Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.260
Filtrar
1.
PLoS One ; 19(9): e0309553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39241014

RESUMO

Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.


Assuntos
Cálcio , Channelrhodopsins , Simulação de Dinâmica Molecular , Sódio , Sódio/metabolismo , Cálcio/metabolismo , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/química , Animais , Transporte de Íons , Humanos , Células HEK293 , Ativação do Canal Iônico
2.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273618

RESUMO

Retinoids are known to improve the condition of the skin. Transepithelial transport of sodium and chloride ions is important for proper skin function. So far, the effect of applying vitamin A preparations to the skin on ion transport has not been evaluated. In the study, electrophysiological parameters, including transepithelial electric potential (PD) and transepithelial resistance (R), of rabbit skin specimens after 24 h exposure to retinol ointment (800 mass units/g) were measured in a modified Ussing chamber. The R of the fragments incubated with retinol was significantly different than that of the control skin samples incubated in iso-osmotic Ringer solution. For the controls, the PD values were negative, whereas the retinol-treated specimens revealed positive PD values. Mechanical-chemical stimulation with the use of inhibitors of the transport of sodium (amiloride) or chloride (bumetanide) ions revealed specific changes in the maximal and minimal PD values measured for the retinol-treated samples. Retinol was shown to slightly modify the transport pathways of sodium and chloride ions. In particular, an intensification of the chloride ion secretion from keratinocytes was observed. The proposed action may contribute to deep hydration and increase skin tightness, limiting the action of other substances on its surface.


Assuntos
Transporte de Íons , Pele , Vitamina A , Animais , Coelhos , Vitamina A/farmacologia , Vitamina A/metabolismo , Transporte de Íons/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Pomadas , Sódio/metabolismo , Cloretos/metabolismo
3.
Biosens Bioelectron ; 266: 116735, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241337

RESUMO

Nanofluidic hybrid membranes display distinct ionic current rectification (ICR) properties and provide high surface area for immobilizing probes on the outer surface, exhibiting great potential in detection of biomolecules. Herein, we fabricated MOFs/AAO hybrid membrane with aptamers functionalized on the outer surface for in situ detection of living cells released secretions. TNF-α (a small molecular protein secreted by macrophages) was used as a model. After TNF-α was specifically captured by aptamers on the membrane surface, the asymmetry of surface charge on the hybrid membrane was amplified, the ICR was increased from 3.89 to 18.85. According to the ICR change, TNF-α was sensitively measured with a detection limit of ∼0.49 pM, which was significantly lower than other reported methods. When the hybrid membrane was clamped in the middle of self-made device, PET membrane incubated macrophages was rolled up and inserted into the chamber to mimic cellular microenvironment. Macrophages released TNF-α could be real time monitored with ionic current, macrophages and normal cells could be effectively distinguished according to the released TNF-α level. Thus, we proposed a nanofluidic platform for accurately measuring cell secretions in an engineered cellular microenvironment with a direct manner, without the need for labels or amplification steps.


Assuntos
Técnicas Biossensoriais , Transporte de Íons , Macrófagos , Fator de Necrose Tumoral alfa , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Macrófagos/metabolismo , Macrófagos/citologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/análise , Estruturas Metalorgânicas/química , Animais , Aptâmeros de Nucleotídeos/química , Humanos , Desenho de Equipamento , Células RAW 264.7 , Camundongos , Membranas Artificiais , Limite de Detecção
4.
Adv Physiol Educ ; 48(4): 790-798, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208131

RESUMO

In this article we analyze the classic Hodgkin and Keynes 1955 paper describing investigations of the independence principle, with the expectation that there is much students and educators can learn from such exercises, most notably how the authors applied their diverse skill set to tackling the numerous obstacles that the study presented. The paper encompasses three of the physiology core concepts, cell membranes, flow down gradients, and scientific reasoning, which were recently assigned to the classes The Biological World, The Physical World, and Ways of Looking at the World, respectively. Thus, analysis of such a paper illuminates the relationships that exist between distinct concepts and encourages a holistic approach to understanding physiology. In-depth analysis of the paper allows us to follow the authors' thought processes from their realization that previous methods lacked the resolution to answer a fundamental question relating to ion movement across membranes to the application of a more sensitive technique and ultimately the development of a novel model describing ion flux. This paper was the culmination of work started in the mid-1930s, strongly supported the ionic theory of nervous conduction proposed by Hodgkin and Huxley, and predicted the presence of ion channels as narrow pores through which ions move sequentially four decades before these features were convincingly demonstrated.NEW & NOTEWORTHY We describe in detail Hodgkin and Keynes' investigation of the independence principle. It is our expectation that students and educators can benefit from following the thought processes applied by the authors as they navigated the complexities of experimental design and data analysis, culminating in development of a model whose elegant simplicity was convincing evidence of narrow membrane-bound pores, ion channels, that were the conduit for transmembrane ion movement.


Assuntos
Fisiologia , Humanos , Fisiologia/educação , Fisiologia/história , Transporte de Íons/fisiologia , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Modelos Biológicos , História do Século XX , Animais
5.
Sci Adv ; 10(35): eadq0118, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213352

RESUMO

The transport of ions through biological ion channels is regulated not only by their structural characteristics but also by the composition of the phospholipid membrane, which serves as a carrier for nanochannels. Inspired by the modulation of ion currents by lipid membrane composition, exemplified by the activation of the K+ channel of Streptomyces A by anionic lipids, we present a biomimetic nanochannel system based on combining DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By designing multibranched DNA nanowires, we assemble programmable DNA scaffold networks (DSNs) on the GO surface to precisely control membrane composition. Modulating the DSN layers from one to five enhances DNA composition, yielding a maximum 12-fold enhancement in ion current, primarily due to charge effects. Incorporating DNAzymes facilitates reversible modulation of membrane composition, enabling cyclic conversion of ion current. This approach offers a pathway for creating devices with highly efficient, tunable ion transport, applicable in diverse fields like mass transport, environmental protection, biomimetic channels, and biosensors.


Assuntos
Grafite , Grafite/química , DNA/química , DNA/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Nanotecnologia/métodos , Membrana Celular/metabolismo , Membrana Celular/química , Transporte de Íons , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanofios/química , Materiais Biomiméticos/química
6.
Nat Commun ; 15(1): 7189, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168976

RESUMO

Biological ion channels usually conduct the high-flux transport of 107 ~ 108 ions·s-1; however, the underlying mechanism is still lacking. Here, by applying the KcsA potassium channel as a typical example, and performing multitimescale molecular dynamics simulations, we demonstrate that there is coherence of the K+ ions confined in biological channels, which determines transport. The coherent oscillation state of confined K+ ions with a nanosecond-level lifetime in the channel dominates each transport event, serving as the physical basis for the high flux of ~108 ions∙s-1. The coherent transfer of confined K+ ions only takes several picoseconds and has no perturbation effect on the ion coherence, acting as the directional key of transport. Such ion coherence is allowed by quantum mechanics. An increase in the coherence can significantly enhance the ion conductance. These findings provide a potential explanation from the perspective of coherence for the high-flux ion transport with ultralow energy consumption of biological channels.


Assuntos
Transporte de Íons , Simulação de Dinâmica Molecular , Canais de Potássio , Potássio , Teoria Quântica , Canais de Potássio/metabolismo , Canais de Potássio/química , Potássio/metabolismo , Potássio/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Íons/metabolismo
7.
PLoS Biol ; 22(8): e3002719, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39167625

RESUMO

The band 3 transporter is a critical integral membrane protein of the red blood cell (RBC), as it is responsible for catalyzing the exchange of bicarbonate and chloride anions across the plasma membrane. To elucidate the structural mechanism of the band 3 transporter, detergent solubilized human ghost membrane reconstituted in nanodiscs was applied to a cryo-EM holey carbon grid to define its composition. With this approach, we identified and determined structural information of the human band 3 transporter. Here, we present 5 different cryo-EM structures of the transmembrane domain of dimeric band 3, either alone or bound with chloride or bicarbonate. Interestingly, we observed that human band 3 can form both symmetric and asymmetric dimers with a different combination of outward-facing (OF) and inward-facing (IF) states. These structures also allow us to obtain the first model of a human band 3 molecule at the IF conformation. Based on the structural data of these dimers, we propose a model of ion transport that is in favor of the elevator-type mechanism.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Bicarbonatos , Cloretos , Microscopia Crioeletrônica , Humanos , Microscopia Crioeletrônica/métodos , Bicarbonatos/metabolismo , Cloretos/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/química , Transporte de Íons , Modelos Moleculares , Multimerização Proteica , Conformação Proteica , Membrana Celular/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(33): e2403903121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116127

RESUMO

Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.


Assuntos
Conexinas , Humanos , Conexinas/metabolismo , Conexinas/genética , Transporte de Íons , Animais , Mutação , Íons/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética
9.
Eur J Pharmacol ; 982: 176941, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182544

RESUMO

ATP, released e.g. after cell damage or during inflammation, can alter ion transport across the intestinal mucosa via stimulation of purinergic receptors in the basolateral as well as in the apical membrane of epithelial cells. When ATP acts from the serosal side, it induces an increase in short-circuit current (Isc) via Cl- secretion across the colonic epithelium. In contrast, mucosal ATP or its derivative, BzATP, predominantly stimulating ionotropic P2X4 and P2X7 receptors, evoke an increase in Isc, which could not be explained by Cl- secretion. The underlying ion currents after stimulation of apical purinergic receptors in rat distal colon are still unclear and were investigated in the present study. Ussing chamber experiments revealed that the Isc induced by mucosal ATP was dependent on the presence of mucosal Ca2+ and inhibited by the K+ channel blocker, Ba2+, indicating the involvement of Ca2+-dependent K+ channels. Blockade of the transepithelial Isc by lanthanides (La3+, Gd3+) suggests that Ca2+ enters the epithelium via nonselective cation channels. Experiments with basolaterally depolarized epithelia confirmed the activation of apical lanthanide-sensitive Na+- and Ca2+-permeable cation channels by ATP. Putative candidates might be TRP channels, from which several subtypes were detected in colonic tissue in RT-PCR experiments. In addition, the activation of an apical Cl- conductance was observed when suitable Cl- concentration gradients were applied. Consequently, mucosal ATP, acting as 'danger signal', stimulates cation and anion channels in the apical membrane to induce a secretory response as part of the local defence mechanism in the intestinal epithelium.


Assuntos
Trifosfato de Adenosina , Colo , Mucosa Intestinal , Animais , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Colo/metabolismo , Colo/efeitos dos fármacos , Ratos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Ratos Wistar , Receptores Purinérgicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Cálcio/metabolismo
10.
Insect Biochem Mol Biol ; 173: 104178, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187166

RESUMO

Ion transport peptide (ITP) and ITP-like (ITPLs) are pleiotropic bioactive peptides in insects. Although the contribution of these peptides to ecdysis has been studied, the precise regulatory mechanisms remain poorly understood. Here, we characterized the functions of itp and itpl variants in the two-spotted cricket, Gryllus bimaculatus. Reverse transcription-quantitative PCR and whole-mount in situ hybridization revealed that itp was expressed in the brain and terminal abdominal ganglion, whereas itpl variants were expressed in all ganglia of the central nervous system. Simultaneous knockdown of itp and itpls disrupted ecdysis behavior and water transport from the gut into the hemolymph during molting. Nevertheless, knockdown of itpls without influencing itp expression did not significantly affect ecdysis behavior but caused a reduction in hemolymph mass. Although water transport into the hemolymph is considered necessary for the swelling required to split the old cuticle layers during molting, a rescue experiment by injection of water or cricket Ringer's solution into the hemolymph of knockdown crickets did not recover the normal phenotype. Therefore, we propose that ITP/ITPL control ecdysis behavior probably not by regulating water transport from the gut into the hemolymph in crickets.


Assuntos
Gryllidae , Hemolinfa , Proteínas de Insetos , Muda , Animais , Gryllidae/metabolismo , Gryllidae/genética , Gryllidae/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemolinfa/metabolismo , Água/metabolismo , Transporte de Íons , Neuropeptídeos/metabolismo , Neuropeptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...