Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.225
Filtrar
1.
J Cell Mol Med ; 28(16): e70004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159174

RESUMO

Ischemia and hypoxia activate astrocytes into reactive types A1 and A2, which play roles in damage and protection, respectively. However, the function and mechanism of A1 and A2 astrocyte exosomes are unknown. After astrocyte exosomes were injected into the lateral ventricle, infarct volume, damage to the blood-brain barrier (BBB), apoptosis and the expression of microglia-related proteins were measured. The dual luciferase reporter assay was used to detect the target genes of miR-628, and overexpressing A2-Exos overexpressed and knocked down miR-628 were constructed. qRT-PCR, western blotting and immunofluorescence staining were subsequently performed. A2-Exos obviously reduced the infarct volume, damage to the BBB and apoptosis and promoted M2 microglial polarization. RT-PCR showed that miR-628 was highly expressed in A2-Exos. Dual luciferase reporter assays revealed that NLRP3, S1PR3 and IRF5 are target genes of miR-628. After miR-628 was overexpressed or knocked down, the protective effects of A2-Exos increased or decreased, respectively. A2-Exos reduced pyroptosis and BBB damage and promoted M2 microglial polarization through the inhibition of NLRP3, S1PR3 and IRF5 via the delivery of miR-628. This study explored the mechanism of action of A2-Exos and provided new therapeutic targets and concepts for treating cerebral ischemia.


Assuntos
Astrócitos , Barreira Hematoencefálica , Isquemia Encefálica , Exossomos , MicroRNAs , Traumatismo por Reperfusão , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Astrócitos/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia , Exossomos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/patologia , Barreira Hematoencefálica/metabolismo , Masculino , Apoptose/genética , Microglia/metabolismo , Microglia/patologia , Camundongos
2.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39115562

RESUMO

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Assuntos
Inflamação , Pró-Proteína Convertase 9 , Piroptose , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Piroptose/genética , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulação para Baixo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Theranostics ; 14(11): 4536-4553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113797

RESUMO

Rationale: Acute kidney injury (AKI) has substantial rates of mortality and morbidity, coupled with an absence of efficacious treatment options. AKI commonly transits into chronic kidney disease (CKD) and ultimately culminates in end-stage renal failure. The interferon-stimulated gene 15 (ISG15) level was upregulated in the kidneys of mice injured by ischemia-reperfusion injury (IRI), cisplatin, or unilateral ureteral obstruction (UUO), however, its role in AKI development and subsequent AKI-to-CKD transition remains unknown. Methods: Isg15 knockout (Isg15 KO) mice challenged with bilateral or unilateral IRI, cisplatin, or UUO were used to investigate its role in AKI. We established cellular models with overexpression or knockout of ISG15 and subjected them to hypoxia-reoxygenation, cisplatin, or transforming growth factor- ß1 (TGF-ß1) stimulation. Renal RNA-seq data obtained from AKI models sourced from public databases and our studies, were utilized to examine the expression profiles of ISG15 and its associated genes. Additionally, published single cell RNA-seq data from human kidney allograft biopsies and mouse IRI model were analyzed to investigate the expression patterns of ISG15 and the type I TGF-ß receptor (TGFßR1). Western blotting, qPCR, co-immunoprecipitation, and immunohistochemical staining assays were performed to validate our findings. Results: Alleviated pathological injury and renal function were observed in Isg15 KO mice with IRI-, cisplatin-, or UUO-induced AKI and the following AKI-to-CKD transition. In hypoxia-reoxygenation, cisplatin or TGF-ß1 treated HK-2 cells, knockout ISG15 reduced stimulus-induced cell fibrosis, while overexpression of ISG15 with modification capacity exacerbated cell fibrosis. Immunoprecipitation assays demonstrated that ISG15 promoted ISGylation of TGFßR1, and inhibited its ubiquitination. Moreover, knockout of TGFßR1 blocked ISG15's fibrosis-exacerbating effect in HK-2 cells, while overexpression of TGFßR1 abolished the renal protective effect of ISG15 knockout during IRI-induced kidney injury. Conclusions: ISG15 plays an important role in the development of AKI and subsequent AKI-to-CKD transition by promoting TGFßR1 ISGylation.


Assuntos
Injúria Renal Aguda , Cisplatino , Citocinas , Camundongos Knockout , Traumatismo por Reperfusão , Ubiquitinas , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Cisplatino/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética
4.
Acta Cir Bras ; 39: e393124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109777

RESUMO

PURPOSE: To investigate the neuroprotective effects of the SOD2 gene in cerebral ischemia reperfusion injury function and the underlying mechanisms in a mice model of middle cerebral artery ischemia reperfusion. METHODS: SOD2 transgenic mice were engineered using transcription activator-like effector nucleases, and the genotype was identified using PCR after every three generations. Transgenic and C57BL/6J wild type mice were simultaneously subjected to the middle cerebral artery occlusion model. RESULTS: SOD2 expression in the brain, heart, kidney, and skeletal muscle of transgenic mice was significantly higher than that in the wild type. Following ischemia reperfusion, the infarct volume of wild type mice decreased after treatment with fenofibrate compared to the CMC group. Infarction volume in SOD2 transgenic mice after CMC and fenofibrate treatment was significantly reduced. The recovery of cerebral blood flow in wild type mice treated with fenofibrate was significantly enhanced compared with that in the CMC group. CONCLUSIONS: The expression of SOD2 in transgenic mice was significantly higher than that in wild type mice, the neuroprotective role of fenofibrate depends on an increase in SOD2 expression.


Assuntos
Modelos Animais de Doenças , Fenofibrato , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão , Superóxido Dismutase , Animais , Traumatismo por Reperfusão/genética , Superóxido Dismutase/genética , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Isquemia Encefálica/genética , Humanos , Masculino , Camundongos , Infarto da Artéria Cerebral Média/genética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
CNS Neurosci Ther ; 30(8): e70000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161158

RESUMO

AIMS: This study aimed to explore the effects of long noncoding RNA (lncRNA) H19 knockdown on angiogenesis and blood-brain barrier (BBB) integrity following cerebral ischemia/reperfusion (I/R) and elucidate their underlying regulatory mechanisms. METHODS: A middle cerebral artery occlusion/reperfusion model was used to induce cerebral I/R injury. The cerebral infarct volume and neurological impairment were assessed using 2,3,5-triphenyl-tetrazolium chloride staining and neurobehavioral tests, respectively. Relevant proteins were evaluated using western blotting and immunofluorescence staining. Additionally, a bioinformatics website was used to predict the potential target genes of lncRNA H19. Finally, a rescue experiment was conducted to confirm the potential mechanism. RESULTS: Silencing of H19 significantly decreased the cerebral infarct volume, enhanced the recovery of neurological function, mitigated BBB damage, and stimulated endothelial cell proliferation following ischemic stroke. Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is predicted to be a potential target gene for lncRNA H19. H19 knockdown increased IMP2 protein expression and IMP2 inhibition reversed the protective effects of H19 inhibition. CONCLUSION: Downregulation of H19 enhances angiogenesis and mitigates BBB damage by regulating IMP2, thereby alleviating cerebral I/R injury.


Assuntos
Angiogênese , Infarto da Artéria Cerebral Média , AVC Isquêmico , RNA Longo não Codificante , Proteínas de Ligação a RNA , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Técnicas de Silenciamento de Genes/métodos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Modelos Animais de Doenças
6.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000437

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme originally found in the brain. Our previous work revealed that UCHL1 was also expressed in skeletal muscle and affected myoblast differentiation and metabolism. In this study, we further tested the role of UCHL1 in myogenesis and muscle regeneration following muscle ischemia-reperfusion (IR) injury. In the C2C12 myoblast, UCHL1 knockdown upregulated MyoD and myogenin and promoted myotube formation. The skeletal muscle-specific knockout (smKO) of UCHL1 increased muscle fiber sizes in young mice (1 to 2 months old) but not in adult mice (3 months old). In IR-injured hindlimb muscle, UCHL1 was upregulated. UCHL1 smKO ameliorated tissue damage and injury-induced inflammation. UCHL1 smKO also upregulated myogenic factors and promoted functional recovery in IR injury muscle. Moreover, UCHL1 smKO increased Akt and Pink1/Parkin activities. The overall results suggest that skeletal muscle UCHL1 is a negative factor in skeletal muscle development and recovery following IR injury and therefore is a potential therapeutic target to improve muscle regeneration and functional recovery following injuries.


Assuntos
Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético , Ubiquitina Tiolesterase , Animais , Masculino , Camundongos , Diferenciação Celular , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/lesões , Mioblastos/metabolismo , Regeneração , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Feminino
7.
Int J Biol Macromol ; 274(Pt 2): 133815, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996894

RESUMO

In order to address this gap in knowledge, the present study utilized both in vivo and in vitro models to investigate the role of the m6A demethylase ALKBH5 in protecting against cerebral I/R injury by inhibiting PANoptosis (Pytoptosis, Ppoptosis, and Necroptosis) in an m6A-dependent manner. They observed that ALKBH5, the predominant m6A demethylase, was downregulated in these models, while SNHG3 and PANoptosis-related proteins (ZBP1, AIM2, Cappase-3, Caspase-8, cleaved Caspase-1, GSDMD-N, and p-MLKL) were elevated. Additionally, both ALKBH5 overexpression and SNHG3-deficiency were found to ameliorate PANoptosis and injury induced by OGD/reperfusion and OGD/RX in both mice tissues and astrocyte cells. Further experiments demonstrated that ALKBH5 induced m6A-demethylation in SNHG3, leading to its degradation. Low expression of SNHG3, on the other hand, prevented the formation of the SNHG3-ELAVL1-ZBP1/AIM2 complex, which in turn destabilized ZBP1 and AIM2 mRNA, resulting in the downregulation of these PANoptosis-related genes. Ultimately, the rescue experiments provided evidence that ALKBH5 protected against PANoptosis in cerebral I/R injury models through the inhibition of SNHG3.This study sheds light on the intricate molecular mechanisms involved in the pathogenesis of cerebral I/R injury and highlights the potential of m6A-related genes as therapeutic targets in this condition.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Traumatismo por Reperfusão , Animais , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , RNA Longo não Codificante/genética , Humanos , Apoptose , Modelos Animais de Doenças
8.
Nat Commun ; 15(1): 5731, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977708

RESUMO

Neuropilin-1 (NRP1), a co-receptor for various cytokines, including TGF-ß, has been identified as a potential therapeutic target for fibrosis. However, its role and mechanism in renal fibrosis remains elusive. Here, we show that NRP1 is upregulated in distal tubular (DT) cells of patients with transplant renal insufficiency and mice with renal ischemia-reperfusion (I-R) injury. Knockout of Nrp1 reduces multiple endpoints of renal injury and fibrosis. We find that Nrp1 facilitates the binding of TNF-α to its receptor in DT cells after renal injury. This signaling results in a downregulation of lysine crotonylation of the metabolic enzyme Cox4i1, decreases cellular energetics and exacerbation of renal injury. Furthermore, by single-cell RNA-sequencing we find that Nrp1-positive DT cells secrete collagen and communicate with myofibroblasts, exacerbating acute kidney injury (AKI)-induced renal fibrosis by activating Smad3. Dual genetic deletion of Nrp1 and Tgfbr1 in DT cells better improves renal injury and fibrosis than either single knockout. Together, these results reveal that targeting of NRP1 represents a promising strategy for the treatment of AKI and subsequent chronic kidney disease.


Assuntos
Injúria Renal Aguda , Fibrose , Camundongos Knockout , Neuropilina-1 , Receptor do Fator de Crescimento Transformador beta Tipo I , Traumatismo por Reperfusão , Proteína Smad3 , Neuropilina-1/metabolismo , Neuropilina-1/genética , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Colágeno/metabolismo
9.
Cell Death Dis ; 15(7): 505, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013891

RESUMO

During oxidative phosphorylation, mitochondria continuously produce reactive oxygen species (ROS), and untimely ROS clearance can subject mitochondria to oxidative stress, ultimately resulting in mitochondrial damage. Mitophagy is essential for maintaining cellular mitochondrial quality control and homeostasis, with activation involving both ubiquitin-dependent and ubiquitin-independent pathways. Over the past decade, numerous studies have indicated that different forms of regulated cell death (RCD) are connected with mitophagy. These diverse forms of RCD have been shown to be regulated by mitophagy and are implicated in the pathogenesis of a variety of diseases, such as tumors, degenerative diseases, and ischemia‒reperfusion injury (IRI). Importantly, targeting mitophagy to regulate RCD has shown excellent therapeutic potential in preclinical trials, and is expected to be an effective strategy for the treatment of related diseases. Here, we present a summary of the role of mitophagy in different forms of RCD, with a focus on potential molecular mechanisms by which mitophagy regulates RCD. We also discuss the implications of mitophagy-related RCD in the context of various diseases.


Assuntos
Mitofagia , Humanos , Animais , Morte Celular Regulada , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
10.
Mol Med ; 30(1): 106, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039432

RESUMO

BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Proteínas Ribossômicas , Transdução de Sinais , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/genética , Camundongos , NF-kappa B/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Masculino , Modelos Animais de Doenças , Microglia/metabolismo , Microglia/imunologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
11.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849370

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Assuntos
Apoptose , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Rim/patologia , Rim/metabolismo , Camundongos Knockout , Masculino , Fibrose , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/complicações , Polaridade Celular , Serina-Treonina Quinases TOR/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética
12.
Mol Biomed ; 5(1): 22, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902590

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is a critical pathophysiological process during liver transplantation (LT). Multiple genes and signal pathways are dysregulated during HIRI. This study aims to identify genes as potential therapeutic targets for ameliorating HIRI. Datasets containing samples from the human donor liver (GSE151648) and mouse HIRI model (GSE117066) were analyzed to determine differentially expressed genes (DEGs). The selected DEGs were confirmed by real-time PCR and western blot in the hepatocyte hypoxia-reoxygenation (HR) model, mouse HIRI model, and human liver samples after transplantation. Genetic inhibition was used to further clarify the underlying mechanism of the gene in vitro and in vivo. Among the DEGs, CSRNP1 was significantly upregulated (|log FC|= 2.08, P < 0.001), and was positively correlated with the MAPK signal pathway (R = 0.67, P < 0.001). CSRNP1 inhibition by siRNA significantly suppressed apoptosis in the AML-12 cell line after HR (mean Annexin+ ratio = 60.62% vs 42.47%, P = 0.0019), but the protective effect was eliminated with an additional MAPK activator. Knocking down CSRNP1 gene expression by intravenous injection of AAV-shRNA markedly reduced liver injury in mouse HIRI model (ALT: AAV-NC vs AAV-shCsrnp1 = 26,673.5 ± 2761.2 vs 3839.7 ± 1432.8, P < 0.001; AST: AAV-NC vs AAV-shCsrnp1 = 8640.5 ± 1450.3 vs 1786.8 ± 518.3, P < 0.001). Liver-targeted delivery of siRNA by nanoparticles effectively inhibited intra-hepatic genetic expression of Csrnp1 and alleviated IRI by reducing tissue inflammation and hepatocyte apoptosis. Furthermore, CSRNP1 inhibition was associated with reduced activation of the MAPK pathway both in vitro and in vivo. In conclusion, our results demonstrated that CSRNP1 could be a potential therapeutic target to ameliorate HIRI in an MAPK-dependent manner.


Assuntos
Apoptose , Transplante de Fígado , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/genética , Animais , Transplante de Fígado/efeitos adversos , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Linhagem Celular , Fígado/metabolismo , Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
13.
Gene ; 926: 148650, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38851364

RESUMO

BACKGROUND: Acute kidney injury (AKI) is frequently caused by renal ischemia-reperfusion injury (IRI). Identifying potential renal IRI disease biomarkers would be useful for evaluating AKI severity. OBJECTIVE: We used proteomics and metabolomics to investigate the differences in renal venous blood between ischemic and healthy kidneys in an animal model by identifying differentially expressed proteins (DEPs) and differentially expressed protein metabolites (DEMs). METHODS: Nine pairs of renal venous blood samples were collected before and at 20, 40, and 60 min post ischemia. The ischemia time of Group A, B and C was 20,40 and 60 min. The proteome and metabolome of renal venous blood were evaluated to establish the differences between renal venous blood before and after ischemia. RESULTS: We identified 79 common DEPs in all samples of Group A, 80 in Group B, and 131 in Group C. Further common DEPs among all three groups were Tyrosineprotein kinase, GPR15LG, KAZALD1, ADH1B. We also identified 81, 64, and 83 common DEMs in each group respectively, in which 30 DEMs were further common to all groups. Bioinformatic analysis of the DEPs and DEMs was conducted. CONCLUSION: This study demonstrated that different pathological processes occur during short- and long-term renal IRI. Tyrosine protein kinase, GPR15LG, Kazal-type serine peptidase inhibitor domain 1, and all-trans-retinol dehydrogenase are potential biomarkers of renal IRI.


Assuntos
Injúria Renal Aguda , Biomarcadores , Proteômica , Veias Renais , Traumatismo por Reperfusão , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Animais , Masculino , Proteômica/métodos , Biomarcadores/sangue , Injúria Renal Aguda/sangue , Proteoma , Ratos , Metabolômica/métodos , Rim/metabolismo , Modelos Animais de Doenças , Metaboloma , Ratos Sprague-Dawley , Multiômica
14.
Mol Med ; 30(1): 82, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862918

RESUMO

BACKGROUND: Programmed cell death is an important mechanism for the development of hepatic ischemia and reperfusion (IR) injury, and multiple novel forms of programmed cell death are involved in the pathological process of hepatic IR. ERRFI1 is involved in the regulation of cell apoptosis in myocardial IR. However, the function of ERRFI1 in hepatic IR injury and its modulation of programmed cell death remain largely unknown. METHODS: Here, we performed functional and molecular mechanism studies in hepatocyte-specific knockout mice and ERRFI1-silenced hepatocytes to investigate the significance of ERRFI1 in hepatic IR injury. The histological severity of livers, enzyme activities, hepatocyte apoptosis and ferroptosis were determined. RESULTS: ERRFI1 expression increased in liver tissues from mice with IR injury and hepatocytes under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions. Hepatocyte-specific ERRFI1 knockout alleviated IR-induced liver injury in mice by reducing cell apoptosis and ferroptosis. ERRFI1 knockdown reduced apoptotic and ferroptotic hepatocytes induced by OGD/R. Mechanistically, ERRFI1 interacted with GRB2 to maintain its stability by hindering its proteasomal degradation. Overexpression of GRB2 abrogated the effects of ERRFI1 silencing on hepatocyte apoptosis and ferroptosis. CONCLUSIONS: Our results revealed that the ERRFI1-GRB2 interaction and GRB2 stability are essential for ERRFI1-regulated hepatic IR injury, indicating that inhibition of ERRFI1 or blockade of the ERRFI1-GRB2 interaction may be potential therapeutic strategies in response to hepatic IR injury.


Assuntos
Apoptose , Ferroptose , Proteína Adaptadora GRB2 , Hepatócitos , Camundongos Knockout , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Camundongos , Apoptose/genética , Modelos Animais de Doenças , Ferroptose/genética , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética
15.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834654

RESUMO

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Coenzima A Ligases , Ferroptose , Fígado , Receptores da Transferrina , Traumatismo por Reperfusão , Regulação para Cima , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Ferroptose/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Masculino , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Camundongos Endogâmicos C57BL , Humanos , Transplante de Fígado , Estabilidade de RNA/genética , Antígenos CD
16.
J Cell Mol Med ; 28(11): e18366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856956

RESUMO

Ischemic stroke is one of the main causes of disability and death. However, recanalization of occluded cerebral arteries is effective only within a very narrow time window. Therefore, it is particularly important to find neuroprotective biological targets for cerebral artery recanalization. Here, gene expression profiles of datasets GSE160500 and GSE97537 were downloaded from the GEO database, which were related to ischemic stroke in rats. Olfactory receptor 78 (Olfr78) was screened, and which highly associated with Calcium signalling pathway and MAPK pathway. Interacting protein of Olfr78, Prkaca, was predicted by STRING, and their interaction was validated by Co-IP analysis. Then, a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a neuronal cell model stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were constructed, and the results showed that expression of Olfr78 and Prkaca was downregulated in MCAO rats and OGD/R-stimulated neurons. Overexpression of Olfr78 or Prkaca inhibited the secretion of inflammatory factors, Ca2+ overload, and OGD/R-induced neuronal apoptosis. Moreover, Overexpression of Prkaca increased protein levels of cAMP, PKA and phosphorylated p38 in OGD/R-stimulated neurons, while SB203580, a p38 inhibitor, treatment inhibited activation of the cAMP/PKA-MAPK pathway and counteracted the effect of Olfr78 overexpression on improvement of neuronal functions. Meanwhile, overexpression of Olfr78 or Prkaca markedly inhibited neuronal apoptosis and improved brain injury in MCAO/R rats. In conclusion, overexpression of Olfr78 inhibited Ca2+ overload and reduced neuronal apoptosis in MCAO/R rats by promoting Prkaca-mediated activation of the cAMP/PKA-MAPK pathway, thereby improving brain injury in cerebral ischaemia-reperfusion.


Assuntos
Apoptose , AMP Cíclico , Ratos Sprague-Dawley , Receptores Odorantes , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Ratos , Masculino , AMP Cíclico/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Neurônios/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Transdução de Sinais
17.
Pharmacol Res ; 206: 107266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878918

RESUMO

Cerebral ischemia-reperfusion injury (I/RI) is one of the principal pathogenic factors in the poor prognosis of ischemic stroke, for which current therapeutic options to enhance neurological recovery are notably insufficient. Dental pulp stem cell-derived extracellular vesicles (DPSC-EVs) have promising prospects in stroke treatment and the specific underlying mechanisms have yet to be fully elucidated. The present study observed that DPSC-EVs ameliorated the degree of cerebral edema and infarct volume by reducing the apoptosis of neurons. Furthermore, the miRNA sequencing and functional enrichment analysis identified that miR-877-3p as a key component in DPSC-EVs, contributing to neuroprotection and anti-apoptotic effects. Following target prediction and dual-luciferase assay indicated that miR-877-3p interacted with Bcl-2-associated transcription factor (Bclaf1) to play a function. The miR-877-3p inhibitor or Bclaf1 overexpression reversed the neuroprotective effects of DPSC-EVs. The findings reveal a novel therapeutic pathway where miR-877-3p, transferred via DPSC-EVs, confers neuroprotection against cerebral I/RI, highlighting its potential in promoting neuronal survival and recovery post-ischemia.


Assuntos
Apoptose , Polpa Dentária , Vesículas Extracelulares , MicroRNAs , Neurônios , Recuperação de Função Fisiológica , Traumatismo por Reperfusão , Transdução de Sinais , Células-Tronco , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/terapia , Neurônios/metabolismo , Neurônios/patologia , Masculino , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Camundongos Endogâmicos C57BL , Ratos , Células Cultivadas
18.
Genes Immun ; 25(4): 277-296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909168

RESUMO

MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.


Assuntos
Inflamação , MicroRNAs , Traumatismo por Reperfusão , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Inflamação/imunologia , Inflamação/genética , Inflamação/metabolismo , Animais , Regulação da Expressão Gênica
19.
Adv Sci (Weinh) ; 11(29): e2308505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838052

RESUMO

With the increasing incidence of kidney diseases, there is an urgent need to develop therapeutic strategies to combat post-injury fibrosis. Immune cells, including platelets, play a pivotal role in this repair process, primarily through their released cytokines. However, the specific role of platelets in kidney injury and subsequent repair remains underexplored. Here, the detrimental role of platelets in renal recovery following ischemia/reperfusion injury and its contribution to acute kidney injury  to chronic kidney disease transition is aimed to investigated. In this study, it is shown that depleting platelets accelerates injury resolution and significantly reduces fibrosis. Employing advanced single-cell and spatial transcriptomic techniques, macrophages as the primary mediators modulated by platelet signals is identified. A novel subset of macrophages, termed "cycling M2", which exhibit an M2 phenotype combined with enhanced proliferative activity is uncovered. This subset emerges in the injured kidney during the resolution phase and is modulated by platelet-derived thrombospondin 1 (THBS1) signaling, acquiring profibrotic characteristics. Conversely, targeted inhibition of THBS1 markedly downregulates the cycling M2 macrophage, thereby mitigating fibrotic progression. Overall, this findings highlight the adverse role of platelet THBS1-boosted cycling M2 macrophages in renal injury repair and suggest platelet THBS1 as a promising therapeutic target for alleviating inflammation and kidney fibrosis.


Assuntos
Plaquetas , Fibrose , Macrófagos , Transcriptoma , Macrófagos/metabolismo , Animais , Fibrose/metabolismo , Camundongos , Plaquetas/metabolismo , Transcriptoma/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Análise de Célula Única/métodos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Rim/metabolismo , Rim/patologia
20.
Eur J Med Res ; 29(1): 326, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867322

RESUMO

BACKGROUND: Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients with LIRI and evaluate the corresponding immune infiltration. METHODS: Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differentially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by overlapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine (m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein-protein interaction (PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After verifying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream microRNA and transcription factors of the core DEMRGs were also predicted. RESULTS: In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diagnostic efficacy and significant differential expression and corresponding function based on cell biology experiments. Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs in the LIRI process to varying extents. CONCLUSIONS: We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-related gene targets for LIRI immunotherapy.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Traumatismo por Reperfusão , Humanos , Biologia Computacional/métodos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Fígado/metabolismo , Fígado/patologia , Perfilação da Expressão Gênica/métodos , Mapas de Interação de Proteínas/genética , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...