Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.763
Filtrar
1.
Brain Behav ; 14(9): e70001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245995

RESUMO

BACKGROUND: Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS: The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS: As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION: LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.


Assuntos
Apoptose , Modelos Animais de Doenças , Drosophila melanogaster , Ácidos Láuricos , Levodopa , Transtornos Parkinsonianos , Animais , Drosophila melanogaster/efeitos dos fármacos , Ácidos Láuricos/farmacologia , Ácidos Láuricos/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Levodopa/farmacologia , Levodopa/administração & dosagem , Apoptose/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Masculino
2.
Biomed Khim ; 70(4): 231-239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39239897

RESUMO

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).


Assuntos
Encéfalo , Isatina , Fármacos Neuroprotetores , Rotenona , Animais , Isatina/farmacologia , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Ratos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Ratos Wistar , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico
3.
J Ethnopharmacol ; 335: 118691, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39134229

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE: The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS: The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1ß, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT: Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1ß, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION: GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.


Assuntos
Fármacos Neuroprotetores , Rotenona , Animais , Rotenona/toxicidade , Humanos , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Masculino , Braquiúros , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Etnofarmacologia
4.
Cell Rep Med ; 5(8): 101684, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39128469

RESUMO

Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.


Assuntos
Encéfalo , Homeostase , Ácido Láctico , Piruvato Quinase , Sirtuína 1 , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Camundongos , Ácido Láctico/metabolismo , Humanos , Acetilação/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos/metabolismo , Naftoquinonas/farmacologia
5.
Exp Neurol ; 381: 114939, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191345

RESUMO

Dopamine replacement therapy (DRT) of Parkinson's disease (PD) may trigger non-motor complications, some of which affect hedonic homeostatic regulation. Management of iatrogenic alterations in the affective state in PD is unsatisfactory, partly because of the limitations in the experimental models that are used in the preclinical investigation of the neurobiology and therapy of these alterations. In this connection, we recently employed a new experimental approach consisting in measuring the emission of 50-kHz ultrasonic vocalizations (USVs), a marker of positive affect, in hemiparkinsonian rats treated with drugs used in the DRT of PD. To further strengthen our approach, we here evaluated how the acute and repeated (× 5, on alternate days) administration of apomorphine (2 mg/kg, i.p.) or L-3,4-dihydroxyphenilalanine (L-DOPA, 12 mg/kg, i.p.) modified the immunoreactivity for Zif-268, a marker of neuronal activation, in the nucleus accumbens (NAc), caudate-putamen (CPu) and medial prefrontal cortex (mPFC), which are brain regions that regulate emotional states and drugs' affective properties. Acute and repeated treatment with either apomorphine or L-DOPA stimulated the emission of 50-kHz USVs in hemiparkinsonian rats, and this effect was paired with increased Zif-268 immunoreactivity in the NAc and CPu, but not mPFC. These findings indicate that subcortical and cortical regions may differently regulate the emission of 50-kHz USVs in hemiparkinsonian rats treated with dopaminergic drugs used in the DRT of PD. Moreover, they provide further evidence that measuring 50-kHz USV emissions in hemiparkinsonian rats may be a relevant approach to investigate at the preclinical level the affective properties of antiparkinsonian drugs.


Assuntos
Antiparkinsonianos , Apomorfina , Levodopa , Vocalização Animal , Animais , Ratos , Vocalização Animal/efeitos dos fármacos , Masculino , Antiparkinsonianos/farmacologia , Apomorfina/farmacologia , Levodopa/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Neurônios/efeitos dos fármacos , Ratos Wistar , Afeto/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Oxidopamina/toxicidade , Agonistas de Dopamina/farmacologia
6.
Neurochem Res ; 49(10): 2940-2956, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39088165

RESUMO

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.


Assuntos
Benserazida , Levodopa , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Levodopa/farmacologia , Benserazida/farmacologia , Benserazida/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Masculino , Camundongos , Combinação de Medicamentos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Lactobacillales , Probióticos/uso terapêutico , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Streptococcus thermophilus/efeitos dos fármacos
7.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015077

RESUMO

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Assuntos
Canabinoides , Neurônios Dopaminérgicos , Ferro , Oxidopamina , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide , Animais , Masculino , Canabinoides/farmacologia , Ratos , Ferro/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Tirosina 3-Mono-Oxigenase/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia
8.
ACS Appl Mater Interfaces ; 16(30): 38880-38892, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016239

RESUMO

Post-translational modification, mitochondrial abruptions, neuroinflammation, and α-synuclein (α-Syn) aggregation are considered as major causes of Parkinson's disease (PD) pathogenesis. The recent literature highlights neuroimmune cross talk and the negative role of immune effector T (Teff) and positive regulation by regulatory T (Treg) cells in PD treatment. Herein, a strategy to endow Treg action paves the path for development of PD treatment. Thus, we explored the neuroprotective efficiency of the immunomodulator and PP2A (protein phosphatase 2) activator, FTY720 nanoparticles in in vivo experimental PD models. Repurposing of FTY720 for PD is known due to its protective effect by reducing PD and its camouflaged role in endowing EZH2-mediated epigenetic regulation of PD. EZH2-FOXP3 interaction is necessary for the neuroprotective Treg cell activity. Therefore, we synthesized FTY720 nanoparticles to improve FTY720 protective efficacy in an in vivo PD model to explore the PP2A mediated signaling. We confirmed the formation of FTY720NPs, and the results of the behavioral and protein expression study showed the significant neuroprotective efficiency of our nanoformulations. In the exploration of neuroprotective mechanism, several lines of evidence confirmed FTY720NPs mediated induction of PP2A/EZH2/FOXP3 signaling in the induction of Treg cells effect in in vivo PD treatment. In summary, our nanoformulations have novel potential to alleviate PD by inducing PP2A-induced epigenetic regulation-mediated neuroimmunomodulation at the clinical setup.


Assuntos
Cloridrato de Fingolimode , Nanopartículas , Fármacos Neuroprotetores , Linfócitos T Reguladores , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Nanopartículas/química , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/uso terapêutico , Camundongos Endogâmicos C57BL , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Transtornos Parkinsonianos/tratamento farmacológico
9.
Neurotoxicology ; 103: 320-334, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38960072

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.


Assuntos
Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Receptores de Glucocorticoides , Rotenona , alfa-Sinucleína , Animais , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Camundongos , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Receptores de Glucocorticoides/metabolismo , alfa-Sinucleína/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Substância Negra/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Modelos Animais de Doenças , Fenantrenos
10.
Ann Afr Med ; 23(3): 518-522, 2024 Jul 01.
Artigo em Francês, Inglês | MEDLINE | ID: mdl-39034585

RESUMO

Snakebites are a major cause of morbidity and mortality worldwide. Snake envenomation can cause acute local and systemic effects leading to severe complications, even death. Neurological complications such as intracranial hemorrhage, subarachnoid bleed, ischemic strokes, acute disseminated encephalomyelitis, and leukoencephalopathy have been reported. Anti-snake venom which forms the mainstay of therapy also has its own set of early and delayed complications. This report describes a rare case of snakebite resulting in leukoencephalopathy and parkinsonian features.


RésuméLes morsures de serpent sont une cause majeure de morbidité et de mortalité dans le monde. L'envenimation par les serpents peut provoquer des effets locaux et systémiques aigus, conduisant à de graves complications, voire à la mort. Complications neurologiques telles qu'hémorragie intracrânienne, hémorragie sous-arachnoïdienne, accidents vasculaires cérébraux ischémiques, une encéphalomyélite aiguë disséminée et une leucoencéphalopathie ont été rapportées. Le venin anti-serpent qui constitue le pilier de la thérapie a également son propre ensemble de complications précoces et retardées. Ce rapport décrit un cas rare de morsure de serpent ayant entraîné une leucoencéphalopathie et caractéristiques parkinsoniennes.


Assuntos
Antivenenos , Mordeduras de Serpentes , Humanos , Mordeduras de Serpentes/complicações , Antivenenos/uso terapêutico , Masculino , Resultado do Tratamento , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Adulto , Imageamento por Ressonância Magnética , Feminino
11.
Int Immunopharmacol ; 139: 112715, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39032471

RESUMO

Citalopram and escitalopram are structurally close-related antidepressants and both forms are widely used in the world. We aimed to comparatively evaluate the anti-neuroinflammatory and neuroprotective effects of escitalopram and citalopram in Parkinson's disease (PD) mouse model. Mice were randomly divided into six groups and received 6-hydroxydopamine (6-OHDA) or vehicle administration. The mice were then treated with escitalopram, citalopram or saline for consecutive 7 days. Behaviors, neuroinflammation, neurotransmitters, and neurotoxicity were assessed. Results showed that citalopram but not escitalopram worsened body weight loss and increased freezing time in the PD mice. Both drugs had no impact on the anxiety-like behaviors but ameliorated the depressive-like behaviors as in elevated plus maze and sucrose splash tests. Escitalopram but not citalopram ameliorated motor discoordination in the PD mice as in rotarod test. In accordance, escitalopram but not citalopram attenuated the 6-OHDA-induced nigrostriatal dopaminergic loss. Further mechanistic investigations showed that both drugs mitigated activations of microglia and astrocytes and/or levels of pro-inflammatory cytokines in the PD mice, but escitalopram showed appreciably better effects in the substantia nigra. Neurotransmitter examination in the prefrontal cortex suggested that the two drugs had comparable effects on the disturbed neurotransmitters in the PD mice, but citalopram was prone to disrupt certain normal homeostasis. In conclusion, escitalopram is moderately superior than citalopram to suppress neuroinflammation and to protect against dopaminergic neuronal death and motor discoordination in the 6-OHDA-induced PD mice. Our findings imply that escitalopram shall be prescribed with priority over citalopram to treat PD patients with depression as escitalopram may meanwhile provide greater additional benefits to the patients.


Assuntos
Citalopram , Modelos Animais de Doenças , Escitalopram , Fármacos Neuroprotetores , Oxidopamina , Animais , Citalopram/farmacologia , Citalopram/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Masculino , Camundongos , Escitalopram/uso terapêutico , Escitalopram/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Doença de Parkinson/tratamento farmacológico , Humanos , Comportamento Animal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente
12.
Afr Health Sci ; 24(1): 206-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38962328

RESUMO

Introduction: Trazodone is an antidepressant agent approved for treating major depressive disorders and is also prescribed for insomnia due to its sedative effect. In a few cases, trazodone was associated with parkinsonism. Herein, we describe a case of parkinsonism after a brief exposure to a moderate dose of trazodone. Objective: To describe a case of a patient with trazodone-induced parkinsonism in which the diagnosis was suspected after the exclusion of other common and serious causes. Methods: A case report of trazodone-induced parkinsonism. Clinical Case: A 58-year-old male with sleeping problems was prescribed trazodone 50 mg daily at bedtime. The subject doubled the dosage without medical advice a week later. After 14 days of trazodone treatment, he started to experience difficulty in moving his upper limbs and recurrent falling. Neuroimaging, electrodiagnostic studies, and laboratory exams were unremarkable. Trazodone was discontinued, and the patient fully recovered. Noteworthy, the patient developed a recurrence of the motor symptoms with trazodone-rechallenge. Conclusion: Our case showed reversibly induced parkinsonism after a short intake of a moderate dose of trazodone which was prescribed for insomnia. The patient had a complete recovery after trazodone withdrawal. Noteworthy, the symptoms recurred upon trazodone-rechallenge.


Assuntos
Trazodona , Humanos , Trazodona/efeitos adversos , Masculino , Pessoa de Meia-Idade , Antidepressivos de Segunda Geração/efeitos adversos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente
13.
Biochem Pharmacol ; 226: 116343, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852645

RESUMO

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Assuntos
Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Rotenona , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Rotenona/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ratos , Masculino , Linhagem Celular Tumoral , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácidos Pentanoicos/farmacologia , Ácidos Pentanoicos/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Agregados Proteicos/efeitos dos fármacos
14.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852753

RESUMO

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Oxidopamina , Animais , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/farmacologia , Oxidopamina/toxicidade , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Piridinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Piperidinas , Pirimidinas
15.
Mov Disord Clin Pract ; 11(8): 1025-1029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38826096

RESUMO

BACKGROUND: Corticobasal syndrome is a clinical diagnosis and common pathological causes are corticobasal degeneration, progressive supranuclear palsy and Alzheimer's disease. OBJECTIVES: We would like to highlight a rare but important differential of corticobasal syndrome. METHODS: A 78-year-old female had a 4-year history of predominantly right-hand rest tremor, worsening of handwriting but no change in cognition. The clinical examination showed right upper limb postural and kinetic tremor, mild wrist rigidity and reduced amplitude of right-sided finger tapping. She was initially diagnosed as idiopathic Parkinson's disease. Five years after onset of symptoms, she demonstrated bilateral myoclonic jerks and right upper limb dystonic posturing. She could not copy movements with the right hand. The magnetic resonance imaging (MRI) revealed disproportionate atrophy in the parietal lobes bilaterally. The clinical diagnosis was changed to probable corticobasal syndrome. She passed away 11 years from onset of symptoms at the age of 85 years. She underwent a post-mortem. RESULTS: The anterior and posterior frontal cortex, anterior cingulate, temporal neocortex, hippocampus and amygdaloid complex demonstrated considerable tau-related pathology consisting of a dense background of neuropil threads, and rounded, paranuclear neuronal inclusions consistent with Pick bodies. The immunostaining for three microtubule binding domain repeats (3R) tau performed on sections from the frontal and temporal lobes, basal ganglia and midbrain highlighted several inclusions whilst no 4R tau was observed. She was finally diagnosed with Pick's disease. CONCLUSIONS: Pick's disease can rarely present with clinical features of corticobasal syndrome.


Assuntos
Levodopa , Transtornos Parkinsonianos , Doença de Pick , Humanos , Feminino , Idoso , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico , Levodopa/uso terapêutico , Levodopa/administração & dosagem , Doença de Pick/patologia , Degeneração Corticobasal , Imageamento por Ressonância Magnética , Antiparkinsonianos/uso terapêutico
16.
Biochem Soc Trans ; 52(3): 1275-1291, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38813865

RESUMO

Parkinsonism is the primary type of movement disorder in adults, encompassing a set of clinical symptoms, including rigidity, tremors, dystonia, bradykinesia, and postural instability. These symptoms are primarily caused by a deficiency in dopamine (DA), an essential neurotransmitter in the brain. Currently, the DA precursor levodopa (synthetic L-DOPA) is the standard medication to treat DA deficiency, but it only addresses symptoms rather than provides a cure. In this review, we provide an overview of disorders associated with DA dysregulation and deficiency, particularly Parkinson's disease and rare inherited disorders leading predominantly to dystonia and/or parkinsonism, even in childhood. Although levodopa is relatively effective for the management of motor dysfunctions, it is less effective for severe forms of parkinsonism and is also associated with side effects and a loss of efficacy over time. We present ongoing efforts to reinforce the effect of levodopa and to develop innovative therapies that target the underlying pathogenic mechanisms affecting DA synthesis and transport, increasing neurotransmission through disease-modifying approaches, such as cell-based therapies, nucleic acid- and protein-based biologics, and small molecules.


Assuntos
Dopamina , Levodopa , Doença de Parkinson , Humanos , Dopamina/metabolismo , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Animais , Transporte Biológico
17.
Behav Brain Res ; 468: 115035, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703793

RESUMO

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Assuntos
Administração Intranasal , Corpo Estriado , Dopamina , Neurônios Dopaminérgicos , Kisspeptinas , Oxidopamina , Transtornos Parkinsonianos , Ratos Sprague-Dawley , Substância Negra , Animais , Masculino , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Dopamina/metabolismo , Oxidopamina/farmacologia , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Kisspeptinas/administração & dosagem , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Atividade Motora/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Neurol Res ; 46(8): 763-771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740025

RESUMO

INTRODUCTION: Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat. MATERIAL AND METHODS: The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry. RESULTS: DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels. CONCLUSION: Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Dexmedetomidina , Neurônios Dopaminérgicos , Fármacos Neuroprotetores , Oxidopamina , Substância Negra , Animais , Dexmedetomidina/farmacologia , Fármacos Neuroprotetores/farmacologia , Masculino , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Ratos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Modelos Animais de Doenças , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Glucose/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Acta Neuropathol Commun ; 12(1): 79, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773545

RESUMO

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Assuntos
Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Niacinamida , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Camundongos , Administração Oral , Injeções Intravítreas , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Intoxicação por MPTP/patologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/tratamento farmacológico
20.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763373

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Assuntos
Neurônios Dopaminérgicos , Ferritinas , Ferroptose , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear , Animais , Ferroptose/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Coativadores de Receptor Nuclear/metabolismo , Camundongos , Masculino , Ferritinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Autofagia/efeitos dos fármacos , Antiparkinsonianos/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...