Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.816
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273609

RESUMO

Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.


Assuntos
Alumínio , Dendrobium , Regulação da Expressão Gênica de Plantas , Orchidaceae , Filogenia , Proteínas de Plantas , Alumínio/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Família Multigênica , Regiões Promotoras Genéticas , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Malatos/metabolismo , Sequência de Aminoácidos
3.
Food Chem Toxicol ; 192: 114949, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182635

RESUMO

Acute kidney injury (AKI) is a worldwide public health problem with high morbidity and mortality. Cisplatin is a widely used chemotherapeutic agent for treating solid tumors, but the induction of AKI restricts its clinical application. In this study, the effect of cisplatin on the expression of organic ion transporters was investigated through in vivo and in vitro experiments. Targeted metabolomics techniques were used to measure the levels of selected endogenous substances in serum. Transmission electron microscopy was used to observe the microstructure of renal tubular epithelial cells. Our results show that the toxicity of cisplatin on HK-2 cells or HEK-293 cells was time- and dose-dependent. Administration of cisplatin decreased the expression of OAT1/3 and OCT2 and increased the expression of MRP2/4. Mitochondrial damage induced by cisplatin lead to renal tubular epithelial cell injury. In addition, administration of cisplatin resulted in significant changes in endogenous substance levels in serum, including amino acids, carnitine, and fatty acids. These serum amino acids and metabolites (α-aminobutyric acid, proline, and alanine), carnitines (tradecanoylcarnitine, hexanylcarnitine, octanoylcarnitine, 2-methylbutyroylcarnitine, palmitoylcarnitine, and linoleylcarnitine) and fatty acids (9E-tetradecenoic acid) represent endogenous substances with diagnostic potential for cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Cisplatino/toxicidade , Humanos , Animais , Células HEK293 , Masculino , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Antineoplásicos/toxicidade , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportador 2 de Cátion Orgânico/metabolismo , Transportador 2 de Cátion Orgânico/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Carnitina/análogos & derivados , Carnitina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
4.
Signal Transduct Target Ther ; 9(1): 212, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39191722

RESUMO

Hyperuricemia, characterized by elevated levels of serum uric acid (SUA), is linked to a spectrum of commodities such as gout, cardiovascular diseases, renal disorders, metabolic syndrome, and diabetes, etc. Significantly impairing the quality of life for those affected, the prevalence of hyperuricemia is an upward trend globally, especially in most developed countries. UA possesses a multifaceted role, such as antioxidant, pro-oxidative, pro-inflammatory, nitric oxide modulating, anti-aging, and immune effects, which are significant in both physiological and pathological contexts. The equilibrium of circulating urate levels hinges on the interplay between production and excretion, a delicate balance orchestrated by urate transporter functions across various epithelial tissues and cell types. While existing research has identified hyperuricemia involvement in numerous biological processes and signaling pathways, the precise mechanisms connecting elevated UA levels to disease etiology remain to be fully elucidated. In addition, the influence of genetic susceptibilities and environmental determinants on hyperuricemia calls for a detailed and nuanced examination. This review compiles data from global epidemiological studies and clinical practices, exploring the physiological processes and the genetic foundations of urate transporters in depth. Furthermore, we uncover the complex mechanisms by which the UA induced inflammation influences metabolic processes in individuals with hyperuricemia and the association with its relative disease, offering a foundation for innovative therapeutic approaches and advanced pharmacological strategies.


Assuntos
Hiperuricemia , Ácido Úrico , Hiperuricemia/genética , Humanos , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Gota/genética , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo
5.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126116

RESUMO

Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis.


Assuntos
Hiperuricemia , Ácido Oxônico , Plantago , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Animais , Ratos , Ácido Oxônico/efeitos adversos , Masculino , Plantago/química , Ácido Úrico/sangue , Extratos Vegetais/farmacologia , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Xantina Oxidase/metabolismo
6.
Drug Metab Dispos ; 52(9): 957-965, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39038952

RESUMO

The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.


Assuntos
Atorvastatina , Fígado , Transportadores de Ânions Orgânicos , Animais , Atorvastatina/farmacocinética , Atorvastatina/administração & dosagem , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Humanos , Masculino , Ratos , Fígado/metabolismo , Células HeLa , Ratos Transgênicos , Intestino Delgado/metabolismo , Técnicas de Inativação de Genes/métodos , Rim/metabolismo , Técnicas de Introdução de Genes/métodos , Administração Oral , Administração Intravenosa , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Hepatócitos/metabolismo , Distribuição Tecidual
7.
Toxicol Appl Pharmacol ; 490: 117040, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032800

RESUMO

Morphine is a widely used opioid for the treatment of pain. Differences in drug transporter expression and activity may contribute to variability in morphine pharmacokinetics and response. Using appropriate mouse models, we investigated the impact of the efflux transporters ABCB1 and ABCG2 and the OATP uptake transporters on the pharmacokinetics of morphine, morphine-3-glucuronide (M3G), and M6G. Upon subcutaneous administration of morphine, its plasma exposure in Abcb1a/1b-/-;Abcg2-/--, Abcb1a/1b-/-;Abcg2-/-;Oatp1a/1b-/-;Oatp2b1-/- (Bab12), and Oatp1a/1b-/-;Oatp2b1-/- mice was similar to that found in wild-type mice. Forty minutes after dosing, morphine brain accumulation increased by 2-fold when mouse (m)Abcb1 and mAbcg2 were ablated. Relative recovery of morphine in small intestinal content was significantly reduced in all the knockout strains. In the absence of mOatp1a/1b and mOatp2b1, plasma levels of M3G were markedly increased, suggesting a lower elimination rate. Moreover, Oatp-deficient mice displayed reduced hepatic and intestinal M3G accumulation. Mouse Oatps similarly affected plasma and tissue disposition of subcutaneously administered M6G. Human OATP1B1/1B3 transporters modestly contribute to the liver accumulation of M6G. In summary, mAbcb1, in combination with mAbcg2, limits morphine brain penetration and its net intestinal absorption. Variation in ABCB1 activity due to genetic polymorphisms/mutations and/or environmental factors might, therefore, partially affect morphine tissue exposure in patients. The ablation of mOatp1a/1b increases plasma exposure and decreases the liver and small intestinal disposition of M3G and M6G. Since the contribution of human OATP1B1/1B3 to M6G liver uptake was quite modest, the risks of undesirable drug interactions or interindividual variation related to OATP activity are likely negligible.


Assuntos
Camundongos Knockout , Derivados da Morfina , Morfina , Animais , Morfina/farmacocinética , Morfina/metabolismo , Derivados da Morfina/metabolismo , Derivados da Morfina/sangue , Camundongos , Distribuição Tecidual , Masculino , Encéfalo/metabolismo , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/metabolismo , Analgésicos Opioides/sangue , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Fígado/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética
8.
Aquat Toxicol ; 273: 107031, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067263

RESUMO

Organic anion transporting polypeptides (OATPs) facilitate the cellular uptake of a large number of compounds. Zebrafish Oatp1d1 matches the functional capabilities of human OATP orthologs, particularly in hormone and drug transport. It is highly expressed in the liver and later stages of embryonic development, indicating its critical role in zebrafish physiology and development. Data from previous in vitro analyses have shown a high affinity of zebrafish Oatp1d1 for pharmaceuticals and xenobiotics, providing the basis for further in vivo studies on its defence and developmental functions. Using CRISPR-Cas9 technology, we have generated an Oatp1d1 zebrafish mutant that has highly reduced Oatp1d1 expression in embryos and adult tissues compared to wild type (WT). The absence of Oatp1d1 was confirmed using custom-made antibodies. To evaluate its ecotoxicological relevance, mutant and WT embryos were exposed to increasing concentrations of diclofenac, an NSAID known for its wide and frequent use, environmental pseudo-persistence and ecological implications. WT embryos showed developmental delays and malformations such as spinal curvature, cardiac edema and blood pooling at higher diclofenac concentrations, whereas the Oatp1d1 mutant embryos showed marked resilience, with milder developmental defects and delayed toxic effects. These observations suggest that the absence of Oatp1d1 impedes the efficient entry of diclofenac into hepatocytes, thereby slowing its biotransformation into potentially more toxic metabolites. In addition, the changes in transcript expression of other uptake transporters revealed a highly probable and complex network of compensatory mechanisms. Therefore, the results of this study point to the importance of Oatp1d1-mediated transport of diclofenac, as demonstrated for the first time in vivo using an Oatp1 deficient zebrafish line. Finally, our data indicates that the compensatory role of other transporters with overlapping substrate preferences needs to be considered for a reliable understanding of the physiological and/or defensive role(s) of membrane transporters.


Assuntos
Diclofenaco , Embrião não Mamífero , Transportadores de Ânions Orgânicos , Poluentes Químicos da Água , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Diclofenaco/toxicidade , Poluentes Químicos da Água/toxicidade , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Técnicas de Inativação de Genes
9.
J Lipid Res ; 65(8): 100594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009243

RESUMO

Bile salts can strongly influence energy metabolism through systemic signaling, which can be enhanced by inhibiting the hepatic bile salt transporter Na+ taurocholate cotransporting polypeptide (NTCP), thereby delaying hepatic reuptake of bile salts to increase systemic bile salt levels. Bulevirtide is an NTCP inhibitor and was originally developed to prevent NTCP-mediated entry of Hepatitis B and D into hepatocytes. We previously demonstrated that NTCP inhibition lowers body weight, induces glucagon-like peptide-1 (GLP1) secretion, and lowers plasma cholesterol levels in murine obesity models. In humans, a genetic loss-of-function variant of NTCP has been associated with reduced plasma cholesterol levels. Here, we aimed to assess if Bulevirtide treatment attenuates atherosclerosis development by treating female Ldlr-/- mice with Bulevirtide or vehicle for 11 weeks. Since this did not result in the expected increase in plasma bile salt levels, we generated Oatp1a1-/-Ldlr-/- mice, an atherosclerosis-prone model with human-like hepatic bile salt uptake characteristics. These mice showed delayed plasma clearance of bile salts and elevated bile salt levels upon Bulevirtide treatment. At the study endpoint, Bulevirtide-treated female Oatp1a1-/-Ldlr-/- mice had reduced atherosclerotic lesion area in the aortic root that coincided with lowered plasma LDL-c levels, independent of intestinal cholesterol absorption. In conclusion, Bulevirtide, which is considered safe and is EMA-approved for the treatment of Hepatitis D, reduces atherosclerotic lesion area by reducing plasma LDL-c levels. We anticipate that its application may extend to atherosclerotic cardiovascular diseases, which warrants clinical trials.


Assuntos
Aterosclerose , Ácidos e Sais Biliares , Fígado , Receptores de LDL , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/genética , Camundongos , Ácidos e Sais Biliares/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Feminino , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Camundongos Knockout , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/antagonistas & inibidores
10.
Sci Rep ; 14(1): 15449, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965392

RESUMO

Hyperuricemia (HUA), a metabolic disease caused by excessive production or decreased excretion of uric acid (UA), has been reported to be closely associated with a variety of UA transporters. Clerodendranthus spicatus (C. spicatus) is an herbal widely used in China for the treatment of HUA. However, the mechanism has not been clarified. Here, the rat model of HUA was induced via 10% fructose. The levels of biochemical indicators, including UA, xanthine oxidase (XOD), adenosine deaminase (ADA), blood urea nitrogen (BUN), and creatinine (Cre), were measured. Western blotting was applied to explore its effect on renal UA transporters, such as urate transporter1 (URAT1), glucose transporter 9 (GLUT9), and ATP-binding cassette super-family G member 2 (ABCG2). Furthermore, the effect of C. spicatus on plasma metabolites was identified by metabolomics. Our results showed that C. spicatus could significantly reduce the serum levels of UA, XOD, ADA and Cre, and improve the renal pathological changes in HUA rats. Meanwhile, C. spicatus significantly inhibited the expression of URAT1 and GLUT9, while increased the expression of ABCG2 in a dose-dependent manner. Metabolomics showed that 13 components, including 1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-PE, Tyr-Leu and N-cis-15-Tetracosenoyl-C18-sphingosine, were identified as potential biomarkers for the UA-lowering effect of C. spicatus. In addition, pathway enrichment analysis revealed that arginine biosynthesis, biosynthesis of amino acids, pyrimidine metabolism and other metabolic pathways might be involved in the protection of C. spicatus against HUA. This study is the first to explore the mechanism of anti-HUA of C. spicatus through molecular biology and metabolomics analysis, which provides new ideas for the treatment of HUA.


Assuntos
Hiperuricemia , Metabolômica , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Ratos , Metabolômica/métodos , Ácido Úrico/sangue , Masculino , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Xantina Oxidase/metabolismo , Modelos Animais de Doenças
11.
Nat Commun ; 15(1): 6294, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060273

RESUMO

Aluminum (Al) toxicity is one of the major constraints for crop production in acid soils, Al-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-dependent malate exudation from roots is essential for Al resistance in Arabidopsis, in which the C2H2-type transcription factor SENSITIVE TO PROTONRHIZOTOXICITY1 (STOP1) play a critical role. In this study, we reveal that the RAE1-GL2-STOP1-RHD6 protein module regulated the ALMT1-mediated Al resistance. GL2, STOP1 and RHD6 directly target the promoter of ALMT1 to suppress or activate its transcriptional expression, respectively, and mutually influence their action on the promoter of ALMT1 by forming a protein complex. STOP1 mediates the expression of RHD6 and RHD6-regulated root growth inhibition, while GL2 and STOP1 suppress each other's expression at the transcriptional and translational level and regulate Al-inhibited root growth. F-box protein RAE1 degrades RHD6 via the 26S proteasome, leading to suppressed activity of the ALMT1 promoter. RHD6 inhibits the transcriptional expression of RAE1 by directly targeting its promoter. Unlike RHD6, RAE1 promotes the GL2 expression at the protein level and GL2 activates the expression of RAE1 at the transcriptional level by directly targeting its promoter. The study provides insights into the transcriptional regulation of ALMT1, revealing its significance in Al resistance and highlighting the crucial role of the STOP1-associated regulatory networks.


Assuntos
Alumínio , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Regiões Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Plantas Geneticamente Modificadas
12.
BMC Pediatr ; 24(1): 396, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890589

RESUMO

BACKGROUND:  Chronic enteropathy associated with SLCO2A1 gene (CEAS) is a unique type of inflammatory bowel disease. CEAS is monogenic disease and is thought to develop from childhood, but studies on pediatric CEAS are scarce. We analyzed characteristics of pediatric CEAS. METHODS: Eleven patients diagnosed with CEAS at Seoul National University Children's Hospital were identified and analyzed. Clinical data of patients were collected. Sanger sequencing of SLCO2A1 was performed on all patients. RESULTS: Patients were diagnosed at a median age of 16.0 years (IQR 11.0 ~ 20.0), and the median age at symptoms onset was only 4.0 years (IQR 2.5 ~ 6.0). Growth delay was observed at the time of diagnosis. Patients showed multiple ulcers or strictures in the small intestine, while the esophagus and colon were unaffected in any patients. Almost half of the patients underwent small intestine resection. The major laboratory features of pediatric CEAS include iron deficiency anemia (IDA), hypoalbuminemia, and near-normal levels of C-reactive protein (CRP). Two novel mutations of SLCO2A1 were identified. The most prevalent symptoms were abdominal pain and pale face. None of the immunomodulatory drugs showed a significant effect on CEAS. CONCLUSIONS: Pediatric CEAS typically develop from very young age, suggesting it as one type of monogenic very early onset inflammatory bowel disease. CEAS can cause growth delay in children but there is no effective treatment currently. We recommend screening for SLCO2A1 mutations to pediatric patients with chronic IDA from a young age and small intestine ulcers without elevation of CRP levels.


Assuntos
Doenças Inflamatórias Intestinais , Transportadores de Ânions Orgânicos , Humanos , Masculino , Feminino , Adolescente , Criança , Transportadores de Ânions Orgânicos/genética , Doenças Inflamatórias Intestinais/genética , Adulto Jovem , Mutação , Doença Crônica , Pré-Escolar , Intestino Delgado/patologia , Idade de Início , Enteropatias/genética , Enteropatias/diagnóstico
13.
Thyroid ; 34(8): 1027-1037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38836423

RESUMO

Introduction: Thyroid hormone transporters are essential for thyroid hormones to enter target cells. Monocarboxylate transporter (MCT) 8 is a key transporter and is expressed at the blood-brain barrier (BBB), in neural cells and many other tissues. Patients with MCT8 deficiency have severe neurodevelopmental delays because of cerebral hypothyroidism and chronic sequelae of peripheral thyrotoxicosis. The T3 analog 3,3',5-triiodothyroacetic acid (TRIAC) rescued neurodevelopmental features in animal models mimicking MCT8 deficiency and improved key metabolic features in patients with MCT8 deficiency. However, the identity of the transporter(s) that facilitate TRIAC transport are unknown. Here, we screened candidate transporters that are expressed at the human BBB and/or brain-cerebrospinal fluid barrier and known thyroid hormone transporters for TRIAC transport. Materials and Methods: Plasma membrane expression was determined by cell surface biotinylation assays. Intracellular accumulation of 1 nM TRIAC was assessed in COS-1 cells expressing candidate transporters in Dulbecco's phosphate-buffered saline (DPBS)/0.1% glucose or Dulbecco's modified Eagle's medium (DMEM) with or without 0.1% bovine serum albumin (BSA). Expression of Slc22a8 was determined by fluorescent in situ hybridization in brain sections from wild-type and Mct8/Oatp1c1 knockout mice at postnatal days 12, 21, and 120. Results: In total, 59 plasma membrane transporters were selected for screening of TRIAC accumulation (n = 40 based on expression at the human BBB and/or brain-cerebrospinal fluid barrier and having small organic molecules as substrates; n = 19 known thyroid hormone transporters). Screening of the selected transporter panel showed that 18 transporters facilitated significant intracellular accumulation of TRIAC in DPBS/0.1% glucose or DMEM in the absence of BSA. In the presence of BSA, substantial transport was noted for SLCO1B1 and SLC22A8 (in DPBS/0.1% glucose and DMEM) and SLC10A1, SLC22A6, and SLC22A24 (in DMEM). The zebrafish and mouse orthologs of these transporters similarly facilitated intracellular accumulation of TRIAC. Highest Slc22a8 mRNA expression was detected in mouse brain capillary endothelial cells and choroid plexus epithelial cells at early postnatal time points, but was reduced at P120. Conclusions: Human SLC10A1, SLCO1B1, SLC22A6, SLC22A8, and SLC22A24 as well as their mouse and zebrafish orthologs are efficient TRIAC transporters. These findings contribute to the understanding of TRIAC treatment in patients with MCT8 deficiency and animal models thereof.


Assuntos
Barreira Hematoencefálica , Transportadores de Ácidos Monocarboxílicos , Simportadores , Tri-Iodotironina , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Humanos , Simportadores/metabolismo , Simportadores/genética , Barreira Hematoencefálica/metabolismo , Camundongos , Tri-Iodotironina/metabolismo , Tri-Iodotironina/análogos & derivados , Chlorocebus aethiops , Células COS , Peixe-Zebra , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transporte Biológico , Hipotonia Muscular/metabolismo , Hipotonia Muscular/genética , Camundongos Knockout , Atrofia Muscular , Deficiência Intelectual Ligada ao Cromossomo X
14.
EMBO J ; 43(16): 3450-3465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937634

RESUMO

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.


Assuntos
Transportadores de Ácidos Dicarboxílicos , Humanos , Cinética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Multimerização Proteica , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Antiporters/metabolismo , Antiporters/genética , Antiporters/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Transporte Biológico , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/química , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte , Proteínas de Membrana Transportadoras
15.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
16.
Orphanet J Rare Dis ; 19(1): 229, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862970

RESUMO

BACKGROUND: Chronic enteropathy associated with SLCO2A1 gene (CEAS) results from loss-of-function variants in SLCO2A1, which encodes the prostaglandin transporter (PGT). CEAS follows an autosomal recessive inheritance pattern. To date, approximate 30 pathogenic variants have been reported in CEAS. METHODS: We performed whole exome sequencing (WES) to screen for potential pathogenic variants in a patient suspected of having CEAS, and confirmed a variant in SLCO2A1 using Sanger sequencing. We established an in vitro minigene model to compare splicing between wild type (WT) and mutant transcripts. Quantitative polymerase chain reaction (qPCR) was used to evaluate SLCO2A1 transcription in the stomach and colon tissues from the patient and a healthy control (HC). The transcripts were further cloned and sequenced. RESULTS: The patient had a novel, homozygous, recessive c.929A > G variant in exon 7 of SLCO2A1, which has not been previously reported in CEAS or PHO. This variant altered splicing, resulting in an exon 7-truncated transcript lacking 16 bases. No normal transcript was detected in the patient's stomach or colon tissue. qPCR also showed significantly decreased SLCO2A1 transcription compared to HC. CONCLUSION: A previously unreported variant caused defective SLCO2A1 splicing and reduced mRNA levels in a patient with CEAS and PHO. This research enhances understanding of CEAS and PHO pathophysiology and aids genetic counseling and diagnosis.


Assuntos
Transportadores de Ânions Orgânicos , Osteoartropatia Hipertrófica Primária , Feminino , Humanos , Masculino , Povo Asiático/genética , População do Leste Asiático , Sequenciamento do Exoma , Gastroenteropatias/genética , Mutação/genética , Transportadores de Ânions Orgânicos/genética , Osteoartropatia Hipertrófica Primária/genética
17.
J Ethnopharmacol ; 333: 118488, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38925319

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY: This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS: The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS: The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.


Assuntos
Modelos Animais de Doenças , Flavonoides , Hiperuricemia , Transportadores de Ânions Orgânicos , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Ácido Úrico/sangue , Masculino , Flavonoides/farmacologia , Flavonoides/análise , Camundongos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Flores/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Alopurinol/farmacologia , Camundongos Endogâmicos ICR
18.
Cells ; 13(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38920639

RESUMO

The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/citologia , Células Epiteliais/metabolismo , Modelos Biológicos , Compostos de Piridínio/metabolismo , Ânions/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Transporte Biológico , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Linhagem Celular , Cátions/metabolismo , Fluoresceínas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética
19.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731886

RESUMO

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Assuntos
Encéfalo , Células Endoteliais , Integrases , Animais , Camundongos , Células Endoteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Encéfalo/metabolismo , Técnicas de Introdução de Genes , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Tamoxifeno/farmacologia , Proteína Vermelha Fluorescente
20.
Biomed Pharmacother ; 175: 116644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692057

RESUMO

Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bilirrubina , Camundongos Knockout , Transportadores de Ânions Orgânicos , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Bilirrubina/sangue , Bilirrubina/metabolismo , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Terfenadina/farmacocinética , Terfenadina/análogos & derivados , Masculino , Transporte Biológico , Rosuvastatina Cálcica/farmacocinética , Rosuvastatina Cálcica/farmacologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...