Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
Front Immunol ; 15: 1432743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247193

RESUMO

Introduction: Influenza A virus (IAV) infection is a global respiratory disease, which annually leads to 3-5 million cases of severe illness, resulting in 290,000-650,000 deaths. Additionally, during the past century, four global IAV pandemics have claimed millions of human lives. The epithelial lining of the trachea plays a vital role during IAV infection, both as point of viral entry and replication as well as in the antiviral immune response. Tracheal tissue is generally inaccessible from human patients, which makes animal models crucial for the study of the tracheal host immune response. Method: In this study, pigs were inoculated with swine- or human-adapted H1N1 IAV to gain insight into how host adaptation of IAV shapes the innate immune response during infection. In-depth multi-omics analysis (global proteomics and RNA sequencing) of the host response in upper and lower tracheal tissue was conducted, and results were validated by microfluidic qPCR. Additionally, a subset of samples was selected for histopathological examination. Results: A classical innate antiviral immune response was induced in both upper and lower trachea after infection with either swine- or human-adapted IAV with upregulation of genes and higher abundance of proteins associated with viral infection and recognition, accompanied by a significant induction of interferon stimulated genes with corresponding higher proteins concentrations. Infection with the swine-adapted virus induced a much stronger immune response compared to infection with a human-adapted IAV strain in the lower trachea, which could be a consequence of a higher viral load and a higher degree of inflammation. Discussion: Central components of the JAK-STAT pathway, apoptosis, pyrimidine metabolism, and the cytoskeleton were significantly altered depending on infection with swine- or human-adapted virus and might be relevant mechanisms in relation to antiviral immunity against putative zoonotic IAV. Based on our findings, we hypothesize that during host adaptation, IAV evolve to modulate important host cell elements to favor viral infectivity and replication.


Assuntos
Infecções por Orthomyxoviridae , Proteômica , Traqueia , Animais , Traqueia/imunologia , Traqueia/virologia , Suínos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteômica/métodos , Humanos , Adaptação ao Hospedeiro/imunologia , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Multiômica
2.
PLoS Pathog ; 20(9): e1012513, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264911

RESUMO

Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality, but the role played by PCV2 and bacterial and host factors contributing to this process have not been defined. Bacterial attachment is assumed to occur via specific receptor-ligand interactions between adhesins on the bacterial cell and host proteins adsorbed to the implant surface. Mass spectrometry (MS) analysis of PCV2-infected swine tracheal epithelial cells (STEC) revealed that the expression of Extracellular matrix protein (ECM) Fibronectin (Fn) increased significantly on the infected cells surface. Importantly, efficient G. parasuis serotype 4 (GPS4) adherence to STECs was imparted by interactions with Fn. Furthermore, abrogation of adherence was gained by genetic knockout of Fn, Fn and Integrin ß1 antibody blocking. Fn is frequently exploited as a receptor for bacterial pathogens. To explore the GPS4 adhesin that interacts with Fn, recombinant Fn N-terminal type I and type II domains were incubated with GPS4, and the interacting proteins were pulled down for MS analysis. Here, we show that rare lipoprotein A (RlpA) directly interacts with host Fibronectin mediating GPS4 adhesion. Finally, we found that PCV2-induced Fibronectin expression and adherence of GPS4 were prevented significantly by TGF-ß signaling pathway inhibitor SB431542. Our data suggest the RlpA-Fn interaction to be a potentially promising novel therapeutic target to combat PCV2 and GPS4 coinfection.


Assuntos
Circovirus , Fibronectinas , Haemophilus parasuis , Doenças dos Suínos , Traqueia , Animais , Suínos , Fibronectinas/metabolismo , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/metabolismo , Haemophilus parasuis/metabolismo , Circovirus/metabolismo , Circovirus/patogenicidade , Traqueia/virologia , Traqueia/microbiologia , Traqueia/metabolismo , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/virologia , Infecções por Haemophilus/metabolismo , Aderência Bacteriana , Sorogrupo , Coinfecção/virologia , Coinfecção/microbiologia , Infecções por Pasteurellaceae/veterinária , Infecções por Pasteurellaceae/virologia , Infecções por Pasteurellaceae/microbiologia , Infecções por Pasteurellaceae/metabolismo
3.
Virology ; 598: 110193, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39096773

RESUMO

This study assesses different IBV vaccination regimens in broiler chickens using commercially available live attenuated GI-23 (Egyptian-VAR2) and GI-1 (H120) vaccines. Vaccines were administered at 1, 14 days of age, or both. The ciliostasis test, following wild-type VAR2 challenge at 28 days of age, indicated that classic H120+VAR2 at one day old followed by the VAR2 vaccine at 14 days of age provided the highest level of protection (89.58%). Similarly, administering VAR2 at 1 day of age and classic H120 at 14 days of age demonstrated substantial protection (85.42%). Conversely, administering only classic H120 and VAR2 at one day old resulted in the lowest protection level (54.17%). Tracheal virus shedding quantification and assessment of trachea and kidney degenerative changes were significantly lower in vaccinated groups compared to the unvaccinated-challenged group. In conclusion, a carefully planned vaccination regimen based on homologous vaccination offers the most effective clinical protection in broiler chickens.


Assuntos
Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/genética , Galinhas/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinação/veterinária , Eliminação de Partículas Virais , Traqueia/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Eficácia de Vacinas
4.
Niger J Clin Pract ; 27(8): 945-949, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39212429

RESUMO

BACKGROUND: The isolation of pathogens using bronchoalveolar lavage (BAL) culture or endotracheal aspirate (ETA) culture may enhance the treatment success for secondary pneumonia due to COVID-19, thereby reducing the risk of morbidity and mortality. AIM: This study aimed to retrospectively analyze the results of BAL and ETA cultures in intubated COVID-19 patients and to determine whether BAL has an advantage over ETA. METHODS: We routinely perform BAL culture via bronchoscopy or ETA culture within the first 48 h after intubation. We retrospectively reviewed cases that underwent BAL and ETA. The patients were divided into two groups: Group B (BAL) and Group E (ETA). Various parameters were evaluated and compared between the two groups. RESULTS: The demographic data and blood test results were similar between the two groups. However, ICU stay, duration of intubation, and culture positivity were significantly higher in Group B. Although not statistically significant, the mortality rate was higher in Group E. The most commonly isolated microorganisms were Candida species. CONCLUSION: The observed mortality rates were consistent with the existing literature. Since the microorganism isolation rate is higher with BAL, leading to more effective antimicrobial treatment, early deaths were prevented, and ICU stay durations were prolonged. Conversely, these durations were shorter in the ETA group due to higher mortality. In intubated COVID-19 patients, a more effective treatment process can be achieved by clearing the airway with fiberoptic bronchoscopy and tailoring the treatment based on BAL culture results. This approach may positively impact prognosis and mortality rates.


Assuntos
Líquido da Lavagem Broncoalveolar , COVID-19 , Intubação Intratraqueal , Humanos , COVID-19/terapia , COVID-19/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/virologia , Idoso , Broncoscopia/métodos , SARS-CoV-2 , Adulto , Lavagem Broncoalveolar/métodos , Traqueia/microbiologia , Traqueia/virologia , Unidades de Terapia Intensiva , Tempo de Internação/estatística & dados numéricos
5.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L406-L414, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39104315

RESUMO

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice; however, the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. In addition, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared with their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.NEW & NOTEWORTHY Our study shows that obesity impairs airway mucociliary clearance (MCC), an essential physical innate defense mechanism for viral infection. Mechanically, this is likely due to the obesity-induced downregulation of cilia-related genes and attenuation of extracellular ATP release. This study provides novel insights into the mechanisms driving the higher susceptibility and severity of viral respiratory infections in individuals with obesity.


Assuntos
Cílios , Depuração Mucociliar , Obesidade , Mucosa Respiratória , Animais , Cílios/metabolismo , Cílios/patologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Obesidade/complicações , Camundongos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Camundongos Endogâmicos C57BL , Trifosfato de Adenosina/metabolismo , Masculino , Traqueia/metabolismo , Traqueia/virologia , Traqueia/patologia , Vírus da Influenza A , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/metabolismo , Dieta Hiperlipídica/efeitos adversos
6.
Microbiol Spectr ; 12(9): e0116424, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39078148

RESUMO

Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE: Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.


Assuntos
Brônquios , Células Epiteliais , Mutação , Humanos , Chlorocebus aethiops , Células Vero , Brônquios/virologia , Brônquios/citologia , Animais , Células Epiteliais/virologia , Traqueia/virologia , Traqueia/citologia , Vírus da Parainfluenza 3 Humana/genética , Vírus da Parainfluenza 3 Humana/fisiologia , Cultura de Vírus/métodos , Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 2 Humana/genética , Vírus da Parainfluenza 2 Humana/crescimento & desenvolvimento , Linhagem Celular , Inoculações Seriadas , Respirovirus/genética
7.
Vet Immunol Immunopathol ; 273: 110791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824909

RESUMO

Infectious bronchitis virus (IBV) strains of the Delmarva (DMV)/1639 genotype have been causing false layer syndrome (FLS) in the Eastern Canadian layer operations since the end of 2015. FLS is characterized by the development of cystic oviducts in layer pullets infected at an early age. Currently, there are no homologous vaccines for the control of this IBV genotype. Our previous research showed that a heterologous vaccination regimen incorporating Massachusetts (Mass) and Connecticut (Conn) IBV types protects layers against DMV/1639 genotype IBV. The aim of this study was to investigate the role of maternal antibodies conferred by breeders received the same vaccination regimen in the protection against the development of DMV/1639-induced FLS in pullets. Maternal antibody-positive (MA+) and maternal antibody-negative (MA-) female progeny chicks were challenged at 1 day of age and kept under observation for 16 weeks. Oviductal cystic formations were observed in 3 of 14 birds (21.4 %) in the MA- pullets, while the lesions were notably absent in the MA+ pullets. Milder histopathological lesions were observed in the examined tissues of the MA+ pullets. However, the maternal derived immunity failed to demonstrate protection against the damage to the tracheal ciliary activity, viral shedding, and viral tissue distribution. Overall, this study underscores the limitations of maternal derived immunity in preventing certain aspects of viral pathogenesis, emphasizing the need for comprehensive strategies to address different aspects of IBV infection.


Assuntos
Anticorpos Antivirais , Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Galinhas/imunologia , Galinhas/virologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Imunidade Materno-Adquirida , Traqueia/imunologia , Traqueia/virologia , Oviductos/imunologia , Oviductos/patologia , Oviductos/virologia
8.
J Appl Biomed ; 22(2): 115-122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912867

RESUMO

In 2020, there were numerous cases in Kazakhstan with clinical symptoms of COVID-19 but negative PCR results in nasopharyngeal and oropharyngeal swabs. The diagnosis was confirmed clinically and by CT scans (computed tomography). The problem with such negative PCR results for SARS-CoV-2 infection confirmation still exists and indicates the need to confirm the diagnosis in the bronchoalveolar lavage in such cases. There is also a lack of information about confirmation of SARS-CoV-2 infection in deceased patients. In this study, various tissue materials, including lungs, bronchi, and trachea, were examined from eight patients who died, presumably from SARS-CoV-2 infection, between 2020 and 2022. Naso/oropharyngeal swabs taken from these patients in hospitals tested PCR negative for SARS-CoV-2. This study presents a modified RNA isolation method based on a comparison of the most used methods for RNA isolation in laboratories: QIAamp Viral RNA Mini Kit and TRIzol-based method. This modified nucleic acid extraction protocol can be used to confirm SARS-CoV-2 infection by RT-qPCR in the tissues of deceased patients in disputed cases. RT-qPCR with RNA of SARS-CoV-2 re-extracted with such method from post-mortem tissues that were stored at -80 °C for more than 32 months still demonstrated high-yielding positive results.


Assuntos
Autopsia , COVID-19 , RNA Viral , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , RNA Viral/genética , RNA Viral/análise , Masculino , Autopsia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Feminino , Pulmão/virologia , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Teste de Ácido Nucleico para COVID-19/métodos , Traqueia/virologia , Traqueia/patologia , Traqueia/diagnóstico por imagem , Adulto , Nasofaringe/virologia
9.
J Virol ; 98(6): e0160423, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780249

RESUMO

The global burden of disease caused by influenza B virus (IBV) is substantial; however, IBVs remain overlooked. Understanding host-pathogen interactions and establishing physiologically relevant models of infection are important for the development and assessment of therapeutics and vaccines against IBV. In this study, we assessed an upper respiratory tract (URT)-restricted model of mouse IBV infection, comparing it to the conventional administration of the virus to the total respiratory tract (TRT). We found that URT infections caused by different strains of IBV disseminate to the trachea but resulted in limited dissemination of IBV to the lungs. Infection of the URT did not result in weight loss or systemic inflammation even at high inoculum doses and despite robust viral replication in the nose. Dissemination of IBV to the lungs was enhanced in mice lacking functional type I IFN receptor (IFNAR2), but not IFNγ. Conversely, in mice expressing the IFN-inducible gene Mx1, we found reduced IBV replication in the lungs and reduced dissemination of IBV from the URT to the lungs. Inoculation of IBV in both the URT and TRT resulted in seroconversion against IBV. However, priming at the TRT conferred superior protection from a heterologous lethal IBV challenge compared to URT priming, as determined by improved survival rates and reduced viral replication throughout the respiratory tract. Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role of IFNs in limiting dissemination of IBV to the lungs, and also demonstrates that the lack of viral replication in the lungs may impact protection from subsequent infections. IMPORTANCE: Our study investigated how influenza B virus (IBV) spreads from the nose to the lungs of mice and the impact this has on disease and protection from re-infection. We found that when applied to the nose only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon response. Priming immunity at the nose only resulted in less protection from re-infection than priming immunity at both the nose and lungs. These insights can guide the development of potential therapies targeting the interferon response as well as of intranasal vaccines against IBV.


Assuntos
Vírus da Influenza B , Pulmão , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Camundongos , Vírus da Influenza B/fisiologia , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pulmão/virologia , Pulmão/imunologia , Modelos Animais de Doenças , Interferons/metabolismo , Interferons/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas de Resistência a Myxovirus/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , Camundongos Endogâmicos C57BL , Interações Hospedeiro-Patógeno/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia , Feminino , Interferon gama/metabolismo , Traqueia/virologia
10.
Vet Microbiol ; 294: 110119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772075

RESUMO

Mycoplasma synoviae causes infectious synovitis and respiratory tract infections in chickens and is responsible for significant economic losses in the poultry industry. Effective attachment and colonisation of the trachea is critical for the persistence of the organism and progression of the disease it causes. The respiratory tract infection is usually sub-clinical, but concurrent infection with infectious bronchitis virus (IBV) is known to enhance the pathogenicity of M. synoviae. This study aimed to explore differentially expressed genes in the tracheal mucosa, and their functional categories, during chronic infection with M. synoviae, using a M. synoviae-IBV infection model. The transcriptional profiles of the trachea were assessed 2 weeks after infection using RNA sequencing. In chickens infected with M. synoviae or IBV, only 1 or 8 genes were differentially expressed compared to uninfected chickens, respectively. In contrast, the M. synoviae-IBV infected chickens had 621 upregulated and 206 downregulated genes compared to uninfected chickens. Upregulated genes and their functional categories were suggestive of uncontrolled lymphoid cell proliferation and an ongoing pro-inflammatory response. Genes associated with anti-inflammatory effects, pathogen removal, apoptosis, regulation of the immune response, airway homoeostasis, cell adhesion and tissue regeneration were downregulated. Overall, transcriptional changes in the trachea, 2 weeks after infection with M. synoviae and IBV, indicate immune dysregulation, robust inflammation and a lack of cytotoxic damage during chronic infection. This model provides insights into the pathogenesis of chronic infection with M. synoviae.


Assuntos
Galinhas , Infecções por Mycoplasma , Mycoplasma synoviae , Doenças das Aves Domésticas , Traqueia , Animais , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Mycoplasma synoviae/genética , Traqueia/microbiologia , Traqueia/virologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Vírus da Bronquite Infecciosa/fisiologia , Doença Crônica , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Coinfecção/veterinária , Coinfecção/microbiologia , Coinfecção/virologia
11.
BMC Res Notes ; 17(1): 140, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755665

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19)-associated tracheal stenosis (COATS) may occur as a result of prolonged intubation during COVID-19 infection. We aimed to investigate patterns of gene expression in the tracheal granulation tissue of patients with COATS, leverage gene expression data to identify dysregulated cellular pathways and processes, and discuss potential therapeutic options based on the identified gene expression profiles. METHODS: Adult patients (age ≥ 18 years) presenting to clinics for management of severe, recalcitrant COATS were included in this study. RNA sequencing and differential gene expression analysis was performed with transcriptomic data for normal tracheal tissue being used as a control. The top ten most highly upregulated and downregulated genes were identified. For each of these pathologically dysregulated genes, we identified key cellular pathways and processes they are involved in using Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) applied via Database for Annotation, Visualization, and Integrated Discovery (DAVID). RESULTS: Two women, aged 36 years and 37 years, were included. The profile of dysregulated genes indicated a cellular response consistent with viral infection (CXCL11, PI15, CCL8, DEFB103A, IFI6, ACOD1, and DEFB4A) and hyperproliferation/hypergranulation (MMP3, CASP14 and HAS1), while downregulated pathways included retinol metabolism (ALDH1A2, RBP1, RBP4, CRABP1 and CRABP2). CONCLUSION: Gene expression changes consistent with persistent viral infection and dysregulated retinol metabolism may promote tracheal hypergranulation and hyperproliferation leading to COATS. Given the presence of existing literature highlighting retinoic acid's ability to favorably regulate these genes, improve cell-cell adhesion, and decrease overall disease severity in COVID-19, future studies must evaluate its utility for adjunctive management of COATS in animal models and clinical settings.


Assuntos
COVID-19 , Estenose Traqueal , Transcriptoma , Vitamina A , Humanos , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Feminino , Vitamina A/metabolismo , Adulto , Estenose Traqueal/genética , Estenose Traqueal/metabolismo , Transcriptoma/genética , SARS-CoV-2 , Perfilação da Expressão Gênica/métodos , Traqueia/metabolismo , Traqueia/virologia
12.
Avian Pathol ; 53(5): 380-389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38572655

RESUMO

Infectious bronchitis virus (IBV) strains of genotype GVIII have been emerging in Europe in the last decade, but no biological characterization has been reported so far. This paper reports the extensive genetic and biological characterization of IBV strain D2860 of genotype GVIII which was isolated from a Dutch layer flock that showed a drop in egg production. Whole genome sequencing showed that it has a high similarity (95%) to CK/DE/IB80/2016 (commonly known as IB80). Cross-neutralization tests with antigens and serotype-specific antisera of a panel of different non-GVIII genotypes consistently gave less than 2% antigenic cross-relationship with D2860. Five experiments using specified pathogen-free chickens of 0, 4, 29 and 63 weeks of age showed that D2860 was not able to cause clinical signs, drop in egg production, false layers or renal pathology. There was also a distinct lack of ciliostasis at both 5 and 8 days post-inoculation at any age, despite proof of infection by immunohistochemical (IHC) staining, RT-PCR and serology. IHC showed immunostaining between 5 and 8 days post inoculation in epithelial cells of sinuses and conchae, while only a few birds displayed immunostaining in the trachea. In vitro comparison of replication of D2860 and M41 in chicken embryo kidney cells at 37°C and at 41°C indicated that D2860 might have a degree of temperature sensitivity that might cause it to prefer the colder parts of the respiratory tract.


Assuntos
Galinhas , Infecções por Coronavirus , Genótipo , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Organismos Livres de Patógenos Específicos , Feminino , Filogenia , Genoma Viral/genética , Replicação Viral , Traqueia/virologia
13.
J Virol Methods ; 327: 114943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679164

RESUMO

We established primary porcine nasal, tracheal, and bronchial epithelial cells that recapitulate the physical and functional properties of the respiratory tract and have the ability to fully differentiate. Trans-well cultures demonstrated increased transepithelial electrical resistance over time the presence of tight junctions as demonstrated by immunohistochemistry. The nasal, tracheal, and bronchial epithelial cells developed cilia, secreted mucus, and expressed sialic acids on surface glycoproteins, the latter which are required for influenza A virus infection. Swine influenza viruses were shown to replicate efficiently in the primary epithelial cell cultures, supporting the use of these culture models to assess swine influenza and other virus infection. Primary porcine nasal, tracheal, and bronchial epithelial cell culture models enable assessment of emerging and novel influenza viruses for pandemic potential as well as mechanistic studies to understand mechanisms of infection, reassortment, and generation of novel virus. As swine are susceptible to infection with multiple viral and bacterial respiratory pathogens, these primary airway cell models may enable study of the cellular response to infection by pathogens associated with Porcine Respiratory Disease Complex.


Assuntos
Células Epiteliais , Animais , Suínos , Células Epiteliais/virologia , Traqueia/virologia , Traqueia/citologia , Brônquios/virologia , Brônquios/citologia , Células Cultivadas , Técnicas de Cultura de Células/métodos , Vírus da Influenza A/fisiologia , Replicação Viral
14.
Viruses ; 16(4)2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675946

RESUMO

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Assuntos
Galinhas , Infecções por Coronavirus , Perfilação da Expressão Gênica , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Traqueia , Animais , Traqueia/virologia , Traqueia/imunologia , Galinhas/virologia , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Células Epiteliais/virologia , Células Epiteliais/imunologia , Transcriptoma , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Organismos Livres de Patógenos Específicos
15.
Virol Sin ; 39(2): 309-318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458399

RESUMO

SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.


Assuntos
Brônquios , COVID-19 , Degranulação Celular , Mastócitos , SARS-CoV-2 , Traqueia , Animais , Mastócitos/virologia , Mastócitos/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Camundongos , Traqueia/virologia , Traqueia/patologia , Brônquios/virologia , Brônquios/patologia , Humanos , Inflamação/virologia , Células Epiteliais/virologia , Modelos Animais de Doenças
16.
Nature ; 626(7998): 385-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096903

RESUMO

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Animais , Humanos , Administração Intranasal , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Citocinas/imunologia , Imunidade nas Mucosas/imunologia , Imunização Secundária/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intramusculares , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Traqueia/imunologia , Traqueia/virologia
17.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882519

RESUMO

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Assuntos
Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Interleucina-2 , Células Matadoras Naturais , Linfócitos T Citotóxicos , Vacinas Virais , Animais , Administração Oral , Galinhas/imunologia , Galinhas/virologia , Túnica Conjuntiva/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Linfócitos T Citotóxicos/imunologia , Traqueia/virologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
18.
Phytochemistry ; 212: 113713, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169138

RESUMO

The potential antiviral effects of indole-3-carbinol (I3C), a phytochemical found in Cruciferous vegetables, were investigated. Fibroblasts and epithelial cells were co-cultured on Alvetex® scaffolds, to obtain ad hoc 3D in vitro platforms able to mimic the trachea and intestinal mucosae, which represent the primary structures involved in the coronavirus pathogenesis. The two barriers generated in vitro were treated with various concentrations of I3C for different incubation periods. A protective effect of I3C on both intestinal and trachea models was demonstrated. A significant reduction in the transcription of the two main genes belonging to the Homologous to E6AP C-terminus (HECT)-E3 ligase family members, namely NEDD4 E3 Ubiquitin Protein Ligase (NEDD4) and WW Domain Containing E3 Ubiquitin Protein Ligase 1 (WWP1), which promote virus matrix protein ubiquitination and inhibit viral egression, were detected. These findings indicate I3C potential effect in preventing coronavirus cell egression processes that inhibit viral production. Although further studies are needed to clarify the molecular mechanisms whereby HECT family members control virus life cycle, this work paves the way to the possible therapeutic use of new natural compounds that may reduce the clinical severity of future pandemics.


Assuntos
Antivirais , Brassicaceae , Coronavirus , Intestinos , Modelos Biológicos , Compostos Fitoquímicos , Traqueia , Verduras , Antivirais/farmacologia , Brassicaceae/química , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Técnicas In Vitro , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/virologia , Compostos Fitoquímicos/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/virologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Verduras/química , Proteínas da Matriz Viral/metabolismo , Reprodutibilidade dos Testes , Suínos , Animais , Humanos , Técnicas de Cultura de Células em Três Dimensões
19.
Acta Clin Croat ; 62(Suppl1): 75-84, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38746608

RESUMO

Changes in working methods and diagnostics using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) diagnostics that occurred after the start of the COVID-19 pandemic could show differences in the prevalence of positive microbiological samples. In a retrospective study, a total of 442 tracheal aspirates in the pre-pandemic period (Period A, 2018, 198 patients, age median 69 (57-78)) and 277 samples in the pandemic period (Period B, 2021, 147 patients, age 68 (56-77) (p=0.585) obtained after the start of the pandemic were analyzed. A total of 176 patients had at least 1 positive result. In Period A, there were 245 (55%) and in Period B 186 (68%) sterile samples (p=0.001). The most frequently isolated pathogens were Acinetobacter baumannii in 86 patients from Period A and 32 patients from Period B, i.e., 43% vs. 21.7% of all positive isolates (p=0.247), followed by Pseudomonas aeruginosa in 29 patients in Period A (14.6%) vs. 7 (3%) (p=0.112) in Period B. A statistically significant increase was observed in the incidence of Enterobacterales (16.6% vs. 32.6%, p=0.002), especially Klebsiellae spp. Although overall mortality decreased in Period B, changes in the working methods and diagnostics did not result in changes in the mortality of patients whose tracheal aspirates were sampled.


Assuntos
COVID-19 , Unidades de Terapia Intensiva , Centros de Atenção Terciária , Traqueia , Humanos , COVID-19/epidemiologia , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Traqueia/microbiologia , Traqueia/virologia , Masculino , Feminino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , SARS-CoV-2/isolamento & purificação , Pandemias
20.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162999

RESUMO

Influenza (IAV) neuraminidase (NA) is a glycoprotein required for the viral exit from the cell. NA requires disulfide bonds for proper function. We have recently demonstrated that protein disulfide isomerase (PDI)A3 is required for oxidative folding of IAV hemagglutinin (HA), and viral propagation. However, it not known whether PDIs are required for NA maturation or if these interactions represent a putative target for the treatment of influenza infection. We sought to determine whether PDIA3 is required for disulfide bonds of NA, its activity, and propagation of the virus. Requirement of disulfides for NA oligomerization and activity were determined using biotin switch and redox assays in WT and PDIA3-/- in A549 cells. A PDI specific inhibitor (LOC14) was utilized to determine the requirement of PDIs in NA activity, IAV burden, and inflammatory response in A549 and primary mouse tracheal epithelial cells. Mice were treated with the inhibitor LOC14 and subsequently examined for IAV burden, NA activity, cytokine, and immune response. IAV-NA interacts with PDIA3 and this interaction is required for NA activity. PDIA3 ablation or inhibition decreased NA activity, viral burden, and inflammatory response in lung epithelial cells. LOC14 treatment significantly attenuated the influenza-induced inflammatory response in mice including the overall viral burden. These results provide evidence for PDIA3 inhibition suppressing NA activity, potentially providing a novel platform for host-targeted antiviral therapies.


Assuntos
Inibidores Enzimáticos/administração & dosagem , Vírus da Influenza A Subtipo H1N1/enzimologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Virais/metabolismo , Células A549 , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase/química , Infecções por Orthomyxoviridae/metabolismo , Cultura Primária de Células , Dobramento de Proteína , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/virologia , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...