Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.002
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928178

RESUMO

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Assuntos
Ritmo Circadiano , Dopamina , Camundongos Knockout , Serotonina , Triptofano Hidroxilase , Tirosina 3-Mono-Oxigenase , Área Tegmentar Ventral , Animais , Serotonina/metabolismo , Camundongos , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/deficiência , Área Tegmentar Ventral/metabolismo , Colecistocinina/metabolismo , Colecistocinina/genética , Neurônios Dopaminérgicos/metabolismo , Masculino , Substância Negra/metabolismo , Camundongos Endogâmicos C57BL , Transtorno Bipolar/metabolismo , Transtorno Bipolar/genética
2.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891871

RESUMO

Until the late 1800s, drug development was a chance finding based on observations and repeated trials and errors. Today, drug development must go through many iterations and tests to ensure it is safe, potent, and effective. This process is a long and costly endeavor, with many pitfalls and hurdles. The aim of the present review article is to explore what is needed for a molecule to move from the researcher bench to the patients' bedside, presented from an industry perspective through the development program of cariprazine. Cariprazine is a relatively novel antipsychotic medication, approved for the treatment of schizophrenia, bipolar mania, bipolar depression, and major depression as an add-on. It is a D3-preferring D3-D2 partial agonist with the highest binding to the D3 receptors compared to all other antipsychotics. Based on the example of cariprazine, there are several key factors that are needed for a molecule to move from the researcher bench to the patients' bedside, such as targeting an unmet medical need, having a novel mechanism of action, and a smart implementation of development plans.


Assuntos
Antipsicóticos , Piperazinas , Receptores de Dopamina D3 , Humanos , Antipsicóticos/uso terapêutico , Antipsicóticos/farmacologia , Piperazinas/uso terapêutico , Piperazinas/farmacologia , Receptores de Dopamina D3/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Desenvolvimento de Medicamentos
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891940

RESUMO

Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.


Assuntos
Biomarcadores , Encéfalo , Neuroglia , Suicídio , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Suicídio/psicologia , Encéfalo/metabolismo , Encéfalo/patologia , Autopsia , Ideação Suicida , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia
4.
Open Biol ; 14(6): 240063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864245

RESUMO

Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.


Assuntos
Lobo Frontal , Transtornos Mentais , Psicotrópicos , Lobo Temporal , Humanos , Psicotrópicos/farmacologia , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Predisposição Genética para Doença , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo
5.
Sci Transl Med ; 16(749): eadh9974, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38781321

RESUMO

Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.


Assuntos
Autopsia , Encéfalo , Transtornos Mentais , Caracteres Sexuais , Transcriptoma , Humanos , Feminino , Masculino , Transcriptoma/genética , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Mentais/genética , Transtornos Mentais/patologia , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Adulto , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Redes Reguladoras de Genes , Pessoa de Meia-Idade
6.
J Affect Disord ; 358: 416-421, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735581

RESUMO

BACKGROUND: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLi+Gen). METHODS: We conducted in-silico functional analyses by integrating and synthesising information from several publicly available functional genetic datasets and databases including the Genotype-Tissue Expression (GTEx) project and HaploReg. RESULTS: The findings from this study highlighted TMPRSS15 as the most likely effector gene at the ConLi+Gen lithium response locus. TMPRSS15 encodes enterokinase, a gastrointestinal enzyme responsible for converting trypsinogen into trypsin and thus aiding digestion. Convergent findings from gene-based lookups in human and mouse databases as well as co-expression network analyses of small intestinal RNA-seq data (GTEx) implicated TMPRSS15 in the regulation of intestinal nutrient absorption, including ions like sodium and potassium, which may extend to lithium. LIMITATIONS: Although the findings from this study indicated that TMPRSS15 was the most likely effector gene at the ConLi+Gen lithium response locus, the evidence was circumstantial. Thus, the conclusions from this study need to be validated in appropriately designed wet-lab studies. CONCLUSIONS: The findings from this study are consistent with a model whereby TMPRSS15 impacts the efficacy of lithium treatment in patients with bipolar disorder by modulating intestinal lithium absorption.


Assuntos
Transtorno Bipolar , Simulação por Computador , Absorção Intestinal , Serina Endopeptidases , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lítio/uso terapêutico , Lítio/farmacologia , Antimaníacos/farmacologia , Antimaníacos/uso terapêutico , Estudo de Associação Genômica Ampla , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Compostos de Lítio/farmacocinética
7.
EBioMedicine ; 104: 105161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772282

RESUMO

BACKGROUND: Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. METHODS: In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. FINDINGS: We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. INTERPRETATION: These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. FUNDING: Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas , Neurônios , Proteínas Proto-Oncogênicas c-akt , Transtorno Bipolar/metabolismo , Transtorno Bipolar/tratamento farmacológico , Humanos , Neurônios/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Lítio/farmacologia , Lítio/uso terapêutico , Transdução de Sinais , Perfilação da Expressão Gênica , Transcriptoma
8.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789433

RESUMO

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Transtorno Bipolar , Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Irmãos , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Feminino , Masculino , Adulto , DNA Glicosilases/genética , Estresse Oxidativo/genética , Pessoa de Meia-Idade , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Estudos de Casos e Controles , Adulto Jovem , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Reparo por Excisão
9.
J Affect Disord ; 356: 316-322, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583598

RESUMO

INTRODUCTION: Multiple lines of research implicate inflammation-related pathways in the molecular pathology of mood disorders, with our data suggesting a critical role for aberrant cortical tumour necrosis factor α (TNF)-signaling in the molecular pathology of bipolar disorders (BPD) and major depressive disorders (MDD). METHODS: To extend our understanding of changes in TNF-signaling pathways in mood disorders we used Western blotting to measure levels of tumour necrosis factor receptor associated factor 1 (TRAF1) and transmembrane TNF receptor superfamily member 1B (tmTNFRSF1B) in Brodmann's areas (BA) 24 and 46 from people with BPD and MDD. These proteins are key rate-limiting components within TNF-signaling pathways. RESULTS: Compared to controls, there were higher levels of TRAF1 of large effect size (η = 0.19, Cohen's d = 0.97) in BA 24, but not BA 46, from people with BPD. Levels of TRAF1 were not altered in MDD and levels of tmTNFRSF1B were not altered in either disorder. LIMITATIONS: The cases studied had been treated with psychotropic drugs prior to death which is an unresolvable study confound. Cohort sizes are relatively small but not untypical of postmortem CNS studies. CONCLUSIONS: To facilitate post-synaptic signaling, TRAF1 is known to associate with tmTNFRSF1B after that receptor takes its activated conformation which occurs predominantly after it binds to transmembrane TNF (tmTNF). Simultaneously, when tmTNFRSF1B binds to tmTNF reverse signaling through tmTNF is activated. Hence our findings in BA 24 argues that bidirectional TNF-signaling may be an important component of the molecular pathology of BPD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Fator 1 Associado a Receptor de TNF , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Bipolar/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Estudos de Casos e Controles
10.
J Psychiatr Res ; 173: 333-339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579478

RESUMO

BACKGROUND: Inflammation impairs cognitive function in healthy individuals and people with psychiatric disorders, such as bipolar disorder (BD). This effect may also impact emotion recognition, a fundamental element of social cognition. Our study aimed to investigate the relationships between pro-inflammatory cytokines and emotion recognition in euthymic BD patients and healthy controls (HCs). METHODS: We recruited forty-four euthymic BD patients and forty healthy controls (HCs) and measured their inflammatory markers, including high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and TNF-α. We applied validated cognitive tasks, the Wisconsin Card-Sorting Test (WCST) and Continuous Performance Test (CPT), and a social cognitive task for emotion recognition, Diagnostic Analyses of Nonverbal Accuracy, Taiwanese Version (DANVA-2-TW). We analyzed the relationships between cytokines and cognition and then explored possible predictive factors of sadness recognition accuracy. RESULTS: Regarding pro-inflammatory cytokines, TNF-α was elevated in euthymic BD patients relative to HCs. In euthymic BD patients only, higher TNF-α levels were associated with lower accuracy of sadness recognition. Regression analysis revealed that TNF-α was an independent predictive factor of sadness recognition in patients with euthymic BD when neurocognition was controlled for. CONCLUSIONS: We demonstrated that enhanced inflammation, indicated by increased TNF-α, was an independent predictive factor of impaired sadness recognition in BD patients but not in HCs. Our findings suggested a direct influence of TNF-α on sadness recognition and indicated vulnerability to depression in euthymic BD patients with chronic inflammation.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/metabolismo , Tristeza , Fator de Necrose Tumoral alfa , Citocinas , Inflamação
11.
Transl Psychiatry ; 14(1): 163, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531835

RESUMO

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Esquizofrenia/metabolismo , Metabolômica , Metaboloma
12.
Transl Psychiatry ; 14(1): 112, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395959

RESUMO

DDR1 has been linked to schizophrenia (SCZ) and bipolar disorder (BD) in association studies. DDR1 encodes 58 distinct transcripts, which can be translated into five isoforms (DDR1a-e) and are expressed in the brain. However, the transcripts expressed in each brain cell type, their functions and their involvement in SCZ and BD remain unknown. Here, to infer the processes in which DDR1 transcripts are involved, we used transcriptomic data from the human brain dorsolateral prefrontal cortex of healthy controls (N = 936) and performed weighted gene coexpression network analysis followed by enrichment analyses. Then, to explore the involvement of DDR1 transcripts in SCZ (N = 563) and BD (N = 222), we studied the association of coexpression modules with disease and performed differential expression and transcript significance analyses. Some DDR1 transcripts were distributed across five coexpression modules identified in healthy controls (MHC). MHC1 and MHC2 were enriched in the cell cycle and proliferation of astrocytes and OPCs; MHC3 and MHC4 were enriched in oligodendrocyte differentiation and myelination; and MHC5 was enriched in neurons and synaptic transmission. Most of the DDR1 transcripts associated with SCZ and BD pertained to MHC1 and MHC2. Altogether, our results suggest that DDR1 expression might be altered in SCZ and BD via the proliferation of astrocytes and OPCs, suggesting that these processes are relevant in psychiatric disorders.


Assuntos
Transtorno Bipolar , Receptor com Domínio Discoidina 1 , Esquizofrenia , Adulto , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Perfilação da Expressão Gênica , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma
13.
Mol Psychiatry ; 29(4): 1128-1138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351171

RESUMO

Bipolar disorder is a severe neuro-psychiatric condition where genome-wide association and sequencing studies have pointed to dysregulated gene expression as likely to be causal. We observed strong correlation in expression between GWAS-associated genes and hypothesised that healthy function depends on balance in the relative expression levels of the associated genes and that patients display stoichiometric imbalance. We developed a method for quantifying stoichiometric imbalance and used this to predict each sample's diagnosis probability in four cortical brain RNAseq datasets. The percentage of phenotypic variance on the liability-scale explained by these probabilities ranged from 10.0 to 17.4% (AUC: 69.4-76.4%) which is a multiple of the classification performance achieved using absolute expression levels or GWAS-based polygenic risk scores. Most patients display stoichiometric imbalance in three to ten genes, suggesting that dysregulation of only a small fraction of associated genes can trigger the disorder, with the identity of these genes varying between individuals.


Assuntos
Transtorno Bipolar , Encéfalo , Estudo de Associação Genômica Ampla , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Expressão Gênica/genética , Masculino , Feminino , Autopsia/métodos , Herança Multifatorial/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Pessoa de Meia-Idade
14.
J Affect Disord ; 350: 230-239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190860

RESUMO

BACKGROUND: Bipolar disorder (BD) presents significant challenges in drug discovery, necessitating alternative approaches. Drug repurposing, leveraging computational techniques and expanding biomedical data, holds promise for identifying novel treatment strategies. METHODS: This study utilized gene regulatory networks (GRNs) to identify significant regulatory changes in BD, using network-based signatures for drug repurposing. Employing the PANDA algorithm, we investigated the variations in transcription factor-GRNs between individuals with BD and unaffected individuals, incorporating binding motifs, protein interactions, and gene co-expression data. The differences in edge weights between BD and controls were then used as differential network signatures to identify drugs potentially targeting the disease-associated gene signature, employing the CLUEreg tool in the GRAND database. RESULTS: Using a large RNA-seq dataset of 216 post-mortem brain samples from the CommonMind consortium, we constructed GRNs based on co-expression for individuals with BD and unaffected controls, involving 15,271 genes and 405 TFs. Our analysis highlighted significant influences of these TFs on immune response, energy metabolism, cell signalling, and cell adhesion pathways in the disorder. By employing drug repurposing, we identified 10 promising candidates potentially repurposed as BD treatments. LIMITATIONS: Non-drug-naïve transcriptomics data, bulk analysis of BD samples, potential bias of GRNs towards well-studied genes. CONCLUSIONS: Further investigation into repurposing candidates, especially those with preclinical evidence supporting their efficacy, like kaempferol and pramocaine, is warranted to understand their mechanisms of action and effectiveness in treating BD. Additionally, novel targets such as PARP1 and A2b offer opportunities for future research on their relevance to the disorder.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Redes Reguladoras de Genes , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
15.
Mol Psychiatry ; 29(5): 1521-1527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273108

RESUMO

Evidence from diverse areas of research including chronobiology, metabolomics and magnetic resonance spectroscopy indicate that energy dysregulation is a central feature of bipolar disorder pathophysiology. In this paper, we propose that mania represents a condition of heightened cerebral energy metabolism facilitated by hyperglycolysis and glutaminolysis. When oxidative glucose metabolism becomes impaired in the brain, neurons can utilize glutamate as an alternative substrate to generate energy through oxidative phosphorylation. Glycolysis in astrocytes fuels the formation of denovo glutamate, which can be used as a mitochondrial fuel source in neurons via transamination to alpha-ketoglutarate and subsequent reductive carboxylation to replenish tricarboxylic acid cycle intermediates. Upregulation of glycolysis and glutaminolysis in this manner causes the brain to enter a state of heightened metabolism and excitatory activity which we propose to underlie the subjective experience of mania. Under normal conditions, this mechanism serves an adaptive function to transiently upregulate brain metabolism in response to acute energy demand. However, when recruited in the long term to counteract impaired oxidative metabolism it may become a pathological process. In this article, we develop these ideas in detail, present supporting evidence and propose this as a novel avenue of investigation to understand the biological basis for mania.


Assuntos
Transtorno Bipolar , Encéfalo , Metabolismo Energético , Glucose , Ácido Glutâmico , Glutamina , Mania , Animais , Humanos , Astrócitos/metabolismo , Transtorno Bipolar/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicólise/fisiologia , Mania/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa
16.
Schizophr Bull ; 50(3): 533-544, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38206841

RESUMO

BACKGROUND: The hypothalamus is central to many hormonal and autonomous nervous system pathways. Emerging evidence indicates that these pathways may be disrupted in schizophrenia and bipolar disorder. Yet, few studies have examined the volumes of hypothalamic subunits in these patient groups. We compared hypothalamic subunit volumes in individuals with psychotic disorders to healthy controls. STUDY DESIGN: We included 344 patients with schizophrenia spectrum disorders (SCZ), 340 patients with bipolar disorders (BPD), and 684 age- and-sex-matched healthy controls (CTR). Total hypothalamus and five hypothalamic subunit volumes were extracted from T1-weighted magnetic resonance imaging (MRI) using an automated Bayesian segmentation method. Regression models, corrected for age, age2, sex, and segmentation-based intracranial volume (sbTIV), were used to examine diagnostic group differences, interactions with sex, and associations with clinical symptoms, antipsychotic medication, antidepressants and mood stabilizers. STUDY RESULTS: SCZ had larger volumes in the left inferior tubular subunit and smaller right anterior-inferior, right anterior-superior, and right posterior hypothalamic subunits compared to CTR. BPD did not differ significantly from CTR for any hypothalamic subunit volume, however, there was a significant sex-by-diagnosis interaction. Analyses stratified by sex showed smaller right hypothalamus and right posterior subunit volumes in male patients, but not female patients, relative to same-sex controls. There was a significant association between BPD currently taking antipsychotic medication and the left inferior tubular subunits volumes. CONCLUSIONS: Our results show regional-specific alterations in hypothalamus subunit volumes in individuals with SCZ, with relevance to HPA-axis dysregulation, circadian rhythm disruption, and cognition impairment.


Assuntos
Transtorno Bipolar , Hipotálamo , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/metabolismo , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Masculino , Feminino , Adulto , Hipotálamo/diagnóstico por imagem , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
17.
Ann Hum Genet ; 88(3): 212-246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161273

RESUMO

OBJECTIVE: The genome-wide association studies (GWAS) analysis, the most successful technique for discovering disease-related genetic variation, has some statistical concerns, including multiple testing, the correlation among variants (single-nucleotide polymorphisms) based on linkage disequilibrium and omitting the important variants when fitting the model with just one variant. To eliminate these problems in a small sample-size study, we used a sparse Bayesian learning model for finding bipolar disorder (BD) genetic variants. METHODS: This study used the Wellcome Trust Case Control Consortium data set, including 1998 BD cases and 1500 control samples, and after quality control, 380,628 variants were analysed. In this GWAS, a Bayesian logistic model with hierarchical shrinkage spike and slab priors was used, with all variants considered simultaneously in one model. In order to decrease the computational burden, an alternative inferential method, Bayesian variational inference, has been used. RESULTS: Thirteen variants were selected as associated with BD. The three of them (rs7572953, rs1378850 and rs4148944) were reported in previous GWAS. Eight of which were related to hemogram parameters, such as lymphocyte percentage, plateletcrit and haemoglobin concentration. Among selected related genes, GABPA, ELF3 and JAM2 were enriched in the platelet-derived growth factor pathway. These three genes, along with APP, ARL8A, CDH23 and GPR37L1, could be differential diagnostic variants for BD. CONCLUSIONS: By reducing the statistical restrictions of GWAS analysis, the application of the Bayesian variational spike and slab models can offer insight into the genetic link with BD even with a small sample size. To uncover related variations with other traits, this model needs to be further examined.


Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Teorema de Bayes , Predisposição Genética para Doença , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética
18.
J Proteome Res ; 23(1): 329-343, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38063806

RESUMO

Psychiatric evaluation relies on subjective symptoms and behavioral observation, which sometimes leads to misdiagnosis. Despite previous efforts to utilize plasma proteins as objective markers, the depletion method is time-consuming. Therefore, this study aimed to enhance previous quantification methods and construct objective discriminative models for major psychiatric disorders using nondepleted plasma. Multiple reaction monitoring-mass spectrometry (MRM-MS) assays for quantifying 453 peptides in nondepleted plasma from 132 individuals [35 major depressive disorder (MDD), 47 bipolar disorder (BD), 23 schizophrenia (SCZ) patients, and 27 healthy controls (HC)] were developed. Pairwise discriminative models for MDD, BD, and SCZ, and a discriminative model between patients and HC were constructed by machine learning approaches. In addition, the proteins from nondepleted plasma-based discriminative models were compared with previously developed depleted plasma-based discriminative models. Discriminative models for MDD versus BD, BD versus SCZ, MDD versus SCZ, and patients versus HC were constructed with 11 to 13 proteins and showed reasonable performances (AUROC = 0.890-0.955). Most of the shared proteins between nondepleted and depleted plasma models had consistent directions of expression levels and were associated with neural signaling, inflammatory, and lipid metabolism pathways. These results suggest that multiprotein markers from nondepleted plasma have a potential role in psychiatric evaluation.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/metabolismo , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Espectrometria de Massas
19.
Expert Rev Proteomics ; 20(11): 267-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37830362

RESUMO

INTRODUCTION: Bipolar disorder (BD) is a complex psychiatric disease characterized by alternating mood episodes. As for any other psychiatric illness, currently there is no biochemical test that is able to support diagnosis or therapeutic decisions for BD. In this context, the discovery and validation of biomarkers are interesting strategies that can be achieved through proteomics and metabolomics. AREAS COVERED: In this descriptive review, a literature search including original articles and systematic reviews published in the last decade was performed with the objective to discuss the results of BD proteomic and metabolomic profiling analyses and indicate proteins and metabolites (or metabolic pathways) with potential clinical value. EXPERT OPINION: A large number of proteins and metabolites have been reported as potential BD biomarkers; however, most studies do not reach biomarker validation stages. An effort from the scientific community should be directed toward the validation of biomarkers and the development of simplified bioanalytical techniques or protocols to determine them in biological samples, in order to translate proteomic and metabolomic findings into clinical routine assays.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Proteômica/métodos , Metabolômica/métodos , Biomarcadores/metabolismo , Redes e Vias Metabólicas
20.
Mol Psychiatry ; 28(11): 4622-4631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723283

RESUMO

Although mitochondrial dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. An emerging paradigm suggests mitochondria play an important non-energetic role in adaptation to stress, impacting cellular resilience and acting as a source of systemic allostatic load. Known as mitochondrial allostatic load, this (phenomenon) occurs when mitochondria are unable to recalibrate and maintain cell homeostasis. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls. We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. In this study, 14 BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. Ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. After adjusting for confounding variables, such as age, sex, body mass index (BMI), and smoking status, patients with BD presented lower MHI compared to non-psychiatry controls, as well as higher ccf-mtDNA levels that negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, MHI and ccf-mtDNA were also examined in relation to several MQC-related proteins, such as Fis-1, Opa-1, and LC3. Our results showed that MHI correlated negatively with Fis-1 and positively with Opa-1 and LC3. Accordingly, ccf-mtDNA had a positive correlation with Fis-1 and a negative correlation with Opa-1 and LC3. Furthermore, we found a noteworthy inverse correlation between illness severity and MHI, with lower MHI and higher ccf-mtDNA levels in subjects with a longer illness duration, worse functional status, and higher depressive symptoms. Our findings indicate that mitochondrial allostatic load contributes to BD, suggesting mitochondria represent a potential biological intersection point that could contribute to impaired cellular resilience and increased vulnerability to stress and mood episodes. Ultimately, by linking mitochondrial dysfunction to disease progression and poor outcomes, we might be able to build a predictive marker that explains how mitochondrial function and its regulation contribute to BD development and that may eventually serve as a treatment guide for both old and new therapeutic targets.


Assuntos
Transtorno Bipolar , Doenças Mitocondriais , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...