Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.490
Filtrar
1.
Biomolecules ; 14(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062557

RESUMO

Agricultural workers exposed to organic dust from swine concentrated animal feeding operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation. Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were pretreated with 0-10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment. No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations (100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε activation in a dose-dependent manner. Based on ZinPro's superior cell permeability compared to zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.


Assuntos
Cílios , Poeira , Proteína Quinase C-épsilon , Zinco , Animais , Cílios/efeitos dos fármacos , Cílios/metabolismo , Suínos , Camundongos , Zinco/farmacologia , Proteína Quinase C-épsilon/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
2.
Sci Rep ; 14(1): 16567, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019933

RESUMO

Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.


Assuntos
Asma , Drosophila melanogaster , Serpinas , Traqueia , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Traqueia/metabolismo , Traqueia/patologia , Asma/metabolismo , Asma/patologia , Asma/genética , Serpinas/metabolismo , Serpinas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Oxigênio/metabolismo
3.
J Vis Exp ; (209)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072632

RESUMO

The preterm neonatal airway epithelium is constantly exposed to environmental stressors. One of these stressors in neonates with lung disease includes oxygen (O2) tension higher than the ambient atmosphere - termed hyperoxia (>21% O2). The effect of hyperoxia on the airway depends on various factors, including the developmental stage of the airway, the degree of hyperoxia, and the duration of exposure, with variable exposures potentially leading to unique phenotypes. While there has been extensive research on the effect of hyperoxia on neonatal lung alveolarization and airway hyperreactivity, little is known about the short and long-term underlying effect of hyperoxia on human neonatal airway epithelial cells. A major reason for this is the scarcity of an effective in vitro model to study human neonatal airway epithelial development and function. Here, we describe a method for isolating and expanding human neonatal tracheal airway epithelial cells (nTAECs) utilizing human neonatal tracheal aspirates and culturing these cells in air-liquid interface (ALI) culture. We demonstrate that nTAECs form a mature polarized cell-monolayer in ALI culture and undergo mucociliary differentiation. We also present a method for moderate hyperoxia exposure of the cell monolayer in ALI culture using a specialized incubator. Additionally, we describe an assay to measure cellular oxidative stress following hyperoxia exposure in ALI culture using fluorescent quantification, which confirms that moderate hyperoxia exposure induces cellular oxidative stress but does not cause significant cell membrane damage or apoptosis. This model can potentially be used to simulate clinically relevant hyperoxia exposure encountered by neonatal airways in the Neonatal Intensive Care Unit (NICU) and used to study the short and long-lasting effects of O2 on neonatal airway epithelial programming. Studies using this model could be utilized to explore ways to mitigate early-life oxidative injury to developing airways, which is implicated in the development of long-term airway diseases in former premature infants.


Assuntos
Células Epiteliais , Hiperóxia , Humanos , Recém-Nascido , Hiperóxia/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Traqueia/citologia , Traqueia/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Técnicas de Cultura de Células/métodos
4.
BMJ Paediatr Open ; 8(1)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38862162

RESUMO

OBJECTIVE: A low expression of club cell secretory protein (CC16) and high levels of proinflammatory cytokines at preterm birth are associated with airway inflammation and more severe neonatal lung disease. The present study aimed to investigate if low levels of CC16, proinflammatory cytokines and vascular endothelial growth factors (VEGF) in tracheal aspirate early after birth were associated with lung function impairment at school age. PATIENTS AND METHODS: Participants were 20 children, born very preterm (median gestational age 25+3 weeks+days, IQR: 24+1-27+0 weeks+days), who had tracheal aspirates collected during mechanical ventilation in their first day of life. CC16, cytokines, VEGF and matrix metalloproteinase-9 were measured in the tracheal aspirate and later correlated to results from advanced lung function measurements at 12 years of age. RESULTS: Low levels of CC16 and high levels of the proinflammatory cytokines IL-1ß and TNF-α in tracheal aspirate were associated with airway obstruction at school age but not with other lung function parameters. The correlation with airway obstruction was even stronger when the ratio between the respective proinflammatory cytokine and CC16 was used. In addition, low levels of VEGF and CC16 were associated with impaired diffusion capacity of the lung. CONCLUSIONS: An imbalance in inflammatory mediators and growth factors in the lungs at birth may have consequences for airway function and vasculature at school age in preterm born children.


Assuntos
Obstrução das Vias Respiratórias , Traqueia , Uteroglobina , Humanos , Masculino , Traqueia/metabolismo , Feminino , Recém-Nascido , Obstrução das Vias Respiratórias/metabolismo , Uteroglobina/metabolismo , Uteroglobina/análise , Criança , Lactente Extremamente Prematuro , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Citocinas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Estudos de Coortes , Testes de Função Respiratória
5.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38873706

RESUMO

Oxygen availability during development is known to impact the development of insect respiratory and metabolic systems. Drosophila adult tracheal density exhibits developmental plasticity in response to hypoxic or hyperoxic oxygen levels during larval development. Respiratory systems of insects with higher aerobic demands, such as those that are facultative endotherms, may be even more responsive to oxygen levels above or below normoxia during development. The moth Manduca sexta is a large endothermic flying insect that serves as a good study system to start answering questions about developmental plasticity. In this study, we examined the effect of developmental oxygen levels (hypoxia: 10% oxygen, and hyperoxia: 30% oxygen) on the respiratory and metabolic phenotype of adult moths, focusing on morphological and physiological cellular and intercellular changes in phenotype. Mitochondrial respiration rate in permeabilized and isolated flight muscle was measured in adults. We found that permeabilized flight muscle fibers from the hypoxic group had increased mitochondrial oxygen consumption, but this was not replicated in isolated flight muscle mitochondria. Morphological changes in the trachea were examined using confocal imaging. We used transmission electron microscopy to quantify muscle and mitochondrial density in the flight muscle. The respiratory morphology was not significantly different between developmental oxygen groups. These results suggest that the developing M. sexta trachea and mitochondrial respiration have limited developmental plasticity when faced with rearing at 10% or 30% oxygen.


Assuntos
Manduca , Mitocôndrias , Oxigênio , Traqueia , Animais , Manduca/crescimento & desenvolvimento , Manduca/fisiologia , Oxigênio/metabolismo , Traqueia/metabolismo , Traqueia/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Larva/crescimento & desenvolvimento , Mitocôndrias Musculares/metabolismo
6.
Vet Microbiol ; 294: 110106, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776767

RESUMO

Glaesserella parasuis (G. parasuis) is the causative agent of porcine Glässer's disease, resulting in high mortality rates in pigs due to excessive inflammation-induced tissue damage. Previous studies investigating the protective effects of G. parasuis vaccination indicated a possible role of ApoA1 in reflecting disease progression following G. parasuis infection. However, the mechanisms of ApoA1 expression and its role in these infections are not well understood. In this investigation, newborn porcine tracheal (NPTr) epithelial cells infected with G. parasuis were used to elucidate the molecular mechanism and role of ApoA1. The study revealed that the AMPK pathway activation inhibited ApoA1 expression in NPTr cells infected with G. parasuis for the first time. Furthermore, Egr1 was identified as a core transcription factor regulating ApoA1 expression using a CRISPR/Cas9-based system. Importantly, it was discovered that APOA1 protein significantly reduced apoptosis, pyroptosis, necroptosis, and inflammatory factors induced by G. parasuis in vivo. These findings not only enhance our understanding of ApoA1 in response to bacterial infections but also highlight its potential in mitigating tissue damage caused by G. parasuis infection.


Assuntos
Proteínas Quinases Ativadas por AMP , Apolipoproteína A-I , Proteína 1 de Resposta de Crescimento Precoce , Haemophilus parasuis , Transdução de Sinais , Doenças dos Suínos , Animais , Suínos , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Haemophilus parasuis/genética , Doenças dos Suínos/microbiologia , Doenças dos Suínos/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Infecções por Haemophilus/veterinária , Infecções por Haemophilus/microbiologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Traqueia/microbiologia , Traqueia/metabolismo , Apoptose , Animais Recém-Nascidos
7.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792145

RESUMO

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Assuntos
Cálcio , Chamaecyparis , Contração Muscular , Músculo Liso , Extratos Vegetais , Quercetina , Traqueia , Animais , Cobaias , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Contração Muscular/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Chamaecyparis/química , Cálcio/metabolismo , Masculino , Bloqueadores dos Canais de Cálcio/farmacologia , Histamina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Folhas de Planta/química
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731872

RESUMO

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Assuntos
Trifosfato de Adenosina , Adenilil Ciclases , Relaxamento Muscular , Músculo Liso , Testosterona , Traqueia , Uridina Trifosfato , Animais , Uridina Trifosfato/farmacologia , Uridina Trifosfato/metabolismo , Cobaias , Relaxamento Muscular/efeitos dos fármacos , Masculino , Trifosfato de Adenosina/metabolismo , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Testosterona/farmacologia , Testosterona/metabolismo , Adenilil Ciclases/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo
9.
Lab Chip ; 24(12): 3093-3100, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38779981

RESUMO

The volume and composition of airway surface liquid (ASL) is regulated by liquid secretion and absorption across airway epithelia, controlling the pH, solute concentration, and biophysical properties of ASL in health and disease. Here, we developed a method integrating explanted tracheal tissue with a micro-machined device (referred to as "ex vivo trachea-chip") to study the dynamic properties of ASL volume regulation. The ex vivo trachea-chip allows real-time measurement of ASL transport (Jv) with intact airway anatomic structures, environmental control, high-resolution, and enhanced experimental throughput. Applying this technology to freshly excised tissue we observed ASL absorption under basal conditions. The apical application of amiloride, an inhibitor of airway epithelial sodium channels (ENaC), reduced airway liquid absorption. Furthermore, the basolateral addition of NPPB, a Cl- channel inhibitor, reduced the basal rate of ASL absorption, implicating a role for basolateral Cl- channels in ASL volume regulation. When tissues were treated with apical amiloride and basolateral methacholine, a cholinergic agonist that stimulates secretion from airway submucosal glands, the net airway surface liquid production shifted from absorption to secretion. This ex vivo trachea-chip provides a new tool to investigate ASL transport dynamics in pulmonary disease states and may aid the development of new therapies targeting ASL regulation.


Assuntos
Traqueia , Traqueia/metabolismo , Amilorida/farmacologia , Animais , Dispositivos Lab-On-A-Chip , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718843

RESUMO

Studies have highlighted an upregulation of PD-1 expression in CD4+ T cells, which accelerates lung fibrosis by activating the IL-17/STAT3 pathway, leading to IL-17A and TGF-ß1 secretion. However, the relation with traumatic tracheal stenosis (TS) remains unexplored. Our analysis found significant increases in PD-1+CD4+ T cells, IL-17A, and TGF-ß1 in the TS patients (n = 10). The cellular model used CD4+ T cells co-cultured with bronchial fibroblasts while the animal model used a nylon brush to scrape the damaged tracheal mucosa. Interventions with PD-1 and STAT3 inhibitors both in vitro (n = 5) and in vivo (n = 6) showed decreased expression of TGF-ß1 and IL-17A in CD4+ T cells, decreased collagen I synthesis in vitro, and reduced tractal fibrosis in vivo. Furthermore, PD-1's modulation of the STAT3 was evident. This research unveils PD-1+CD4+ T cells' role in TS, thus suggesting a novel immunotherapeutic strategy to counteract tracheal fibrosis.


Assuntos
Linfócitos T CD4-Positivos , Interleucina-17 , Receptor de Morte Celular Programada 1 , Fator de Transcrição STAT3 , Transdução de Sinais , Estenose Traqueal , Fator de Transcrição STAT3/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Interleucina-17/metabolismo , Interleucina-17/imunologia , Humanos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estenose Traqueal/patologia , Estenose Traqueal/metabolismo , Estenose Traqueal/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta1/metabolismo , Camundongos , Fibrose , Modelos Animais de Doenças , Traqueia/patologia , Traqueia/metabolismo , Traqueia/imunologia
11.
Mol Cell Endocrinol ; 590: 112273, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763427

RESUMO

High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17ß-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17ß-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.


Assuntos
Cálcio , Estradiol , Simulação de Acoplamento Molecular , ATPases Transportadoras de Cálcio da Membrana Plasmática , Animais , Cobaias , Estradiol/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Masculino , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Contração Muscular/efeitos dos fármacos , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Carbacol/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
12.
BMC Res Notes ; 17(1): 140, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755665

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS: Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS: Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION: Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.


Assuntos
COVID-19 , Estenose Traqueal , Transcriptoma , Vitamina A , Humanos , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Feminino , Vitamina A/metabolismo , Adulto , Estenose Traqueal/genética , Estenose Traqueal/metabolismo , Transcriptoma/genética , SARS-CoV-2 , Perfilação da Expressão Gênica/métodos , Traqueia/metabolismo , Traqueia/virologia
13.
Genesis ; 62(2): e23600, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38665068

RESUMO

Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.


Assuntos
Animais Geneticamente Modificados , Proteínas de Drosophila , Expressão Ectópica do Gene , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Ectópica do Gene/genética , Drosophila melanogaster/genética , Transgenes , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Traqueia/metabolismo , Drosophila/genética , Drosophila/metabolismo
14.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677782

RESUMO

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Caliciformes , Interleucina-13 , Medicina Kampo , Metaplasia , Mucina-5AC , Muco , Animais , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Interleucina-13/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cobaias , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Cultivadas , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Masculino , Expressão Gênica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/patologia , Traqueia/metabolismo
15.
Nanomedicine ; 58: 102748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663789

RESUMO

Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (AMSC-EVs) have been highlighted as a cell-free therapy due to their regenerative capability to enhance tissue and organ regeneration. Herein, we aimed to examine the mechanism of PF127-hydrogel@AMSC-EVs in promoting tracheal cartilage defect repair. Based on bioinformatics methods, SCNN1B was identified as a key gene for the osteogenic differentiation of AMSCs induced by AMSC-EVs. EVs were isolated from rat AMSCs and then loaded onto thermo-sensitive PF-127 hydrogel to develop PF127-hydrogel@AMSC-EVs. It was established that PF127-hydrogel@AMSC-EVs could effectively deliver SCNN1B into AMSCs, where SCNN1B promoted AMSC osteogenic differentiation. The promotive effect was evidenced by enhanced ALP activity, extracellular matrix mineralization, and expression of s-glycosaminoglycan, RUNX2, OCN, collagen II, PERK, and ATF4. Furthermore, the in vivo experiments revealed that PF127-hydrogel@AMSC-SCNN1B-EVs stimulated tracheal cartilage regeneration in rats through PERK/ATF4 signaling axis activation. Therefore, PF127-hydrogel@AMSC-SCNN1B-EVs may be a novel cell-free biomaterial to facilitate tracheal cartilage regeneration and cartilage injury repair.


Assuntos
Cartilagem , Vesículas Extracelulares , Hidrogéis , Células-Tronco Mesenquimais , Traqueia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Hidrogéis/química , Ratos , Traqueia/metabolismo , Cartilagem/metabolismo , Regeneração , Poloxâmero/química , Poloxâmero/farmacologia , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Osteogênese/efeitos dos fármacos , Masculino
16.
Forensic Toxicol ; 42(2): 255-257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436881

RESUMO

PURPOSE: We have investigated the absorption dynamics of petroleum fuel components from the analytical results of autopsy samples. METHODS: Post-mortem samples of the severely burned case, including femoral blood, intratracheal contents (mucus) and intratracheal gas-phase samples were collected, and analysed by gas chromatography-mass spectrometer with head-space solid-phase microextraction. RESULTS: The composition of flammable substances in the tracheal gas phase differed slightly from that in mucus. CONCLUSION: High-boiling point components are retained in the trachea, whereas relatively lower-boiling point components are detected predominantly in the tracheal gas phase and blood.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Querosene , Traqueia , Traqueia/metabolismo , Humanos , Masculino , Muco/química , Muco/metabolismo , Microextração em Fase Sólida , Queimaduras por Inalação/patologia , Queimaduras por Inalação/terapia
17.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069106

RESUMO

Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.


Assuntos
Condrócitos , Traqueia , Animais , Coelhos , Humanos , Condrócitos/transplante , Traqueia/metabolismo , Alicerces Teciduais , Cartilagem/transplante , Engenharia Tecidual/métodos , Colágeno/metabolismo , Inflamação/metabolismo
18.
J Vet Sci ; 24(5): e73, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38031652

RESUMO

BACKGROUND: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. OBJECTIVES: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. METHODS: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR-27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a-3p) from all comparisons and their immune-related target genes. RESULTS: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. CONCLUSIONS: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , MicroRNAs , Humanos , Animais , Galinhas/genética , Galinhas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/genética , Traqueia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Influenza A/genética
19.
Int J Biol Macromol ; 253(Pt 5): 127183, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37793531

RESUMO

Newcastle disease is a highly infectious economically devastating disease caused by Newcastle disease Virus in Chicken (Gallus gallus). Leghorn and Fayoumi are two breeds which show differential resistance patterns towards NDV. This study aims to identify the differentially expressed genes and lncRNAs during NDV challenge which could play a potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs were found to be differentially expressing. Of them, 52 genes were annotated with both Immune related pathways and Gene ontologies. We found that most of these genes were upregulated in Leghorn between normal and challenged chicken but several were down regulated between different timepoints after NDV challenge, while Fayoumi showed no such downregulation. We also observed that higher number of positively correlating lncRNAs was found to be downregulated along with these genes. This shows that although Leghorn is showing higher number of differentially expressed genes in challenged than in non-challenged, most of them were downregulated during the disease between different timepoints. With this we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs could play a significant role behind the Leghorn being comparatively susceptible breed than Fayoumi. The computational pipeline is available at https://github.com/Venky2804/FHSpipe.


Assuntos
Doença de Newcastle , RNA Longo não Codificante , Animais , Galinhas/metabolismo , Doença de Newcastle/genética , Doença de Newcastle/metabolismo , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traqueia/metabolismo , Vírus da Doença de Newcastle/genética
20.
Elife ; 122023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872795

RESUMO

Membrane expansion integrates multiple forces to mediate precise tube growth and network formation. Defects lead to deformations, as found in diseases such as polycystic kidney diseases, aortic aneurysms, stenosis, and tortuosity. We identified a mechanism of sensing and responding to the membrane-driven expansion of tracheal tubes. The apical membrane is anchored to the apical extracellular matrix (aECM) and causes expansion forces that elongate the tracheal tubes. The aECM provides a mechanical tension that balances the resulting expansion forces, with Dumpy being an elastic molecule that modulates the mechanical stress on the matrix during tracheal tube expansion. We show in Drosophila that the zona pellucida (ZP) domain protein Piopio interacts and cooperates with the ZP protein Dumpy at tracheal cells. To resist shear stresses which arise during tube expansion, Piopio undergoes ectodomain shedding by the Matriptase homolog Notopleural, which releases Piopio-Dumpy-mediated linkages between membranes and extracellular matrix. Failure of this process leads to deformations of the apical membrane, tears the apical matrix, and impairs tubular network function. We also show conserved ectodomain shedding of the human TGFß type III receptor by Notopleural and the human Matriptase, providing novel findings for in-depth analysis of diseases caused by cell and tube shape changes.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/metabolismo , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/metabolismo , Proteínas de Drosophila/metabolismo , Proteólise , Matriz Extracelular/metabolismo , Estruturas da Membrana Celular/metabolismo , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...