Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.162
Filtrar
1.
Nature ; 634(8036): 1150-1159, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39358505

RESUMO

Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.


Assuntos
Envelhecimento , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Transportador de Glucose Tipo 4 , Glucose , Células-Tronco Neurais , Animais , Sistemas CRISPR-Cas/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos , Glucose/metabolismo , Glucose/deficiência , Envelhecimento/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Masculino , Feminino , Neurônios/metabolismo , Neurônios/citologia , Senescência Celular/genética , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas
2.
J Agric Food Chem ; 72(37): 20458-20469, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230615

RESUMO

Our previous study proved that epicatechin (EC) and ß-glucan (BG) from whole-grain highland barley synergistically modulate glucose metabolism in insulin-resistant HepG2 cells. However, the main target and the mechanism underlying the modulation of glucose metabolism in vivo remain largely unknown. In this study, cell transfection assay and microscale thermophoresis analysis revealed that EC and BG could directly bind to the insulin receptor (IR) and mammalian receptor for rapamycin (mTOR), respectively. Molecular dynamic analysis indicated that the key amino acids of binding sites were Asp, Met, Val, Lys, Ser, and Tys. EC supplementation upregulated the IRS-1/PI3K/Akt pathway, while BG upregulated the mTOR/Akt pathway. Notably, supplementation with EC + BG significantly increased Akt and glucose transporter type 4 (GLUT4) protein expressions, while decreasing glycogen synthase kinase 3ß (GSK-3ß) expression in liver cells as compared to the individual effects of EC and BG, indicating their synergistic effect on improving hepatic glucose uptake and glycogen synthesis. Consistently, supplementation with EC + BG significantly decreased blood glucose levels and improved oral glucose tolerance compared to EC and BG. Therefore, combined supplementation with EC and BG may bind to corresponding receptors, targeting synergistic activation of Akt expression, leading to the improvement of hepatic glucose metabolism and thereby ameliorating hyperglycemia in vivo.


Assuntos
Catequina , Glucose , Hordeum , Hiperglicemia , Fígado , Camundongos Endogâmicos C57BL , beta-Glucanas , Hordeum/química , beta-Glucanas/farmacologia , beta-Glucanas/química , Animais , Camundongos , Catequina/farmacologia , Catequina/administração & dosagem , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Humanos , Glucose/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Sinergismo Farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicemia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Células Hep G2
3.
Discov Med ; 36(188): 1811-1818, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39327244

RESUMO

BACKGROUND: In China, the environmental concern of Dibutyl Phthalate (DBP) exposure significantly endangers human health by inducing insulin resistance (IR). Skeletal muscle tissue plays a critical role in this process. However, the precise molecular mechanisms through which DBP interferes with the insulin signaling pathway remain to be fully elucidated. This study aims to explore the molecular mechanisms by which DBP induces IR in skeletal muscle, focusing on the phosphatidylinositol 3-kinase (PI3K)-serine/threonine kinase (AKT)-glucose transporter 4 (GLUT4) signaling pathway. METHODS: To investigate the molecular mechanisms underlying DBP-induced IR, an experimental study was established on a human skeletal muscle cell line (HSkMC). Expression levels of mRNA and proteins associated with key signaling genes within the insulin receptor (INSR)-insulin receptor substrate (IRS)-PI3K-AKT-GLUT4 pathway were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot techniques. Additionally, this study explored the effects of DBP alone and in combination with a PI3K inhibitor (BKM120) or phosphatase and tensin homolog (PTEN) overexpression lentivirus on these signaling components. RESULTS: Results from this study demonstrated that DBP exposure significantly decreased mRNA levels of INSR, IRS1, PI3K, AKT2, and GLUT4 in HSkMC cells compared to untreated control cells. This reduction was exacerbated when DBP was combined with BKM120 or PTEN overexpression lentivirus, suggesting a synergistic effect. Furthermore, DBP treatment reduced the expression and phosphorylation of AKT2, indicating a disruption in the insulin signaling pathway. CONCLUSIONS: This study elucidates a molecular mechanism by which DBP induces IR in skeletal muscle cells, primarily through the deregulation of the PI3K-dependent insulin signaling pathway. These insights enhance comprehension of the pathophysiological changes associated with IR caused by environmental pollutants like DBP, potentially guiding future strategies for prevention and intervention.


Assuntos
Dibutilftalato , Transportador de Glucose Tipo 4 , Resistência à Insulina , Insulina , Músculo Esquelético , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Dibutilftalato/toxicidade , Insulina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptor de Insulina/metabolismo , Linhagem Celular , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antígenos CD
4.
Am J Physiol Cell Physiol ; 327(5): C1219-C1235, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250818

RESUMO

Skeletal muscle is one of the predominant sites involved in glucose disposal, accounting for ∼80% of postprandial glucose uptake, and plays a critical role in maintaining glycemic homeostasis. Dysregulation of energy metabolism in skeletal muscle is involved in developing insulin resistance and type 2 diabetes (T2D). Transcriptomic responses of skeletal muscle to exercise found that the expression of Klf3 was increased in T2D Goto-Kakizaki (GK) rats and decreased after exercise with improved hyperglycemia and insulin resistance, implying that Klf3 might be associated with insulin sensitivity and glucose metabolism. We also found that knockdown of Klf3 promoted basal and insulin-stimulated glucose uptake in L6 myotubes, whereas overexpression of Klf3 resulted in the opposite. Through pairwise comparisons of L6 myotubes transcriptome, we identified 2,256 and 1,988 differentially expressed genes in Klf3 knockdown and overexpression groups, respectively. In insulin signaling, the expression of Slc2a4, Akt2, Insr, and Sorbs1 was significantly increased by Klf3 knockdown and decreased with Klf3 overexpression; Ptprf and Fasn were markedly downregulated in Klf3 reduced group and upregulated in Klf3 overexpressed group. Moreover, downregulation of Klf3 promoted the expression of glucose transporter 4 (GLUT4) and protein kinase B (AKT) proteins, as well as the translocation of GLUT4 to the cell membrane in the basal situation, and enhanced insulin sensitivity, characterized by increased insulin-stimulated GLUT4 translocation and AKT, TBC1 domain family member 1 (TBC1D1) and TBC1 domain family member 4 (TBC1D4) phosphorylation, whereas overexpression of Klf3 showed contrary results. These results suggest that Klf3 affects glucose uptake and insulin sensitivity via insulin signal transduction and intracellular metabolism, offering a novel potential treatment strategy for T2D.NEW & NOTEWORTHY The knockdown of Klf3 increased glucose uptake and improved insulin sensitivity in L6 myotubes, whereas its overexpression had the opposite effect. To explore the underlying mechanisms, we evaluated the transcriptional profiles of L6 myotubes after Klf3 knockdown and overexpression and revealed that metabolism and insulin-related pathways were significantly impacted. Klf3 also influenced the expression or modification of glucose transporter 4 (GLUT4), protein kinase B (AKT), TBC1 domain family member 1 (TBC1D1), and TBC1 domain family member 4 (TBC1D4) in the insulin signaling pathway, affecting insulin sensitivity and glucose uptake.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Resistência à Insulina , Fatores de Transcrição Kruppel-Like , Músculo Esquelético , Animais , Masculino , Ratos , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Insulina/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125811

RESUMO

Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE's effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods.


Assuntos
Células 3T3-L1 , Adipócitos , Transportador de Glucose Tipo 4 , Produtos Finais de Glicação Avançada , Fator de Transcrição RelA , Animais , Camundongos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125700

RESUMO

Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.


Assuntos
Medicina Tradicional Chinesa , Miócitos Cardíacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Ratos , Medicina Tradicional Chinesa/métodos , Resistência à Insulina , Contração Miocárdica/efeitos dos fármacos , Glucose/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Camundongos , Linhagem Celular , Antígenos CD36/metabolismo , Antígenos CD36/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Masculino
7.
Nat Commun ; 15(1): 6858, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127697

RESUMO

Our recent studies have identified p21-activated kinase 4 (PAK4) as a key regulator of lipid catabolism in the liver and adipose tissue, but its role in glucose homeostasis in skeletal muscle remains to be explored. In this study, we find that PAK4 levels are highly upregulated in the skeletal muscles of diabetic humans and mice. Skeletal muscle-specific Pak4 ablation or administering the PAK4 inhibitor in diet-induced obese mice retains insulin sensitivity, accompanied by AMPK activation and GLUT4 upregulation. We demonstrate that PAK4 promotes insulin resistance by phosphorylating AMPKα2 at Ser491, thereby inhibiting AMPK activity. We additionally show that skeletal muscle-specific expression of a phospho-mimetic mutant AMPKα2S491D impairs glucose tolerance, while the phospho-inactive mutant AMPKα2S491A improves it. In summary, our findings suggest that targeting skeletal muscle PAK4 may offer a therapeutic avenue for type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Glucose , Resistência à Insulina , Músculo Esquelético , Quinases Ativadas por p21 , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Glucose/metabolismo , Fosforilação , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
8.
Mol Metab ; 88: 102014, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182843

RESUMO

OBJECTIVE: Picalm (phosphatidylinositol-binding clathrin assembly protein), a ubiquitously expressed clathrin-adapter protein, is a well-known susceptibility gene for Alzheimer's disease, but its role in white adipose tissue (WAT) function has not yet been studied. Transcriptome analysis revealed differential expression of Picalm in WAT of diabetes-prone and diabetes-resistant mice, hence we aimed to investigate the potential link between Picalm expression and glucose homeostasis, obesity-related metabolic phenotypes, and its specific role in insulin-regulated GLUT4 trafficking in adipocytes. METHODS: Picalm expression and epigenetic regulation by microRNAs (miRNAs) and DNA methylation were analyzed in WAT of diabetes-resistant (DR) and diabetes-prone (DP) female New Zealand Obese (NZO) mice and in male NZO after time-restricted feeding (TRF) and alternate-day fasting (ADF). PICALM expression in human WAT was evaluated in a cross-sectional cohort and assessed before and after weight loss induced by bariatric surgery. siRNA-mediated knockdown of Picalm in 3T3-L1-cells was performed to elucidate functional outcomes on GLUT4-translocation as well as insulin signaling and adipogenesis. RESULTS: Picalm expression in WAT was significantly lower in DR compared to DP female mice, as well as in insulin-sensitive vs. resistant NZO males, and was also reduced in NZO males following TRF and ADF. Four miRNAs (let-7c, miR-30c, miR-335, miR-344) were identified as potential mediators of diabetes susceptibility-related differences in Picalm expression, while 11 miRNAs (including miR-23a, miR-29b, and miR-101a) were implicated in TRF and ADF effects. Human PICALM expression in adipose tissue was lower in individuals without obesity vs. with obesity and associated with weight-loss outcomes post-bariatric surgery. siRNA-mediated knockdown of Picalm in mature 3T3-L1-adipocytes resulted in amplified insulin-stimulated translocation of the endogenous glucose transporter GLUT4 to the plasma membrane and increased phosphorylation of Akt and Tbc1d4. Moreover, depleting Picalm before and during 3T3-L1 differentiation significantly suppressed adipogenesis, suggesting that Picalm may have distinct roles in the biology of pre- and mature adipocytes. CONCLUSIONS: Picalm is a novel regulator of GLUT4-translocation in WAT, with its expression modulated by both genetic predisposition to diabetes and dietary interventions. These findings suggest a potential role for Picalm in improving glucose homeostasis and highlight its relevance as a therapeutic target for metabolic disorders.


Assuntos
Células 3T3-L1 , Transportador de Glucose Tipo 4 , Obesidade , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Metilação de DNA , Epigênese Genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Resistência à Insulina , Camundongos Obesos , MicroRNAs/metabolismo , MicroRNAs/genética , Obesidade/metabolismo , Obesidade/genética , Transporte Proteico
9.
Pestic Biochem Physiol ; 203: 106014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084805

RESUMO

Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.


Assuntos
Transportador de Glucose Tipo 4 , Inseticidas , Locusta migratoria , Nitrilas , Ovário , Piretrinas , Interferência de RNA , Animais , Piretrinas/farmacologia , Feminino , Nitrilas/farmacologia , Ovário/metabolismo , Ovário/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Locusta migratoria/genética , Locusta migratoria/efeitos dos fármacos , Locusta migratoria/metabolismo , Inseticidas/farmacologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Vitelogeninas/metabolismo , Vitelogeninas/genética , Metabolismo Energético/efeitos dos fármacos , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos , Hormônios Juvenis/metabolismo , Hormônios Juvenis/farmacologia , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Triglicerídeos/metabolismo
10.
J Cell Sci ; 137(20)2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-38958032

RESUMO

Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.


Assuntos
Transportador de Glucose Tipo 4 , Imageamento Tridimensional , Miocárdio , Animais , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Imageamento Tridimensional/métodos , Miocárdio/metabolismo , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
11.
Free Radic Biol Med ; 223: 199-211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059512

RESUMO

Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.


Assuntos
Cardiotoxicidade , Mitoxantrona , Miocárdio , Animais , Camundongos , Mitoxantrona/farmacologia , Masculino , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética
12.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979931

RESUMO

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Assuntos
1-Desoxinojirimicina , Doença de Alzheimer , Resistência à Insulina , Neurônios , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 3/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Biomarcadores/metabolismo
13.
J Agric Food Chem ; 72(29): 16298-16311, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982710

RESUMO

From the fruits of Cordia dichotoma, 11 new phenolic compounds, dichotomins A-K, were isolated, together with 19 known compounds. Through the analysis of detailed NMR data and HRESIMS data, the planar structures of all compounds were confirmed. Using NMR calculations, the absolute configuration of dichotomins A-K was elucidated by comparing their observed and computed electronic circular dichroism (ECD) spectra. Dichotomin H (8) and dichotomin I (9) were determined as two pairs of enantiomers. The enantiomers of compounds 8 and 9 were separated using chiral-phase high-performance liquid chromatography (HPLC), and the stereostructure of each enantiomer was determined by similarly calculating the ECD. Compounds 3, 5, 7, 17, 18, 23-25, and 27-30 increased glucose uptake by 1.04- to 2.85-folds at concentrations of 30 µg/mL. Further studies revealed that compounds 3 and 5 had a moderate effect on glucose transporter 4 (GLUT4) translocation activity in L6 cells. At 30 µg/mL, compound 3 significantly enhanced AMPK phosphorylation and GLUT4 expression. As a whole, compound 3 has the potential to be a drug candidate for the treatment of type 2 diabetes mellitus (T2DM).


Assuntos
Frutas , Transportador de Glucose Tipo 4 , Glucose , Fenóis , Extratos Vegetais , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Frutas/química , Glucose/metabolismo , Fenóis/química , Fenóis/farmacologia , Fenóis/metabolismo , Animais , Ratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Transporte Biológico/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular , Transporte Proteico , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/química
14.
Sci Rep ; 14(1): 15996, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987609

RESUMO

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transportador de Glucose Tipo 4 , Hipotálamo , Fator de Crescimento Insulin-Like I , Insulina , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Insulina/metabolismo , Ratos , Hipotálamo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Administração Intranasal , Fragmentos de Peptídeos , Memória Espacial/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732125

RESUMO

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Hipoglicemiantes , PPAR gama , Extratos Vegetais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , alfa-Glucosidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Crassulaceae/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38788910

RESUMO

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Assuntos
Peso Corporal , Dieta Hiperlipídica , Lactação , Metformina , Efeitos Tardios da Exposição Pré-Natal , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Metformina/farmacologia , Feminino , Gravidez , Lactação/efeitos dos fármacos , Camundongos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Peso Corporal/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , PPAR gama/metabolismo , PPAR gama/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Hipoglicemiantes/farmacologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/induzido quimicamente , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Masculino , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/induzido quimicamente
17.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690930

RESUMO

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Assuntos
Diferenciação Celular , Fator de Crescimento Insulin-Like I , Contração Muscular , Fibras Musculares Esqueléticas , Fenótipo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Células Cultivadas , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia
18.
Biomed Pharmacother ; 176: 116774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820976

RESUMO

Type 2 diabetes mellitus (T2DM) remains a global health concern despite current treatment options. This study investigated the potential of Tapinanthus cordifolius (TC) leaf extract as a therapeutic agent for T2DM. T2DM was induced in rats using a high-fat diet and streptozotocin. Diabetic rats received daily oral administration of TC extract (200, 400, or 800 mg/kg) and metformin (400 mg/kg) or remained untreated for 21 days. Blood glucose levels, body weight, diabetic symptoms, oxidative stress markers, and gene expression of metabolic regulators were assessed. TC treatment significantly reduced blood glucose levels and restored body weight in diabetic rats, comparable to the effects of metformin. TC also increased antioxidant enzyme activities (SOD, GST, and CAT) and decreased lipid peroxidation in various tissues. Furthermore, TC upregulated gene expression of glucose transporter type 4 (GLUT-4) and adiponectin receptor 2 (ADIPOR-2) while downregulating pro-inflammatory cytokines TNF-α and IL-6. This study provides the first in vivo evidence supporting TC leaf extract's anti-diabetic and antioxidant efficacy. The findings suggest that TC holds promise as a natural therapeutic agent for managing T2DM through multiple mechanisms, including improved glycemic control, enhanced insulin sensitivity, and protection against oxidative stress and tissue damage. In conclusion, this study validates the ethnobotanical use of TC as an anti-diabetic agent. Further research is warranted to isolate the bioactive compounds responsible for these effects.


Assuntos
Antioxidantes , Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Hipoglicemiantes , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Estreptozocina , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Diabetes Mellitus Experimental/tratamento farmacológico , Folhas de Planta/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Ratos , Estresse Oxidativo/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Ratos Wistar , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Peso Corporal/efeitos dos fármacos , Verbenaceae/química
19.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38576169

RESUMO

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Assuntos
Alho , Glicogênio , Humanos , Glicogênio/metabolismo , Antioxidantes/metabolismo , Alho/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Mitocôndrias/metabolismo , Glicemia/metabolismo
20.
J Biol Chem ; 300(6): 107328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679332

RESUMO

Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes. Here, we demonstrate that obese AT microenvironment triggers the release of miR-210-3p microRNA-loaded extracellular vesicles from adipose tissue macrophages, which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity. Moreover, EVs collected from Dicer-silenced miR-210-3p-overexpressed bone marrow-derived macrophages induce glucose intolerance and IR in lean mice. Mechanistically, miR-210-3p interacts with the 3'-UTR of GLUT4 mRNA and silences its expression, compromising cellular glucose uptake and insulin sensitivity. Therapeutic inhibition of miR-210-3p in VAT notably rescues high-fat diet-fed mice from obesity-induced systemic glucose intolerance. Thus, targeting adipose tissue macrophage-specific miR-210-3p during obesity could be a promising strategy for managing IR and type 2 diabetes.


Assuntos
Transportador de Glucose Tipo 4 , Resistência à Insulina , Macrófagos , MicroRNAs , Obesidade , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Macrófagos/metabolismo , Camundongos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Masculino , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Humanos , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...