polyethylene glycol 6000 (PEG) 10% (w/v)-induced osmotic stress, the Ri lines, particularly A11, had less severe leaf wilting, higher stomatal conductance (8.2 times more than WT), and a stable leaf transpiration rate (about 2.9 mmol m-2 s-1). Although the leaf relative water content and leaf water potential responded similarly to PEG treatment between the Ri lines and WT, a significant reduction of the turgid weight to dry weight ratio in A11 and B3 indicated a greater capacity of osmoregulation in the Ri lines. Moreover, the upregulation of plasma membrane intrinsic proteins genes (PIPs) in roots and downregulation of these genes in leaves of the Ri lines implied a better maintenance of hydraulic integrity in relation to the WT. Furthermore, the Ri lines had greater total antioxidant capacity (TAC) than the WT under PEG stress. Collectively, the enhanced tolerance of the Ri lines to PEG-induced osmotic stress could be attributed to the greater osmoregulation capacity, better maintenance of hydraulic integrity, and greater TAC than the WT. In addition, Ri-genes (particularly rolA and rolD) play roles in response to osmotic stress in Ri oilseed rape. This study reveals the potential of R. rhizogenes transformation for application in plant drought resilience.


Assuntos
Brassica napus , Pressão Osmótica , Folhas de Planta , Raízes de Plantas , Brassica napus/genética , Brassica napus/fisiologia , Brassica napus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Agrobacterium/genética , Agrobacterium/fisiologia , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Polietilenoglicóis/farmacologia , Antioxidantes/metabolismo , Osmorregulação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transformação Genética , Água/metabolismo
12.
Methods Mol Biol ; 2841: 157-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115774

RESUMO

Agrobacterium-mediated transient expression is a flexible and efficient technique for introducing genes into plants, allowing for rapid and temporary gene expression. Agroinfiltration of Arabidopsis seedlings is a newly developed Agrobacterium-based transient expression system. The expression of target genes and the localization of relevant proteins can be observed within 3 days using this method. In this chapter, we present the detailed protocol for transient transformation in Arabidopsis thaliana seedlings utilizing vacuum infiltration of Agrobacterium. This procedure enables rapid and temporary gene expression by introducing exogenous DNA into Arabidopsis seedlings, particularly in easily accessible tissues such as cotyledons. This protocol provides a detailed description of experimental procedures, including Arabidopsis seedlings cultivation, the preparation of Agrobacterium suspensions, and subsequent steps leading to confocal microscope observation. Through this protocol, researchers can efficiently investigate gene function and subcellular localization in Arabidopsis cotyledons within 8 days in total.


Assuntos
Arabidopsis , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Vácuo , Cotilédone/genética , Cotilédone/metabolismo , Transformação Genética , Expressão Gênica , Plantas Geneticamente Modificadas/genética , Agrobacterium/genética , Regulação da Expressão Gênica de Plantas , Microscopia Confocal
13.
Genes (Basel) ; 15(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39202378

RESUMO

Capsicum annuum L. is extensively cultivated in subtropical and temperate regions globally, respectively, when grown in a medium with 8 holding significant economic importance. Despite the availability of genome sequences and editing tools, gene editing in peppers is limited by the lack of a stable regeneration and transformation method. This study assessed regeneration and transformation protocols in seven chili pepper varieties, including CM334, Zunla-1, Zhongjiao6 (ZJ6), 0818, 0819, 297, and 348, in order to enhance genetic improvement efforts. Several explants, media compositions, and hormonal combinations were systematically evaluated to optimize the in vitro regeneration process across different chili pepper varieties. The optimal concentrations for shoot formation, shoot elongation, and rooting in regeneration experiments were determined as 5 mg/L of 6-Benzylaminopurine (BAP) with 5 mg/L of silver nitrate (AgNO3), 0.5 mg/L of Gibberellic acid (GA3), and 1 mg/L of Indole-3-butyric acid (IBA), respectively. The highest regeneration rate of 41% was observed from CM334 cotyledon explants. Transformation optimization established 300 mg/L of cefotaxime for bacterial control, with a 72-h co-cultivation period at OD600 = 0.1. This study optimizes the protocols for chili pepper regeneration and transformation, thereby contributing to genetic improvement efforts.


Assuntos
Capsicum , Regeneração , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Regeneração/genética , Regeneração/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Transformação Genética , Giberelinas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Compostos de Benzil , Purinas/farmacologia , Edição de Genes/métodos , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/efeitos dos fármacos , Melhoramento Vegetal/métodos , Indóis
14.
Genes (Basel) ; 15(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39202450

RESUMO

The genus Selaginella holds a key phylogenetic position as a sister species to vascular plants, encompassing desiccation-tolerant members. Some Selaginella species thrive in extremely arid conditions, enduring significant water loss and recovering upon rehydration. Consequently, Selaginella has emerged as a model system for studying desiccation tolerance in plant science. However, the absence of an efficient genetic transformation system has limited the utility of Selaginella species as a model. To address this constraint, we developed a nanoparticle-mediated transformation tool utilizing arginine-functionalized nanohydroxyapatites. This biocompatible system enabled the transient expression of the GFP, GUS, and eYGFPuv reporter genes in Selaginella moellendorffii. Establishing a stable genetic transformation technique for S. moellendorffii holds promise for application to other Selaginella species. This tool could be instrumental in identifying genetic resources for crop improvement and understanding genome-level regulatory mechanisms governing desiccation tolerance in Selaginella species. Furthermore, this tool might aid in identifying key regulatory genes associated with desiccation tolerance, offering potential applications in enhancing drought-sensitive crops and ensuring sustainable food production.


Assuntos
Nanopartículas , Selaginellaceae , Transformação Genética , Selaginellaceae/genética , Plantas Geneticamente Modificadas/genética
15.
BMC Plant Biol ; 24(1): 665, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997669

RESUMO

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.


Assuntos
Arabidopsis , Marcação de Genes , Arabidopsis/genética , Marcação de Genes/métodos , Transformação Genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Plantas Geneticamente Modificadas/genética
16.
Methods Mol Biol ; 2827: 207-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985273

RESUMO

In this chapter, we report advances in tissue culture applied to Passiflora. We present reproducible protocols for somatic embryogenesis, endosperm-derived triploid production, and genetic transformation for such species knowledge generated by our research team and collaborators in the last 20 years. Our research group has pioneered the work on passion fruit somatic embryogenesis, and we directed efforts to characterize several aspects of this morphogenic pathway. Furthermore, we expanded the possibilities of understanding the molecular mechanism related to developmental phase transitions of Passiflora edulis Sims. and P. cincinnata Mast., and a transformation protocol is presented for the overexpression of microRNA156.


Assuntos
Passiflora , Técnicas de Embriogênese Somática de Plantas , Técnicas de Cultura de Tecidos , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Transformação Genética , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
17.
Methods Mol Biol ; 2827: 223-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985274

RESUMO

Over the years, our team has dedicated significant efforts to studying a unique natural dye-producing species, annatto (Bixa orellana L.). We have amassed knowledge and established foundations that support the applications of gene expression analysis in comprehending in vitro morphogenic regeneration processes, phase transition aspects, and bixin biosynthesis. Additionally, we have conducted gene editing associated with these processes. The advancements in this field are expected to enhance breeding practices and contribute to the overall improvement of this significant woody species. Here, we present a step-by-step protocol based on somatic embryogenesis and an optimized transformation protocol utilizing Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens , Bixaceae , Transformação Genética , Agrobacterium tumefaciens/genética , Bixaceae/genética , Bixaceae/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Embriogênese Somática de Plantas/métodos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
Methods Mol Biol ; 2827: 279-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985277

RESUMO

This chapter presents an efficient protocol for regenerating Carica papaya plants via somatic embryogenesis from immature zygotic embryos from economically important papaya genotypes. To achieve regenerated plants from somatic embryos, in the present protocol, four induction cycles are required, followed by one multiplication cycle and one regeneration cycle. With this optimized protocol, 80% of somatic embryos can be obtained in only 3.5 months. At this stage, calli containing more than 50% globular structures can be used for transformation (via agrobacterium, biobalistics, or any other transformation method). Once transformed, calli can be transferred to the following steps (multiplication, elongation, maturation, rooting, and ex vitro acclimatization) to regenerate a transformed somatic embryo-derived full plant.


Assuntos
Carica , Genótipo , Técnicas de Embriogênese Somática de Plantas , Carica/genética , Carica/embriologia , Técnicas de Embriogênese Somática de Plantas/métodos , Transformação Genética , Plantas Geneticamente Modificadas/genética , Regeneração/genética , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Methods Mol Biol ; 2827: 385-404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985284

RESUMO

Abiotic environmental stressors cause various types of damage to plants and cause significant loss in yield. Abiotic stress tolerance in plants refers to the ability to withstand environmental factors and maintain growth, development, and production. Since this tolerance is controlled by a gene or a set of genes, transgenic activating of these genes in plants often enhances tolerance under abiotic stress. Therefore, this methodology chapter describes a strategy and the corresponding protocols needed to induce a gene by an abiotic stressor, clone the corresponding cDNA into plasmids and Agrobacterium cells, and genetic transformation to the Arabidopsis plants using the floral dip method. The chapter also describes standard assays to evaluate the transgene's effect on the plant's tolerance. Finally, the techniques outlined in this chapter for cloning and generating transgenic plants tolerant to abiotic stress are a versatile approach that can be implemented across various plant species and genes.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arabidopsis/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética
20.
J Microbiol Methods ; 224: 106989, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996925

RESUMO

Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.


Assuntos
Agrobacterium tumefaciens , Aspergillus niger , Transformação Genética , Aspergillus niger/genética , Agrobacterium tumefaciens/genética , Malus/microbiologia , Farmacorresistência Fúngica/genética , Marcadores Genéticos , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Higromicina B/farmacologia , Frutas/microbiologia , Genes Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...