Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.923
Filtrar
1.
Transl Psychiatry ; 14(1): 391, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341817

RESUMO

The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.


Assuntos
Cafeína , Dopamina , Neurônios Dopaminérgicos , Etanol , Núcleo Accumbens , Área Tegmentar Ventral , Animais , Cafeína/farmacologia , Dopamina/metabolismo , Etanol/farmacologia , Masculino , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ratos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Isoquinolinas
2.
Sci Total Environ ; 952: 175939, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218100

RESUMO

The use of plastic bowls (PB) has garnered increasing scrutiny due to the inevitable generation of microplastics (MPs) throughout their lifecycle. Despite this concern, there exists a limited understanding of the behaviors, toxicological effects, and mechanisms associated with aged PB (A-PB). This research investigated the photoaging properties of A-PB following ultraviolet irradiation and evaluated the neurotoxic impact of exposure to A-PB at environmentally relevant concentrations (0.001-1 mg/L) on Caenorhabditis elegans. Significant alterations in the crystallinity, elemental composition, and functional groups of A-PB were observed compared to virgin PB (V-PB), along with the emergence of environmentally persistent free radicals and reactive oxygen species. Toxicity assessments revealed that exposure to 0.1-1 mg/L A-PB induced greater neurotoxicity on locomotion behaviors compared to V-PB, as evidenced by marked reductions in head thrashes, body bends, wavelength, and mean amplitude. Exposure to A-PB also altered the fluorescence intensities and neurodegeneration percentage of dopaminergic, serotonergic, and GABAergic neurons, suggesting neuronal damage in the nematodes. Correspondingly, decreases in the levels of dopamine, serotonin, and GABA were noted together with significant drops in the expression of neurotransmitter-related genes (e.g., dat-1, tph-1, and unc-47). Correlation analyses established a significant positive relationship between these genes and locomotion behaviors. Further exploration showed the absence of locomotion behaviors in dat-1 (ok157), tph-1 (mg280), and unc-47 (e307) mutants, underscoring the pivotal roles of the dat-1, tph-1, and unc-47 genes in mediating neurotoxicity in C. elegans. This study sheds light on the photoaging characteristics and heightened toxicity of A-PB, elucidating the mechanisms driving A-PB-induced neurotoxicity.


Assuntos
Caenorhabditis elegans , Microplásticos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Microplásticos/toxicidade , Plásticos/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Síndromes Neurotóxicas
3.
PLoS One ; 19(9): e0310271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39255295

RESUMO

INTRODUCTION: Mental fatigue (MF) significantly affects both cognitive and physical performance. However, the precise mechanisms, particularly concerning neurotransmission, require further investigation. An implication of the role of dopamine (DA) and noradrenaline (NA) is stated, but empirical evidence for this theory still needs to be provided. To address this gap, we aim to investigate the role of brain neurotransmission in elucidating if, and how prolonged cognitive activity induces MF and its subsequent impact on cognitive performance. METHODS: This study (registration number: G095422N) will adopt a randomized cross-over design with sixteen healthy participants aged 18-35 years. The sessions include a familiarization, two experimental (DA: 20mg Methylphenidate; NA: 8mg Reboxetine) conditions, and one placebo (lactose tablet: 10mg) condition. A 60-minute individualized Stroop task will be used to investigate whether, and how the onset of MF changes under the influence of reuptake inhibitors. Attention and response inhibition will be assessed before and after the MF-inducing task using a Go/NoGo task. The integration of physiological (electroencephalography, heart rate), behavioral (attention, response inhibition), and subjective indicators (scales and questionnaires) will be used to detect the underlying mechanisms holistically. Data analysis will involve linear mixed models with significance at p<0.05. DISCUSSION: The integration of diverse techniques and analyses offers a comprehensive perspective on the onset and impact of MF, introducing a novel approach. Future research plans involve extending this protocol to explore the connection between brain neurotransmission and physical fatigue. This protocol will further advance our understanding of the complex interplay between the brain and fatigue.


Assuntos
Encéfalo , Estudos Cross-Over , Fadiga Mental , Metilfenidato , Transmissão Sináptica , Humanos , Fadiga Mental/fisiopatologia , Adulto , Adolescente , Adulto Jovem , Encéfalo/fisiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Metilfenidato/farmacologia , Masculino , Feminino , Reboxetina , Cognição/fisiologia , Norepinefrina/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Atenção/fisiologia , Atenção/efeitos dos fármacos , Eletroencefalografia , Dopamina/metabolismo
4.
Aquat Toxicol ; 275: 107075, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244834

RESUMO

This study investigated the toxicological effects and mechanisms of cadmium (Cd) (5 and 50 µg/L) and selenium (Se) (3 and 30 µg/L) at environmentally relevant concentrations on the gills and digestive glands of clams Ruditapes philippinarum. Results indicated that Cd and Se could tissue-specifically impact osmoregulation, energy metabolism, and synaptic transmission in the gills and digestive glands of clams. After exposure to 50 µg/L Cd, the digestive glands of clams up-regulated the expression of methionine-gamma-lyase and metallothionein for detoxification. Clam digestive glands exposed to 3 µg/L Se up-regulated the expression of catalase and glutathione peroxidase to alleviate oxidative stress, and down-regulated the expression of selenide-water dikinase to reduce the conversion of inorganic Se. Additionally, the interaction mode between Cd and Se largely depended on their molar ratio, with a ratio of 11.71 (50 µg/L Cd + 3 µg/L Se) demonstrated to be particularly harmful, as manifested by significantly more lesions, oxidative stress, and detoxification demand in clams than those exposed to Cd or Se alone. Collectively, this study revealed the complex interaction patterns and mechanisms of Cd and Se on clams, providing a reference for exploring their single and combined toxicity.


Assuntos
Bivalves , Cádmio , Estresse Oxidativo , Selênio , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Bivalves/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Selênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Inativação Metabólica , Estresse Fisiológico/efeitos dos fármacos
5.
Org Lett ; 26(36): 7632-7637, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39235108

RESUMO

Penicillium daleae L3SO is a fungus isolated from the rhizospheric soil of the chloroplast-deficient plant Monotropa uniflora. A chemical study on the rice fermentation of this fungus led to the isolation and identification of two cage-like polyketides, penidaleodiolide A (1) and its biosynthetic-related congener penidaleodiolide B (2). The structures of 1 and 2 were determined by a combination of extensive spectroscopic analysis, biosynthetic consideration, chemical derivatization, and computational methods. Compound 1 harbors an unusual tricyclo[4.3.04,9]nonane scaffold, unprecedented in polyketide natural products. The hypothetical biosynthetic pathways for 1 and 2 were postulated and were supported by CRISPR/Cas9 genome editing results. Penidaleodiolide A (1) showed a significant inhibitory effect on the action potentials of murine hippocampal basket neurons and decreased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner (the inhibition ratios were 0.30 ± 0.02 for 1 µM, 0.37 ± 0.03 for 10 µM, and 0.50 ± 0.07 for 20 µM) while being devoid of cytotoxicity against the nerve cells.


Assuntos
Penicillium , Policetídeos , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Penicillium/química , Penicillium/metabolismo , Animais , Camundongos , Estrutura Molecular , Transmissão Sináptica/efeitos dos fármacos , Microbiologia do Solo , Neurônios/efeitos dos fármacos , Hipocampo/metabolismo
6.
Behav Brain Res ; 474: 115176, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098400

RESUMO

Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.


Assuntos
Modelos Animais de Doenças , Etanol , Transtornos do Espectro Alcoólico Fetal , Transmissão Sináptica , Peixe-Zebra , Animais , Etanol/farmacologia , Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Feminino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Gravidez
7.
Prog Brain Res ; 289: 181-191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39168580

RESUMO

The physiological structure and functioning of the brain are determined by activity-dependent processes and affected by "synapse plasticity." Because chemical transmitters target and regulate synapses, exogenous chemical stimulants and transmitters can alter their physiological functions by interacting with synaptic surface receptors or chemical modulators. Caffeine, a commonly used pharmacologic substance, can target and alter synapses. It impact various biological, chemical, and metabolic processes related to synaptic function. This chapter investigates how caffeine affects fluctuations in structure and function in the hippocampus formation and neocortical structure, regions known for their high synaptic plasticity profile. Specifically, caffeine modulates various synaptic receptors and channel activities by mobilizing intracellular calcium, inhibiting phosphodiesterase, and blocking adenosine and GABA cellular receptors. These caffeine-induced pathways and functions allow neurons to generate plastic modulations in synaptic actions such as efficient and morphological transmission. Moreover, at a network level, caffeine can stimulate neural oscillators in the cortex, resulting in repetitive signals that strengthen long-range communication between cortical areas reliant on N-methyl-d-aspartate receptors. This suggests that caffeine could facilitate the reorganization of cortical network functions through its effects on synaptic mobilization.


Assuntos
Cafeína , Plasticidade Neuronal , Sinapses , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Cafeína/farmacologia , Animais , Humanos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Café , Estimulantes do Sistema Nervoso Central/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
Neuropharmacology ; 259: 110108, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128582

RESUMO

Consumption of saturated fat-enriched diets during adolescence has been closely associated with the reduction of hippocampal synaptic plasticity and the impairment of cognitive function. Nevertheless, the effect of long-term intake of these foods has not yet been studied. In the present study, we have investigated the effect of a treatment, lasting for 40 weeks, with a diet enriched in saturated fat (SOLF) on i) spatial learning and memory, ii) hippocampal synaptic transmission and plasticity, and iii) hippocampal gene expression levels in aged male and female mice. Our findings reveal that SOLF has a detrimental impact on spatial memory and synaptic plasticity mechanisms, such as long-term potentiation (LTP), and downregulates Gria1 expression specifically in males. In females, SOLF downregulates the gene expression of Gria1/2/3 and Grin1/2A/2B glutamate receptor subunits as well as some proinflammatory interleukins. These findings highlight the importance of considering sex-specific factors when assessing the long-term effects of high-fat diets on cognition and brain plasticity.


Assuntos
Dieta Hiperlipídica , Hipocampo , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Receptores de AMPA/metabolismo , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Gorduras na Dieta/farmacologia
9.
Curr Opin Insect Sci ; 65: 101251, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147324

RESUMO

Fipronil, a pesticide widely used to control agricultural and household insect pests, blocks insect GABAA and glutamate (GluCl) ionotropic receptors, resulting in uncontrolled hyperexcitation and paralysis that eventually leads to death. The use of fipronil is controversial because unintentional exposure to this compound may contribute to the ongoing global decline of insect pollinator populations. Although the sublethal effects of fipronil have been linked to aberrant behavior and impaired olfactory learning in insects, the precise mechanisms involved in these responses remain unclear. In this article, we highlight recent studies that have investigated the interaction among different pathways involved in the ability of fipronil to modulate insect behavior, with particular emphasis on the role of GABAergic neurotransmission in fine-tuning the integration of sensorial responses and insect behavior. Recent findings suggest that fipronil can also cause functional alterations that affect synaptic organization and the availability of metal ions in the brain.


Assuntos
Comportamento Animal , Insetos , Inseticidas , Pirazóis , Animais , Pirazóis/toxicidade , Insetos/efeitos dos fármacos , Insetos/fisiologia , Inseticidas/toxicidade , Comportamento Animal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
10.
Pharmacol Biochem Behav ; 244: 173849, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142357

RESUMO

Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are commonly prescribed to women during pregnancy and breastfeeding despite posing a risk of adverse cognitive outcomes and affective disorders for the child. The consequences of SSRI-induced excess of 5-HT during development for the brain neuromodulatory 5-HT system remain largely unexplored. In this study, an SSRI - fluoxetine (FLX) - was administered to C57BL/6 J mouse dams during pregnancy and lactation to assess its effects on the offspring. We found that maternal FLX decreased field potentials, impaired long-term potentiation, facilitated long-term depression and tended to increase the density of 5-HTergic fibers in the medial prefrontal cortex (mPFC) of female but not male adolescent offspring. These effects were accompanied by deteriorated performance in the temporal order memory task and reduced sucrose preference with no change in marble burying behavior in FLX-exposed female offspring. We also found that maternal FLX reduced the axodendritic tree complexity of 5-HT dorsal raphe nucleus (DRN) neurons in female but not male offspring, with no changes in the excitability of DRN neurons of either sex. While no effects of maternal FLX on inhibitory postsynaptic currents (sIPSCs) in DRN neurons were found, we observed a significant influence of FLX exposure on kinetics of spontaneous excitatory postsynaptic currents (sEPSCs) in DRN neurons. Finally, we report that no changes in field potentials and synaptic plasticity were evident in the mPFC of the offspring after maternal exposure during pregnancy and lactation to a new antidepressant, vortioxetine. These findings show that in contrast to the mPFC, long-term consequences of maternal FLX exposure on the structure and function of DRN 5-HT neurons are mild and suggest a sex-dependent, distinct sensitivity of cortical and brainstem neurons to FLX exposure in early life. Vortioxetine appears to exert fewer side effects with regards to the mPFC when compared with FLX.


Assuntos
Núcleo Dorsal da Rafe , Fluoxetina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Inibidores Seletivos de Recaptação de Serotonina , Transmissão Sináptica , Animais , Fluoxetina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Feminino , Camundongos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Gravidez , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios/efeitos dos fármacos , Serotonina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos
11.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201473

RESUMO

Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.


Assuntos
Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Mitocôndrias , Receptor 5-HT1A de Serotonina , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Drosophila , Piperazinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Drosophila melanogaster/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos
12.
Br J Pharmacol ; 181(22): 4571-4592, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39091175

RESUMO

BACKGROUND AND PURPOSE: Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but its discontinuation leads to discontinuation syndrome/catatonia complicated by benzodiazepine-resistance and rhabdomyolysis. EXPERIMENTAL APPROACH: This study determined time-dependent effects of exposure and subsequent discontinuation of clozapine on expression of connexin43, 5-HT receptors, intracellular L-ß-aminoisobutyrate (L-BAIBA) and 2nd-messengers and signalling of AMPK, PP2A and Akt in cultured astrocytes and rat frontal cortex. KEY RESULTS: Intracellular L-BAIBA levels increased during clozapine exposure but immediately recovered after discontinuation. Both exposure to clozapine and L-BAIBA increased connexin43 and signalling of AMPK/Akt time-dependently, but reduced PP2A signalling, 5-HT receptor expression and IP3 level. These changes recovered within 2 weeks after discontinuation, while 5-HT receptors and IP3 transiently increased during the recovery process. L-BAIBA activated AMPK signalling, leading to attenuated PP2A signalling. Astroglial D-serine release was increased by clozapine exposure but continued to increase within 1 week after discontinuation via activation of IP3 receptor function. CONCLUSION AND IMPLICATIONS: Clozapine discontinuation restored PP2A signalling due to decreased L-BAIBA, increased 5-HT receptor expression via probably enhanced 5-HT receptor recycling, but increased astroglial D-serine release persisted by transiently activated IP3 receptors via transiently increased IP3 level. Decreased L-BAIBA caused by clozapine discontinuation is, at least partially, involved in the transiently increased 5-HT receptor and astroglial D-serine release.


Assuntos
Antipsicóticos , Astrócitos , Clozapina , Ratos Sprague-Dawley , Transmissão Sináptica , Clozapina/farmacologia , Clozapina/administração & dosagem , Animais , Antipsicóticos/farmacologia , Antipsicóticos/administração & dosagem , Ratos , Transmissão Sináptica/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Células Cultivadas , Conexina 43/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Hippocampus ; 34(9): 454-463, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150316

RESUMO

Estrogens are believed to modulate cognitive functions in part through the modulation of synaptic transmission in the cortex and hippocampus. Administration of 17ß-estradiol (E2) can rapidly enhance excitatory synaptic transmission in the hippocampus and facilitate excitatory synaptic transmission in rat lateral entorhinal cortex via activation of the G protein-coupled estrogen receptor-1 (GPER1). To assess the mechanisms through which GPER1 activation facilitates synaptic transmission, we assessed the effects of acute 10 nM E2 administration on pharmacologically isolated evoked excitatory and inhibitory synaptic currents in layer II/III entorhinal neurons. Female Long-Evans rats were ovariectomized between postnatal day (PD) 63 and 74 and implanted with a subdermal E2 capsule to maintain continuous low levels of E2. Electrophysiological recordings were obtained between 7 and 20 days after ovariectomy. Application of E2 for 20 min did not significantly affect AMPA or NMDA receptor-mediated excitatory synaptic currents. However, GABA receptor-mediated inhibitory synaptic currents (IPSCs) were markedly reduced by E2 and returned towards baseline levels during the 20-min washout period. The inhibition of GABA-mediated IPSCs was blocked in the presence of the GPER1 receptor antagonist G15. GPER1 can modulate protein kinase A (PKA), but blocking PKA with intracellular KT5720 did not prevent the E2-induced reduction in IPSCs. GPER1 can also stimulate extracellular signal-regulated kinase (ERK), a negative modulator of GABAA receptors, and blocking activation of ERK with PD90859 prevented the E2-induced reduction of IPSCs. E2 can therefore result in a rapid GPER1 and ERK signaling-mediated reduction in GABA-mediated IPSCs. This provides a novel mechanism through which E2 can rapidly modulate synaptic excitability in entorhinal layer II/III neurons and may also contribute to E2 and ERK-dependent alterations in synaptic transmission in other brain areas.


Assuntos
Córtex Entorrinal , Estradiol , MAP Quinases Reguladas por Sinal Extracelular , Neurônios , Ratos Long-Evans , Receptores Acoplados a Proteínas G , Animais , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Estradiol/farmacologia , Feminino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de Estrogênio/metabolismo , Ovariectomia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Patch-Clamp , Estrogênios/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores
14.
Transl Psychiatry ; 14(1): 338, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179543

RESUMO

Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aß accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aß-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aß. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aß from glutamatergic terminals. We believe that the selective pruning of Aß-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.


Assuntos
Aminopiridinas , Peptídeos beta-Amiloides , Hipocampo , Potenciação de Longa Duração , Microglia , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aminopiridinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Pirróis/farmacologia , Camundongos , Fagocitose/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Ácido Glutâmico/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R423-R441, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102465

RESUMO

There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.


Assuntos
Astrócitos , Ácido Glutâmico , Hipóxia , Receptores Purinérgicos , Núcleo Solitário , Transmissão Sináptica , Animais , Núcleo Solitário/metabolismo , Núcleo Solitário/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Masculino , Ácido Glutâmico/metabolismo , Receptores Purinérgicos/metabolismo , Ratos , Ratos Wistar , Ácido Cinurênico/farmacologia , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Citratos/farmacologia , Fatores de Tempo
16.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999947

RESUMO

Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.


Assuntos
Caenorhabditis elegans , Etanol , Plasticidade Neuronal , Transmissão Sináptica , Animais , Plasticidade Neuronal/efeitos dos fármacos , Etanol/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tolerância a Medicamentos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Alcoolismo/metabolismo , Drosophila/fisiologia , Humanos , Invertebrados/fisiologia
17.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997143

RESUMO

Psychotic symptoms and delusional beliefs have been linked to dopamine transmission in both healthy and clinical samples and are assumed to result at least in part from perceiving illusory patterns in noise. However, the existing literature on the role of dopamine in detecting patterns in noise is inconclusive. To address this issue, we assessed the effect of manipulating dopaminergic neurotransmission on illusory pattern perception in healthy individuals (n = 48, n = 19 female) in a double-blind placebo-controlled within-subjects design (see preregistration at https://osf.io/a4k9j/). We predicted individuals on versus off ʟ-DOPA to be more likely to perceive illusory patterns, specifically objects in images containing only noise. Using a signal detection model, however, we found no credible evidence that ʟ-DOPA compared with placebo increased false alarm rates. Further, ʟ-DOPA did not reliably modulate measures of accuracy, discrimination sensitivity, and response bias. In all cases, Bayesian statistics revealed strong evidence in favor of the null hypothesis. The task design followed previous work on illusory pattern perception and comprised a limited number of items per condition. The results therefore need to be interpreted with caution, as power was limited. Future studies should address illusory pattern perception using more items and take into account potential dose-dependent effects and differential effects in healthy versus clinical samples.


Assuntos
Dopamina , Ilusões , Levodopa , Humanos , Feminino , Masculino , Método Duplo-Cego , Adulto , Ilusões/fisiologia , Ilusões/efeitos dos fármacos , Dopamina/metabolismo , Adulto Jovem , Levodopa/farmacologia , Levodopa/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Dopaminérgicos/farmacologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Visual de Modelos/efeitos dos fármacos , Teorema de Bayes
18.
Neurochem Res ; 49(10): 2763-2773, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960951

RESUMO

Omega-3 (n3) is a polyunsaturated fatty acid well known for its anti-inflammatory and neuroprotective properties. Obesity is linked to chronic inflammation that disrupts metabolism, the intestine physiology and the central nervous system functioning. This study aims to determine if n3 supplementation can interfere with the effects of obesity on the mitochondrial activity, intestinal barrier, and neurotransmitter levels in the brain of Wistar rats that received cafeteria diet (CAF). We examined adipose tissue, skeletal muscle, plasma, intestine, and the cerebral cortex of four groups: CT (control diet), CTn3 (control diet with n3 supplementation), CAF, and CAFn3 (CAF and n3). Diets were offered for 13 weeks, with n3 supplementation in the final 5 weeks. Adipose tissue Electron Transport Chain complexes I, II, and III showed higher activity in CAF groups, as did complexes III and IV in skeletal muscle. Acetate levels in plasma were reduced in CAF groups, and Lipopolysaccharide (LPS) was higher in the CAF group but reduced in CAFn3 group. Claudin-5 in the intestine was lower in CAF groups, with no n3 supplementation effect. In the cerebral cortex, dopamine levels were decreased with CAF, which was reversed by n3. DOPAC, a dopamine metabolite, also showed a supplementation effect, and HVA, a diet effect. Serotonin levels increased in the CAF group that received supplementation. Therefore, we demonstrate disturbances in mitochondria, plasma, intestine and brain of rats submitted to CAF and the potential benefit of n3 supplementation in endotoxemia and neurotransmitter levels.


Assuntos
Ácidos Graxos Ômega-3 , Obesidade , Ratos Wistar , Transmissão Sináptica , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Obesidade/metabolismo , Masculino , Transmissão Sináptica/efeitos dos fármacos , Ratos , Suplementos Nutricionais , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos
19.
Mol Nutr Food Res ; 68(15): e2300883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38984736

RESUMO

SCOPE: Polar lipids, such as gangliosides and phospholipids, are fundamental structural components that play critical roles in the development and maturation of neurons in the brain. Recent evidence has demonstrated that dietary intakes of polar lipids in early life are associated with improved cognitive outcomes during infancy and adolescence. However, the specific mechanisms through which these lipids impact cognition remain unclear. METHODS AND RESULTS: This study examines the direct physiological impact of polar lipid supplementation, in the form of buttermilk powder, on primary cortical neuron growth and maturation. The changes are measured with postsynaptic current response recordings, immunohistochemical examination of functional synapse localization and numbers, and the biochemical quantification of receptors responsible for neuronal synaptic neurotransmission. Chronic exposure to polar lipids increases primary mouse cortical neuron basal excitatory synapse response strength attributed to enhanced dendritic complexity and an altered expression of the excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit 2 (GluR2). CONCLUSION: The present finding suggests that dietary polar lipids improve human cognition through an enhancement of neuronal maturation and/or function.


Assuntos
Suplementos Nutricionais , Neurônios , Transmissão Sináptica , Animais , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Células Cultivadas , Leitelho , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL
20.
Front Neuroendocrinol ; 74: 101146, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004314

RESUMO

Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.


Assuntos
Corticosteroides , Encéfalo , Transmissão Sináptica , Animais , Humanos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Corticosteroides/metabolismo , Corticosteroides/farmacologia , Corticosteroides/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...