Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.364
Filtrar
1.
Eur J Med Chem ; 275: 116567, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38865743

RESUMO

New analogs of the PPAR pan agonist AL29-26 encompassed ligand (S)-7 showing potent activation of PPARα and -γ subtypes as a partial agonist. In vitro experiments and docking studies in the presence of PPAR antagonists were performed to help interpretation of biological data and investigate the main interactions at the binding sites. Further in vitro experiments showed that (S)-7 induced anti-steatotic effects and enhancement of the glucose uptake. This latter effect could be partially ascribed to a significant inhibition of the mitochondrial pyruvate carrier demonstrating that (S)-7 also acted through insulin-independent mechanisms. In vivo experiments showed that this compound reduced blood glucose and lipid levels in a diabetic mice model displaying no toxicity on bone, kidney, and liver. To our knowledge, this is the first example of dual PPARα/γ partial agonist showing these combined effects representing, therefore, the potential lead of new drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Hipoglicemiantes , PPAR alfa , PPAR gama , Animais , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Camundongos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Humanos , Relação Estrutura-Atividade , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Estrutura Molecular , Relação Dose-Resposta a Droga , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Acoplamento Molecular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Sci Adv ; 10(26): eadn4508, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924407

RESUMO

Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.


Assuntos
Ciclo do Ácido Cítrico , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Biogênese de Organelas , Simportadores , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Músculo Esquelético/metabolismo , Simportadores/metabolismo , Simportadores/genética , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Knockout , Glicólise
3.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849720

RESUMO

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Assuntos
Restrição Calórica , Metabolismo Energético , Fígado , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Condicionamento Físico Animal , Animais , Músculo Esquelético/metabolismo , Masculino , Camundongos , Restrição Calórica/métodos , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Metabolismo Energético/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Camundongos Endogâmicos ICR , Treino Aeróbico/métodos , Transportador de Glucose Tipo 4/metabolismo , Adaptação Fisiológica/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas Musculares
4.
Mol Med ; 30(1): 83, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867145

RESUMO

BACKGROUND: The terminal stage of ischemic heart disease develops into heart failure (HF), which is characterized by hypoxia and metabolic disturbances in cardiomyocytes. The hypoxic failing heart triggers hypoxia-inducible factor-1α (HIF-1α) actions in the cells sensitized to hypoxia and induces metabolic adaptation by accumulating HIF-1α. Furthermore, soluble monocarboxylic acid transporter protein 1 (MCT1) and mitochondrial pyruvate carrier 1 (MPC1), as key nodes of metabolic adaptation, affect metabolic homeostasis in the failing rat heart. Aerobic exercise training has been reported to retard the progression of HF due to enhancing HIF-1α levels as well as MCT1 expressions, whereas the effects of exercise on MCT1 and MPC1 in HF (hypoxia) remain elusive. This research aimed to investigate the action of exercise associated with MCT1 and MPC1 on HF under hypoxia. METHODS: The experimental rat models are composed of four study groups: sham stented (SHAM), HF sedentary (HF), HF short-term exercise trained (HF-E1), HF long-term exercise trained (HF-E2). HF was initiated via left anterior descending coronary artery ligation, the effects of exercise on the progression of HF were analyzed by ventricular ultrasound (ejection fraction, fractional shortening) and histological staining. The regulatory effects of HIF-1α on cell growth, MCT1 and MPC1 protein expression in hypoxic H9c2 cells were evaluated by HIF-1α activatort/inhibitor treatment and plasmid transfection. RESULTS: Our results indicate the presence of severe pathological remodelling (as evidenced by deep myocardial fibrosis, increased infarct size and abnormal hypertrophy of the myocardium, etc.) and reduced cardiac function in the failing hearts of rats in the HF group compared to the SHAM group. Treadmill exercise training ameliorated myocardial infarction (MI)-induced cardiac pathological remodelling and enhanced cardiac function in HF exercise group rats, and significantly increased the expression of HIF-1α (p < 0.05), MCT1 (p < 0.01) and MPC1 (p < 0.05) proteins compared to HF group rats. Moreover, pharmacological inhibition of HIF-1α in hypoxic H9c2 cells dramatically downregulated MCT1 and MPC1 protein expression. This phenomenon is consistent with knockdown of HIF-1α at the gene level. CONCLUSION: The findings propose that long-term aerobic exercise training, as a non- pharmacological treatment, is efficient enough to debilitate the disease process, improve the pathological phenotype, and reinstate cardiac function in HF rats. This benefit is most likely due to activation of myocardial HIF-1α and upregulation of MCT1 and MPC1.


Assuntos
Insuficiência Cardíaca , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transportadores de Ácidos Monocarboxílicos , Condicionamento Físico Animal , Simportadores , Animais , Masculino , Ratos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Simportadores/metabolismo , Simportadores/genética , Regulação para Cima
5.
Asian Pac J Cancer Prev ; 25(6): 1953-1958, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918656

RESUMO

OBJECTIVE: Gastric cancer is a prevalent cancer type worldwide, and significant research efforts are focused on finding effective treatments. Recent studies have highlighted the importance of plasma membrane carriers, particularly solute carriers, in cancer progression. The SLC16A family, notably the SLC16A13 gene, plays a critical role in cancer development and tumor growth. This study aims to explore the impact of reducing SLC16A13 expression in gastric cancer cells on their survival, proliferation, and metastatic potential. METHODS: Gastric cancer cells (KATO2) were cultured in RPMI medium supplemented with 10% fetal bovine serum. The cells were then transfected with SLC16A13 si-RNA to lower gene expression. The effects of this si-RNA on cell death and apoptosis were assessed using MTT and flow cytometry assays. Cell migration capabilities were evaluated using the scratch test. Western blot and Real-Time PCR were employed to measure SLC16A13 expression levels and protein detection. Additionally, RT-PCR was used to analyze changes in genes related to apoptosis and cell migration. RESULTS: The reduction of SLC16A13 expression following si-RNA transfection significantly increased apoptosis and cell death in the KATO2 cell line after 72 hours (P < 0.0001). Furthermore, the study revealed that decreased SLC16A13 expression did not impact cancer cell migration. Cell viability, assessed by MTT assay, showed a significant decrease at 48 and 72 hours post-transfection (P < 0.0001). CONCLUSION: The findings indicate that targeting SLC16A13 can effectively increase cell death and apoptosis in gastric cancer cells, making it a viable therapeutic target.


Assuntos
Apoptose , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células Tumorais Cultivadas , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , RNA Interferente Pequeno/genética
6.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709307

RESUMO

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Ácido Láctico , Lipopolissacarídeos , Transportadores de Ácidos Monocarboxílicos , Fibrose Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Camundongos , Ácido Láctico/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
J Nucl Med ; 65(7): 1151-1159, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38782455

RESUMO

Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [18F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. Methods: A cohort of pancreatic ductal adenocarcinoma patients (n = 29) for whom both tumor cross sections and [18F]FDG PET/CT scans were available was used to develop an [18F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [18F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Results: Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [18F]FDG PET signature, characterized by a higher SUVmean and SUVmax and second-order radiomics features, correlating with local variation. This MCT4-based [18F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients (n = 71) and identified patients with worse survival. Conclusion: Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [18F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Transportadores de Ácidos Monocarboxílicos/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Musculares/metabolismo , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons , Radiômica
8.
J Biol Chem ; 300(6): 107333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820650

RESUMO

The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.


Assuntos
Motivos de Aminoácidos , Basigina , Transportadores de Ácidos Monocarboxílicos , Transporte Proteico , Simportadores , Basigina/metabolismo , Basigina/genética , Basigina/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/química , Humanos , Simportadores/metabolismo , Simportadores/química , Simportadores/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Mutação de Sentido Incorreto
9.
Eur J Appl Physiol ; 124(7): 1943-1958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753016

RESUMO

PURPOSE: Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS: The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS: According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION: These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Transportadores de Ácidos Monocarboxílicos , Resistência Física , Polimorfismo de Nucleotídeo Único , Simportadores , Humanos , Resistência Física/genética , Simportadores/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transportadores de Ácidos Monocarboxílicos/genética , Óxido Nítrico Sintase Tipo III/genética , Atletas , Desempenho Atlético/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética
10.
Eur J Neurosci ; 60(1): 3572-3596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38708527

RESUMO

Glioblastomas (GBMs) are characterized by high heterogeneity, involving diverse cell types, including those with stem-like features contributing to GBM's malignancy. Moreover, metabolic alterations promote growth and therapeutic resistance of GBM. Depending on the metabolic state, antimetabolic treatments could be an effective strategy. Against this background, we investigated temporal and regional expression changes and co-staining patterns of selected metabolic markers [pyruvate kinase muscle isozyme 1/2 (PKM1/2), glucose transporter 1 (GLUT1), monocarboxylate transporter 1/4 (MCT1/4)] in a rodent model and patient-derived samples of GBM. To understand the cellular sources of marker expression, we also examined the connection of metabolic markers to markers related to stemness [Nestin, Krüppel-like factor 4 (KLF4)] in a regional and temporal context. Rat tumour biopsies revealed a temporally increasing expression of GLUT1, higher expression of MCT1/4, Nestin and KLF4, and lower expression of PKM1 compared to the contralateral hemisphere. Patient-derived tumours showed a higher expression of PKM2 and Nestin in the tumour centre vs. edge. Whereas rare co-staining of GLUT1/Nestin was found in tumour biopsies, PKM1/2 and MCT1/4 showed a more distinct co-staining with Nestin in rats and humans. KLF4 was mainly co-stained with GLUT1, MCT1 and PKM1/2 in rat and human tumours. All metabolic markers yielded individual co-staining patterns among themselves. Co-staining mainly occurred later in tumour progression and was more pronounced in tumour centres. Also, positive correlations were found amongst markers that showed co-staining. Our results highlight a link between metabolic alterations and stemness in GBM progression, with complex distinctions depending on studied markers, time points and regions.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Progressão da Doença , Glioblastoma , Transportador de Glucose Tipo 1 , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Transportadores de Ácidos Monocarboxílicos , Animais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Ratos , Fatores de Transcrição Kruppel-Like/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Biomarcadores Tumorais/metabolismo , Masculino , Nestina/metabolismo , Simportadores/metabolismo , Piruvato Quinase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Feminino , Ratos Wistar
11.
J Med Genet ; 61(7): 666-676, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38724173

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS), the predominant genetic-influenced scoliosis, results in spinal deformities without vertebral malformations. However, the molecular aetiology of AIS remains unclear. METHODS: Using genome/exome sequencing, we studied 368 patients with severe AIS (Cobb angle >40°) and 3794 controls from a Han Chinese cohort. We performed gene-based and pathway-based weighted rare variant association tests to assess the mutational burden of genes and established biological pathways. Differential expression analysis of muscle tissues from 14 patients with AIS and 15 controls was served for validation. RESULTS: SLC16A8, a lactate transporter linked to retinal glucose metabolism, was identified as a novel severe AIS-associated gene (p=3.08E-06, false discovery rate=0.009). Most AIS cases with deleterious SLC16A8 variants demonstrated early onset high myopia preceding scoliosis. Pathway-based burden test also revealed a significant enrichment in multiple carbohydrate metabolism pathways, especially galactose metabolism. Patients with deleterious variants in these genes demonstrated a significantly larger spinal curve. Genes related to catabolic processes and nutrient response showed divergent expression between AIS cases and controls, reinforcing our genomic findings. CONCLUSION: This study uncovers the pivotal role of genetic variants in carbohydrate metabolism in the development of AIS, unveiling new insights into its aetiology and potential treatment.


Assuntos
Metabolismo dos Carboidratos , Escoliose , Humanos , Escoliose/genética , Escoliose/patologia , Adolescente , Feminino , Masculino , Metabolismo dos Carboidratos/genética , Predisposição Genética para Doença , Criança , Sequenciamento do Exoma , Transportadores de Ácidos Monocarboxílicos/genética , Estudos de Casos e Controles , Estudos de Associação Genética , Mutação
12.
Cell Biol Int ; 48(8): 1185-1197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773713

RESUMO

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.


Assuntos
Neoplasias da Mama , Movimento Celular , Transição Epitelial-Mesenquimal , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Neoplasias Bucais , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Feminino , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Ácido Láctico/metabolismo , Movimento Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Simportadores/metabolismo , Simportadores/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Pirimidinonas , Tiofenos
13.
Theriogenology ; 225: 152-161, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805997

RESUMO

Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Desenvolvimento Embrionário , Mitocôndrias , Transportadores de Ácidos Monocarboxílicos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Suínos/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Simportadores
14.
Colloids Surf B Biointerfaces ; 238: 113930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692174

RESUMO

Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.


Assuntos
Neoplasias da Mama , Citocinas , Transportadores de Ácidos Monocarboxílicos , Proteínas Musculares , Nanopartículas , RNA Interferente Pequeno , Microambiente Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Nanopartículas/química , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Feminino , Citocinas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Animais , Camundongos , Técnicas de Silenciamento de Genes , Tamanho da Partícula , Concentração de Íons de Hidrogênio
15.
Nat Commun ; 15(1): 4549, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811525

RESUMO

Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.


Assuntos
Astrócitos , Neoplasias Encefálicas , Neoplasias da Mama , MicroRNAs , Neurônios , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Animais , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Vesículas Extracelulares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ácido Láctico/metabolismo , Proliferação de Células
16.
World J Gastroenterol ; 30(19): 2575-2602, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38817665

RESUMO

BACKGROUND: Lactate, previously considered a metabolic byproduct, is pivotal in cancer progression and maintaining the immunosuppressive tumor microenvironment. Further investigations confirmed that lactate is a primary regulator, introducing recently described post-translational modifications of histone and non-histone proteins, termed lysine lactylation. Pancreatic adenocarcinomas are characterized by increased glycolysis and lactate accumulation. However, our understanding of lactylation-related genes in pancreatic adenocarcinomas remains limited. AIM: To construct a novel lactylation-related gene signature to predict the survival of patients with pancreatic cancer. METHODS: RNA-seq and clinical data of pancreatic adenocarcinoma (PDAC) were obtained from the GTEx (Genotype-Tissue Expression) and TCGA (The Cancer Genome Atlas) databases via Xena Explorer, and GSE62452 datasets from GEO. Data on lactylation-related genes were obtained from publicly available sources. Differential expressed genes (DEGs) were acquired by using R package "DESeq2" in R. Univariate COX regression analysis, LASSO Cox and multivariate Cox regressions were produced to construct the lactylation-related prognostic model. Further analyses, including functional enrichment, ESTIMATE, and CIBERSORT, were performed to analyze immune status and treatment responses in patients with pancreatic cancer. PDAC and normal human cell lines were subjected to western blot analysis under lactic acid intervention; two PDAC cell lines with the most pronounced lactylation were selected. Subsequently, RT-PCR was employed to assess the expression of LRGs genes; SLC16A1, which showed the highest expression, was selected for further investigation. SLC16A1-mediated lactylation was analyzed by immunofluorescence, lactate production analysis, colony formation, transwell, and wound healing assays to investigate its role in promoting the proliferation and migration of PDAC cells. In vivo validation was performed using an established tumor model. RESULTS: In this study, we successfully identified 10 differentially expressed lactylation-related genes (LRGs) with prognostic value. Subsequently, a lactylation-related signature was developed based on five OS-related lactylation-related genes (SLC16A1, HLA-DRB1, KCNN4, KIF23, and HPDL) using Lasso Cox hazard regression analysis. Subsequently, we evaluated the clinical significance of the lactylation-related genes in pancreatic adenocarcinoma. A comprehensive examination of infiltrating immune cells and tumor mutation burden was conducted across different subgroups. Furthermore, we demonstrated that SLC16A1 modulates lactylation in pancreatic cancer cells through lactate transport. Both in vivo and in vitro experiments showed that decreasing SLC16A1 Level and its lactylation significantly inhibited tumor progression, indicating the potential of targeting the SLC16A1/Lactylation-associated signaling pathway as a therapeutic strategy against pancreatic adenocarcinoma. CONCLUSION: We constructed a novel lactylation-related prognostic signature to predict OS, immune status, and treatment response of patients with pancreatic adenocarcinoma, providing new strategic directions and antitumor immunotherapies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Processamento de Proteína Pós-Traducional , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/mortalidade , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Ácido Láctico/metabolismo , Simportadores/genética , Simportadores/metabolismo , Proliferação de Células/genética , Perfilação da Expressão Gênica , Masculino , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Feminino , Animais , Transcriptoma
17.
Cell Rep ; 43(5): 114180, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733581

RESUMO

Macrophage activation is a hallmark of atherosclerosis, accompanied by a switch in core metabolism from oxidative phosphorylation to glycolysis. The crosstalk between metabolic rewiring and histone modifications in macrophages is worthy of further investigation. Here, we find that lactate efflux-associated monocarboxylate transporter 4 (MCT4)-mediated histone lactylation is closely related to atherosclerosis. Histone H3 lysine 18 lactylation dependent on MCT4 deficiency activated the transcription of anti-inflammatory genes and tricarboxylic acid cycle genes, resulting in the initiation of local repair and homeostasis. Strikingly, histone lactylation is characteristically involved in the stage-specific local repair process during M1 to M2 transformation, whereas histone methylation and acetylation are not. Gene manipulation and protein hydrolysis-targeted chimerism technology are used to confirm that MCT4 deficiency favors ameliorating atherosclerosis. Therefore, our study shows that macrophage MCT4 deficiency, which links metabolic rewiring and histone modifications, plays a key role in training macrophages to become repair and homeostasis phenotypes.


Assuntos
Aterosclerose , Histonas , Lisina , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Histonas/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Lisina/metabolismo , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Ativação de Macrófagos , Camundongos Endogâmicos C57BL
18.
Sci Rep ; 14(1): 11160, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750066

RESUMO

Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1ß), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1ß and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1ß and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1ß and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1ß and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1ß and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1ß and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1ß and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Lipopolissacarídeos , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação da Expressão Gênica
19.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Feminino , Humanos , Gravidez , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
20.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650461

RESUMO

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Transportadores de Ácidos Monocarboxílicos , Serina , Serina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Humanos , Rim/metabolismo , Camundongos , Sódio/metabolismo , Transporte Biológico , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...