Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.067
Filtrar
1.
Food Chem ; 462: 140909, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208727

RESUMO

Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.


Assuntos
Caseínas , Emulsões , Lactobacillus plantarum , Polissacarídeos Bacterianos , Probióticos , Emulsões/química , Probióticos/química , Polissacarídeos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurização , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Composição de Medicamentos , Digestão , Armazenamento de Alimentos
2.
Food Chem ; 462: 141030, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241685

RESUMO

The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.


Assuntos
Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Leite Humano , Estresse Oxidativo , Probióticos , Humanos , Probióticos/farmacologia , Probióticos/química , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Glicoproteínas/química , Glicoproteínas/farmacologia , Glicoproteínas/metabolismo , Células CACO-2 , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Leite Humano/química , Lactente , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Fórmulas Infantis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
3.
Food Chem ; 462: 140953, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216374

RESUMO

The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Peptidil Dipeptidase A , Zea mays , Animais , Humanos , Masculino , Ratos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células CACO-2 , Digestão/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Glutens/química , Glutens/metabolismo , Hidrólise , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Ratos Endogâmicos SHR , Zea mays/química , Zea mays/metabolismo
4.
Cell Host Microbe ; 32(9): 1455-1457, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265529

RESUMO

Chemotherapy is associated with the induction of intestinal microbiota dysbiosis and gastrointestinal injuries. In this Cell Host & Microbe issue, Anderson et al. demonstrate that chemotherapy-induced epithelial cell apoptosis drives microbiota imbalance and transcriptional rewiring, which in turn delays intestinal recovery.


Assuntos
Disbiose , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Antineoplásicos/uso terapêutico , Animais , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/efeitos dos fármacos
5.
Gut Microbes ; 16(1): 2406379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39305271

RESUMO

Akkermansia sp are common members of the human gut microbiota. Multiple reports have emerged linking the abundance of A. muciniphila to health benefits and disease risk in humans and animals. This review highlights findings linking Akkermansia species in the gastrointestinal (GI) tract to health outcomes across a spectrum of disorders, encompassing those that affect the digestive, respiratory, urinary, and central nervous systems. The mechanism through which Akkermansia exerts a beneficial versus a detrimental effect on health is likely dependent on the genetic makeup of the host metabolic capacity and immunomodulatory properties of the strain, the competition or cooperation with other members of the host microbiota, as well as synergy with co-administered therapies.


Assuntos
Akkermansia , Microbioma Gastrointestinal , Trato Gastrointestinal , Humanos , Akkermansia/fisiologia , Animais , Trato Gastrointestinal/microbiologia , Gastroenteropatias/microbiologia
6.
J Cell Mol Med ; 28(18): e70099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300699

RESUMO

Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Doenças do Sistema Nervoso , Humanos , Microbioma Gastrointestinal/fisiologia , Animais , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Sistema Nervoso Entérico/metabolismo , Encéfalo/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/microbiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
7.
PLoS One ; 19(9): e0310214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292665

RESUMO

Image stitching is a traditional but challenging computer vision task. The goal is to stitch together multiple images with overlapping areas into a single, natural-looking, high-resolution image without ghosts or seams. This article aims to increase the field of view of gastroenteroscopy and reduce the missed detection rate. To this end, an improved depth framework based on unsupervised panoramic image stitching of the gastrointestinal tract is proposed. In addition, preprocessing for aberration correction of monocular endoscope images is introduced, and a C2f module is added to the image reconstruction network to improve the network's ability to extract features. A comprehensive real image data set, GASE-Dataset, is proposed to establish an evaluation benchmark and training learning framework for unsupervised deep gastrointestinal image splicing. Experimental results show that the MSE, RMSE, PSNR, SSIM and RMSE_SW indicators are improved, while the splicing time remains within an acceptable range. Compared with traditional image stitching methods, the performance of this method is enhanced. In addition, improvements are proposed to address the problems of lack of annotated data, insufficient generalization ability and insufficient comprehensive performance in image stitching schemes based on supervised learning. These improvements provide valuable aids in gastrointestinal examination.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Trato Gastrointestinal/diagnóstico por imagem , Aprendizado Profundo , Aprendizado de Máquina não Supervisionado , Endoscopia Gastrointestinal/métodos
8.
Clin Exp Med ; 24(1): 225, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294494

RESUMO

Gastrointestinal (GI) tract involvement affects up to 90% of Systemic sclerosis (SSc) patients. The presence of GI symptoms is assessed by the University of California, Los Angeles, and Scleroderma Clinical Trials Consortium Gastrointestinal Scale (UCLA SCTC GIT 2.0). Microbial translocation (MT) is reported in SSc patients consequently to increased intestinal permeability due to intestinal damage (ID) and dysbiosis. Aim of this study was to assess circulating levels of LBP and EndoCab IgM (markers of MT), IL-6 (marker of inflammation), I-FABP and Zonulin (markers of ID) in a cohort of SSc patients and healthy controls (HC). Moreover, we aimed to correlate these parameters with severity of GI symptoms. UCLA SCTC GIT 2.0 questionnaire was administered to 60 consecutive SSc patients. Markers of MT, inflammation and ID were evaluated in SSc patients and HC. SSc patients had higher median value of markers of MT, inflammation and ID than HC. The logistic regression analysis showed LBP as the only variable associated with an UCLA total score "moderate-to-very severe" [OR 1.001 (CI 95%: 1.001-1.002), p < 0.001]. The logistic regression analysis showed LBP [OR 1.002 (CI 95%: 1.001-1.003), p < 0.01] and disease duration [OR 1.242 (CI 95%: 1.023-1.506), p < 0.05] as variables associated with UCLA distension/bloating "moderate-to-very severe". The logistic regression analysis showed LBP as the only variable associated with UCLA diarrhea "moderate-to-very severe" [OR 1.002 (CI 95%: 1.001-1.003), p < 0.01]. SSc patients with dysregulation gut mucosal integrity expressed by high levels of MT and ID biomarkers had more severe GI symptoms.


Assuntos
Translocação Bacteriana , Biomarcadores , Haptoglobinas , Escleroderma Sistêmico , Humanos , Feminino , Escleroderma Sistêmico/sangue , Pessoa de Meia-Idade , Masculino , Biomarcadores/sangue , Adulto , Haptoglobinas/análise , Idoso , Toxina da Cólera/sangue , Interleucina-6/sangue , Precursores de Proteínas/sangue , Índice de Gravidade de Doença , Proteínas de Ligação a Ácido Graxo/sangue , Proteínas de Transporte/sangue , Proteínas de Fase Aguda , Imunoglobulina M/sangue , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Gastroenteropatias/sangue , Gastroenteropatias/patologia , Gastroenteropatias/microbiologia , Gastroenteropatias/etiologia , Disbiose/sangue , Glicoproteínas de Membrana
10.
Parasit Vectors ; 17(1): 381, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242536

RESUMO

BACKGROUND: Trypanosoma cruzi is transmitted to humans by hematophagous bugs belonging to the Triatominae subfamily. Its intra-vectorial cycle is complex and occurs exclusively in the insect's midgut. Dissecting the elements involved in the cross-talk between the parasite and its vector within the digestive tract should provide novel targets for interrupting the parasitic life cycle and affecting vectorial competence. These interactions are shaped by the strategies that parasites use to infect and exploit their hosts, and the host's responses that are designed to detect and eliminate parasites. The objective of the current study is to characterize the impact of T. cruzi establishment within its vector on the dynamics of its midgut. METHODS: In this study, we evaluated the impact of T. cruzi infection on protein expression within the anterior midgut of the model insect Rhodnius prolixus at 6 and 24 h post-infection (hpi) using high-throughput quantitative proteomics. RESULTS: Shortly after its ingestion, the parasite modulates the proteome of the digestive epithelium by upregulating 218 proteins and negatively affecting the expression of 11 proteins involved in a wide array of cellular functions, many of which are pivotal due to their instrumental roles in cellular metabolism and homeostasis. This swift response underscores the intricate manipulation of the vector's cellular machinery by the parasite. Moreover, a more in-depth analysis of proteins immediately induced by the parasite reveals a pronounced predominance of mitochondrial proteins, thereby altering the sub-proteomic landscape of this organelle. This includes various complexes of the respiratory chain involved in ATP generation. In addition to mitochondrial metabolic dysregulation, a significant number of detoxifying proteins, such as antioxidant enzymes and P450 cytochromes, were immediately induced by the parasite, highlighting a stress response. CONCLUSIONS: This study is the first to illustrate the response of the digestive epithelium upon contact with T. cruzi, as well as the alteration of mitochondrial sub-proteome by the parasite. This manipulation of the vector's physiology is attributable to the cascade activation of a signaling pathway by the parasite. Understanding the elements of this response, as well as its triggers, could be the foundation for innovative strategies to control the transmission of American trypanosomiasis, such as the development of targeted interventions aimed at disrupting parasite proliferation and transmission within the triatomine vector.


Assuntos
Doença de Chagas , Insetos Vetores , Mitocôndrias , Rhodnius , Trypanosoma cruzi , Animais , Rhodnius/parasitologia , Rhodnius/metabolismo , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/metabolismo , Insetos Vetores/parasitologia , Mitocôndrias/metabolismo , Doença de Chagas/transmissão , Doença de Chagas/parasitologia , Trato Gastrointestinal/parasitologia , Proteômica , Interações Hospedeiro-Parasita , Proteoma
11.
Front Cell Infect Microbiol ; 14: 1443712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247054

RESUMO

Object: To investigate the effects of Shen Qi Bu Qi Powder (SQBQP) on the average daily gain, blood indexes, gastrointestinal microflora, and serum metabolites of calves. Methods: A total of 105 calves were randomly assigned to three groups (n = 35 per group): the control group (C, fed with a basal diet for 21 days) and two treatment groups (SQBQP-L and SQBQP-H, fed with the basal diet supplemented with 15 and 30 g/kg of SQBQP), respectively for 21 days. The active components of SQBQP were identified using LC-MS/MS. Serum digestive enzymes and antioxidant indices were determined by ELISA kits and biochemical kits, respectively. Serum differential metabolites were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), while flora in rumen fluid and fecal were analyzed by 16S rDNA sequencing. Further correlation analysis of gastrointestinal flora and serum metabolites of SQBQP-H and C groups were performed with Spearman's correlation. Results: The principal active components of SQBQP mainly includes polysaccharides, flavonoids, and organic acids. Compared to the control group (C), calves in the SQBQP-H (high dose) and SQBQP-L (low dose) groups showed a significant increase in serum amylase (AMS) levels (P<0.001), while lipase content significantly decreased (P<0.05). Additionally, the average daily gain, T-AOC, and cellulase content of calves in the SQBQP-H group significantly increased (P<0.05). Proteobacteria and Succinivibrio in the rumen flora of the SQBQP-H group was significantly lower than that of the C group (P<0.05). The relative abundance of Proteobacteria, Actinobacteria, Candidatus_Saccharibacteria, Deinococcus_Thermus, Cyanobacteria, and Succinivibrio in the SQBQP-H group was significantly increased (P<0.05), while the relative abundance of Tenericutes and Oscillibacter was significantly decreased (P<0.05). Serum metabolomics analysis revealed 20 differential metabolites, mainly enriched in amino acid biosynthesis, ß-alanine metabolism, tyrosine, and tryptophan biosynthesis metabolic pathways (P<0.05). Correlation analysis results showed that Butyrivibrio in rumen flora and Oscillibacter_valericigenes in intestinal flora were significantly positively correlated with average daily gain, serum biochemical indexes, and differential metabolite (-)-Epigallocatechin (R>0.58, P<0.05). Conclusion: SQBQP can promote calves weight gain and enhance health by modulating gastrointestinal flora and metabolic processes in the body.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Rúmen , Animais , Bovinos , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Rúmen/microbiologia , Rúmen/metabolismo , Fezes/microbiologia , Pós , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Cromatografia Líquida , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Soro/metabolismo , Masculino
12.
BMC Med Imaging ; 24(1): 235, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251973

RESUMO

BACKGROUND: Radiotherapy (RT) is effective for cervical cancer but causes late side effects (SE) to nearby organs. These late SE occur more than 3 months after RT and are rated by clinical findings to determine their severity. While imaging studies describe late gastrointestinal (GI) SE, none demonstrate the correlation between the findings and the toxicity grading. In this study, we demonstrated the late GI toxicity prevalence, CT findings, and their correlation. METHODS: We retrospectively studied uterine cervical cancer patients treated with RT between 2015 and 2018. Patient characteristics and treatment(s) were obtained from the hospital's databases. Late RTOG/EORTC GI SE and CT images were obtained during the follow-up. Post-RT GI changes were reviewed from CT images using pre-defined criteria. Risk ratios (RR) were calculated for CT findings, and multivariable log binomial regression determined adjusted RRs. RESULTS: This study included 153 patients, with a median age of 57 years (IQR 49-65). The prevalence of ≥ grade 2 RTOG/EORTC late GI SE was 33 (27.5%). CT findings showed 91 patients (59.48%) with enhanced bowel wall (BW) thickening, 3 (1.96%) with bowel obstruction, 7 (4.58%) with bowel perforation, 6 (3.92%) with fistula, 0 (0%) with bowel ischemia, and 0 (0%) with GI bleeding. Adjusted RRs showed that enhanced BW thickening (RR 9.77, 95% CI 2.64-36.07, p = 0.001), bowel obstruction (RR 5.05, 95% CI 2.30-11.09, p < 0.001), and bowel perforation (RR 3.82, 95% CI 1.96-7.44, p < 0.001) associated with higher late GI toxicity grades. CONCLUSIONS: Our study shows CT findings correlate with grade 2-4 late GI toxicity. Future research should validate and refine these findings with different imaging and toxicity grading systems to assess their potential predictive value.


Assuntos
Lesões por Radiação , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Trato Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/diagnóstico por imagem , Gastroenteropatias/etiologia , Gastroenteropatias/diagnóstico por imagem , Análise de Regressão
13.
Microbiome ; 12(1): 161, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39223641

RESUMO

BACKGROUND: Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS: CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION: Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Fezes , Microbioma Gastrointestinal , Macaca mulatta , Animais , Fezes/microbiologia , Febre de Chikungunya/virologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Disbiose/microbiologia , Inflamação , Inflamassomos/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Trato Gastrointestinal/microbiologia , Citocinas/metabolismo
14.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273369

RESUMO

The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.


Assuntos
Microbioma Gastrointestinal , Inflamação , Macrófagos , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Permeabilidade
15.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273238

RESUMO

Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (µmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.


Assuntos
Antioxidantes , Digestão , Erythrina , Peptídeos , Proteínas de Plantas , Hidrólise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Peptídeos/química , Peptídeos/metabolismo , Erythrina/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Subtilisinas/metabolismo , Subtilisinas/química , Estresse Oxidativo , Trato Gastrointestinal/metabolismo
16.
Gut Microbes ; 16(1): 2393270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284033

RESUMO

Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.


Assuntos
Butiratos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Animais , Butiratos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Antibacterianos
17.
Nat Commun ; 15(1): 8123, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285207

RESUMO

The vagus nerve (VN) extensively innervates the gastric enteric nervous system (ENS), but its influence on gastric ENS functionality and motility in vivo remains unclear due to technical challenges. Here we describe a method for stable, long-term observation of gastric ENS activity and muscle dynamics at cellular resolution, which can also be extended to intestinal applications. This method involves ENS-specific labeling and the implantation of an abdominal wall window for optical recording in male mice. In vivo calcium imaging reveals a linear relationship between vagal stimulation frequency and myenteric neuron activation in gastric antrum. Furthermore, the motility of gastric antrum is significantly enhanced and shows a positive correlation with the intensity and number of activated myenteric neurons. While vagal stimulation also activates proximal colonic myenteric neurons, this activation is not frequency-dependent and does not induce proximal colonic motility. The method and results provide important insights into VN-ENS interactions in vivo, advancing our understanding of gastrointestinal motility regulation.


Assuntos
Motilidade Gastrointestinal , Plexo Mientérico , Nervo Vago , Animais , Nervo Vago/fisiologia , Masculino , Motilidade Gastrointestinal/fisiologia , Camundongos , Trato Gastrointestinal/inervação , Cálcio/metabolismo , Colo/inervação , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Imagem Óptica/métodos , Sistema Nervoso Entérico/fisiologia , Antro Pilórico/inervação , Antro Pilórico/diagnóstico por imagem
18.
Mar Pollut Bull ; 207: 116804, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39241371

RESUMO

Microplastic (MP) research faces challenges due to costly, time-consuming, and error-prone analysis techniques. Additionally, the variability in data quality across studies limits their comparability. This study addresses the critical need for reliable and cost-effective MP analysis methods through validation of a semi-automated workflow, where environmentally relevant MP were spiked into and recovered from marine fish gastrointestinal tracts (GITs) and blue mussel tissue, using Nile red staining and machine learning automated analysis of different polymers. Parameters validated include trueness, precision, uncertainty, limit of quantification, specificity, sensitivity, selectivity, and method robustness. For fish GITs a 95 ± 9 % recovery rate was achieved, and 87 ± 11 % for mussels. Polymer identification accuracies were 76 ± 8 % for fish GITs and 80 ± 13 % for mussels. Polyethylene terephthalate fragments showed more variability with lower accuracies. The proposed validation parameters offer a step towards quality management guidelines, as such aiding future researchers and fostering cross-study comparability.


Assuntos
Organismos Aquáticos , Monitoramento Ambiental , Aprendizado de Máquina , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Monitoramento Ambiental/métodos , Oxazinas , Peixes , Mytilus edulis , Trato Gastrointestinal , Plásticos
19.
Environ Sci Pollut Res Int ; 31(43): 55336-55345, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227534

RESUMO

Microplastic studies investigating concentrations in water are numerous, but the majority of microplastics settle and are retained in sediment, and higher concentrations are regularly reported in sediments. Thus, MPs accumulation may be more threatening to benthic fish living in sediments than to pelagic fish. The presence, abundance and diversity of microplastics were investigated by collecting samples from two pelagic, European anchovy, and horse mackerel and two benthic fish species, red mullet, and whiting that are popularly consumed in Giresun province of Türkiye, located on the southern coast of the Black Sea. Visual classification and chemical compositions of microplastics was performed using a light microscope and ATR-FTIR spectrophotometry, consecutively. The overall incidence and mean microplastics abundance in sampled fishes were 17 and 1.7 ± 0.18 MP fish-1, respectively. MPs were within the range of 0.026-5 mm in size. In most of the cases, the MP was black in color with 41%. With the rates of 56%, polypropylene was the predominant polymer type. The most dominant MP type was identified as fiber followed by fragments and pellets. The relationship between MP amounts in fish and Fulton condition factor was not strong enough to establish a cause-effect relationship.


Assuntos
Monitoramento Ambiental , Peixes , Trato Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Mar Negro
20.
Gut Microbes ; 16(1): 2399360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287010

RESUMO

The gut microbiome is a complex, unique entity implicated in the prevention, pathogenesis, and progression of common gastrointestinal diseases. While largely dominated by bacterial populations, advanced sequencing techniques have identified co-inhabiting fungal communities, collectively referred to as the mycobiome. Early studies identified that gut inflammation is associated with altered microbial composition, known as gut dysbiosis. Altered microbial profiles are implicated in various pathological diseases, such as inflammatory bowel disease (IBD), though their role as a cause or consequence of systemic inflammation remains the subject of ongoing research. Diet plays a crucial role in the prevention and management of various diseases and is considered to be an essential regulator of systemic inflammation. This review compiles current literature on the impact of dietary modulation on the mycobiome, showing that dietary changes can alter the fungal architecture of the gut. Further research is required to understand the impact of diet on gut fungi, including the metabolic pathways and enzymes involved in fungal fermentation. Additionally, investigating whether dietary modulation of the gut mycobiome could be utilized as a therapy in IBD is essential.


Assuntos
Dieta , Disbiose , Fungos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Micobioma , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/dietoterapia , Humanos , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Disbiose/microbiologia , Animais , Trato Gastrointestinal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...