Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.128
Filtrar
1.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956819

RESUMO

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos , Probenecid , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Camundongos , Masculino , Probenecid/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Interleucina-1beta/metabolismo , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Intoxicação por MPTP/terapia , Intoxicação por MPTP/prevenção & controle , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Atividade Motora/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38865235

RESUMO

Freezing of gait (FoG) is a prevalent symptom among individuals with Parkinson's disease and related disorders. FoG detection from videos has been developed recently; however, the process requires using videos filmed within a controlled environment. We attempted to establish an automatic FoG detection method from videos taken in uncontrolled environments such as in daily clinical practices. Motion features of 16 patients were extracted from timed-up-and-go test in 109 video data points, through object tracking and three-dimension pose estimation. These motion features were utilized to form the FoG detection model, which combined rule-based and machine learning-based models. The rule-based model distinguished the frames in which the patient was walking from those when the patient has stopped, using the pelvic position coordinates; the machine learning-based model distinguished between FoG and stop using a combined one-dimensional convolutional neural network and long short-term memory (1dCNN-LSTM). The model achieved a high intraclass correlation coefficient of 0.75-0.94 with a manually-annotated duration of FoG and %FoG. This method is novel as it combines object tracking, 3D pose estimation, and expert-guided feature selection in the preprocessing and modeling phases, enabling FoG detection even from videos captured in uncontrolled environments.


Assuntos
Transtornos Neurológicos da Marcha , Aprendizado de Máquina , Redes Neurais de Computação , Gravação em Vídeo , Humanos , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Algoritmos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Transtornos Parkinsonianos/diagnóstico , Transtornos Parkinsonianos/fisiopatologia , Memória de Curto Prazo , Idoso de 80 Anos ou mais
3.
Sci Rep ; 14(1): 13229, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853162

RESUMO

X-linked dystonia parkinsonism (XDP) is a neurogenetic combined movement disorder involving both parkinsonism and dystonia. Complex, overlapping phenotypes result in difficulties in clinical rating scale assessment. We performed wearable sensor-based analyses in XDP participants to quantitatively characterize disease phenomenology as a potential clinical trial endpoint. Wearable sensor data was collected from 10 symptomatic XDP patients and 3 healthy controls during a standardized examination. Disease severity was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (MDS-UPDRS) and Burke-Fahn-Marsden dystonia scale (BFM). We collected sensor data during the performance of specific MDS-UPDRS/BFM upper- and lower-limb motor tasks, and derived data features suitable to estimate clinical scores using machine learning (ML). XDP patients were at varying stages of disease and clinical severity. ML-based algorithms estimated MDS-UPDRS scores (parkinsonism) and dystonia-specific data features with a high degree of accuracy. Gait spatio-temporal parameters had high discriminatory power in differentiating XDP patients with different MDS-UPDRS scores from controls, XDP freezing of gait, and dystonic/non-dystonic gait. These analyses suggest the feasibility of using wearable sensor data for deriving reliable clinical score estimates associated with both parkinsonian and dystonic features in a complex, combined movement disorder and the utility of motion sensors in quantifying clinical examination.


Assuntos
Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Aprendizado de Máquina , Dispositivos Eletrônicos Vestíveis , Humanos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Masculino , Adulto , Pessoa de Meia-Idade , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/diagnóstico , Índice de Gravidade de Doença , Feminino , Marcha
4.
Elife ; 122024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940422

RESUMO

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Núcleo Dorsal da Rafe , Oxidopamina , Transtornos Parkinsonianos , Neurônios Serotoninérgicos , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Serotoninérgicos/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Camundongos , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Masculino , Camundongos Endogâmicos C57BL , Desipramina/farmacologia , Norepinefrina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38765932

RESUMO

Background: Subacute Sclerosing Panencephalitis (SSPE) typically presents with periodic myoclonus; however, a spectrum of movement disorders including dystonia, chorea, tremor, and parkinsonism have also been described. This review aims to evaluate the array of movement disorders in SSPE, correlating them with neuroimaging findings, disease stages, and patient outcomes. Methods: A comprehensive review of published case reports and case series was conducted on patients with SSPE exhibiting movement disorders other than periodic myoclonus. PRISMA guidelines were followed, and the protocol was registered with PROSPERO (2023 CRD42023434650). A comprehensive search of multiple databases yielded 37 reports detailing 39 patients. Dyken's criteria were used for SSPE diagnosis, and the International Movement Disorders Society definitions were applied to categorize movement disorders. Results: The majority of patients were male, with an average age of 13.8 years. Approximately, 80% lacked a reliable vaccination history, and 39% had prior measles infections. Dystonia was the most common movement disorder (49%), followed by parkinsonism and choreoathetosis. Rapid disease progression was noted in 64% of cases, with a disease duration of ≤6 months in 72%. Neuroimaging showed T2/FLAIR MR hyperintensities, primarily periventricular, with 26% affecting the basal ganglia/thalamus. Brain biopsies revealed inflammatory and neurodegenerative changes. Over half of the patients (56%) reached an akinetic mute state or died. Conclusion: SSPE is associated with diverse movement disorders, predominantly hyperkinetic. The prevalence of dystonia suggests basal ganglia dysfunction.


Assuntos
Transtornos dos Movimentos , Panencefalite Esclerosante Subaguda , Humanos , Coreia/fisiopatologia , Coreia/diagnóstico por imagem , Coreia/etiologia , Distonia/fisiopatologia , Distonia/etiologia , Hipercinese/fisiopatologia , Hipercinese/etiologia , Hipocinesia/fisiopatologia , Hipocinesia/etiologia , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/etiologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Panencefalite Esclerosante Subaguda/fisiopatologia , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/complicações , Relatos de Casos como Assunto , Masculino , Feminino , Adolescente
7.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723388

RESUMO

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Assuntos
Transtornos Neurológicos da Marcha , Levodopa , Oxidopamina , Ratos Sprague-Dawley , Animais , Levodopa/farmacologia , Levodopa/efeitos adversos , Masculino , Feminino , Ratos , Transtornos Neurológicos da Marcha/induzido quimicamente , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/etiologia , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Feixe Prosencefálico Mediano/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/patologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Lateralidade Funcional/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Marcha/efeitos dos fármacos , Discinesia Induzida por Medicamentos
8.
Basic Clin Pharmacol Toxicol ; 135(1): 3-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38682342

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease that affects dopaminergic neurons, thus impairing dopaminergic signalling. Quercetin (QUE) has antioxidant and neuroprotective properties that are promising for the treatment of PD. This systematic review aimed to investigate the therapeutic effects of QUE against PD in preclinical models. The systematic search was performed in PubMed, Scopus and Web of Science. At the final screening stage, 26 articles were selected according to pre-established criteria. Selected studies used different methods for PD induction, as well as animal models. Most studies used rats (73.08%) and mice (23.08%), with 6-OHDA as the main strategy for PD induction (38.6%), followed by rotenone (30.8%). QUE was tested immersed in oil, nanosystems or in free formulations, in varied routes of administration and doses, ranging from 10 to 400 mg/kg and from 5 to 200 mg/kg in oral and intraperitoneal administrations, respectively. Overall, evidence from published data suggests a potential use of QUE as a treatment for PD, mainly through the inhibition of oxidative stress, neuroinflammatory response and apoptotic pathways.


Assuntos
Antioxidantes , Modelos Animais de Doenças , Fármacos Neuroprotetores , Estresse Oxidativo , Quercetina , Animais , Humanos , Camundongos , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Quercetina/farmacologia , Rotenona
9.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38682230

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Oxidopamina , Núcleo Subtalâmico , Animais , Oxidopamina/farmacologia , Masculino , Comportamento Animal/fisiologia , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Aprendizagem da Esquiva/fisiologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38656860

RESUMO

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Assuntos
Estimulação Encefálica Profunda , Microeletrodos , Ratos Sprague-Dawley , Núcleo Subtalâmico , Núcleo Subtalâmico/fisiopatologia , Animais , Ratos , Masculino , Modelos Animais de Doenças , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação , Potenciais de Ação/fisiologia , Algoritmos , Sistemas Computacionais , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/reabilitação , Aprendizado de Máquina
11.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599494

RESUMO

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Assuntos
Potenciais de Ação , Neurônios Dopaminérgicos , Exenatida , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Camundongos Endogâmicos C57BL , Substância Negra , Animais , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Exenatida/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Camundongos , Peçonhas/farmacologia , Peptídeos/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
12.
Brain Res ; 1835: 148918, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588847

RESUMO

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Núcleo Dorsal da Rafe , Habenula , Ratos Sprague-Dawley , Neurônios Serotoninérgicos , Serotonina , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/metabolismo , Habenula/metabolismo , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Núcleo Dorsal da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Ratos , Serotonina/metabolismo , Dopamina/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Córtex Pré-Frontal/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia
13.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651310

RESUMO

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Assuntos
Gânglios da Base , Distonia , Córtex Motor , Vias Neurais , Transtornos Parkinsonianos , Ratos Long-Evans , Animais , Córtex Motor/fisiopatologia , Córtex Motor/patologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/patologia , Ratos , Vias Neurais/fisiopatologia , Distonia/fisiopatologia , Distonia/patologia , Distonia/etiologia , Gânglios da Base/patologia , Masculino , Globo Pálido/patologia , Modelos Animais de Doenças
14.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499659

RESUMO

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Assuntos
Modelos Animais de Doenças , Transtornos Parkinsonianos , Reserpina , Privação do Sono , Animais , Masculino , Reserpina/farmacologia , Privação do Sono/complicações , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Catalepsia/induzido quimicamente , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Atividade Motora/fisiologia , Atividade Motora/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Anedonia/fisiologia , Anedonia/efeitos dos fármacos
15.
Neurol Sci ; 45(6): 2661-2670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183553

RESUMO

INTRODUCTION: The acute levodopa challenge test (ALCT) is an important and valuable examination but there are still some shortcomings with it. We aimed to objectively assess ALCT based on a depth camera and filter out the best indicators. METHODS: Fifty-nine individuals with parkinsonism completed ALCT and the improvement rate (IR, which indicates the change in value before and after levodopa administration) of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) was calculated. The kinematic features of the patients' movements in both the OFF and ON states were collected with an Azure Kinect depth camera. RESULTS: The IR of MDS-UPDRS III was significantly correlated with the IRs of many kinematic features for arising from a chair, pronation-supination movements of the hand, finger tapping, toe tapping, leg agility, and gait (rs = - 0.277 ~ - 0.672, P < 0.05). Moderate to high discriminative values were found in the selected features in identifying a clinically significant response to levodopa with sensitivity, specificity, and area under the curve (AUC) in the range of 50-100%, 47.22%-97.22%, and 0.673-0.915, respectively. The resulting classifier combining kinematic features of toe tapping showed an excellent performance with an AUC of 0.966 (95% CI = 0.922-1.000, P < 0.001). The optimal cut-off value was 21.24% with sensitivity and specificity of 94.44% and 87.18%, respectively. CONCLUSION: This study demonstrated the feasibility of measuring the effect of levodopa and objectively assessing ALCT based on kinematic data derived from an Azure Kinect-based system.


Assuntos
Antiparkinsonianos , Estudos de Viabilidade , Levodopa , Transtornos Parkinsonianos , Humanos , Levodopa/administração & dosagem , Levodopa/uso terapêutico , Levodopa/farmacologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/administração & dosagem , Fenômenos Biomecânicos/fisiologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/diagnóstico , Índice de Gravidade de Doença
17.
PLoS One ; 17(11): e0276823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445873

RESUMO

Mutations in ATP13A2 cause Kufor-Rakeb Syndrome (KRS), a juvenile form of Parkinson's Disease (PD). The gene product belongs to a diverse family of ion pumps and mediates polyamine influx from lysosomal lumen. While the biochemical and structural studies highlight its unique mechanics, how PD pathology is linked to ATP13A2 function remains unclear. Here we report that localization of overexpressed TOM20, a mitochondrial outer-membrane protein, is significantly altered upon ATP13A2 expression to partially merge with lysosome. Using Halo-fused version of ATP13A2, ATP13A2 was identified in lysosome and autophagosome. Upon ATP13A2 co-expression, overexpressed TOM20 was found not only in mitochondria but also within ATP13A2-containing autolysosome. This modification of TOM20 localization was inhibited by adding 1-methyl-4-phenylpyridinium (MPP+) and not accompanied with mitophagy induction. We suggest that ATP13A2 may participate in the control of overexpressed proteins targeted to mitochondrial outer-membrane.


Assuntos
Autofagossomos , Lisossomos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transtornos Parkinsonianos , ATPases Translocadoras de Prótons , Humanos , Autofagossomos/genética , Autofagossomos/fisiologia , Lisossomos/genética , Lisossomos/fisiologia , Proteínas de Membrana , Mitocôndrias/genética , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Mitofagia/genética , Mitofagia/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/fisiopatologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/fisiologia
18.
Mov Disord ; 37(8): 1663-1672, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35576973

RESUMO

BACKGROUND: Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES: This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS: Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS: PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (ß = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (ß = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS: The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Locus Cerúleo , Transtornos Parkinsonianos , Apatia/fisiologia , Cognição/fisiologia , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/fisiopatologia
19.
Neuropathol Appl Neurobiol ; 48(5): e12812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35274336

RESUMO

AIMS: The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. METHODS: Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. RESULTS: In control monkeys, the projection neurons, which express the dopamine-and-cAMP-regulated-phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18%; 2.6%), dinucleotide phosphate-diaphorase (NADPH+: ~13%; 1.8%), choline acetyltransferase (ChAT+: ~11%; 1.5%) and tyrosine hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. CONCLUSIONS: These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implications.


Assuntos
Corpo Estriado , Dopamina , Interneurônios , Neurônios , Transtornos Parkinsonianos , Animais , Corpo Estriado/citologia , Corpo Estriado/patologia , Haplorrinos , Interneurônios/citologia , Neurônios/citologia , Transtornos Parkinsonianos/fisiopatologia
20.
Cell Rep ; 38(3): 110265, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045299

RESUMO

Dopamine degeneration in Parkinson's disease (PD) dysregulates the striatal neural network and causes motor deficits. However, it is unclear how altered striatal circuits relate to dopamine-acetylcholine chemical imbalance and abnormal local field potential (LFP) oscillations observed in PD. We perform a multimodal analysis of the dorsal striatum using cell-type-specific calcium imaging and LFP recording. We reveal that dopamine depletion selectively enhances LFP beta oscillations during impaired locomotion, supporting beta oscillations as a biomarker for PD. We further demonstrate that dynamic cholinergic interneuron activity during locomotion remains unaltered, even though cholinergic tone is implicated in PD. Instead, dysfunctional striatal output arises from elevated coordination within striatal output neurons, which is accompanied by reduced locomotor encoding of parvalbumin interneurons and transient pathological LFP high-gamma oscillations. These results identify a pathological striatal circuit state following dopamine depletion where distinct striatal neuron subtypes are selectively coordinated with LFP oscillations during locomotion.


Assuntos
Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Neurônios/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Animais , Corpo Estriado/metabolismo , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Neurônios/patologia , Transtornos Parkinsonianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...