Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.640
Filtrar
1.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716368

RESUMO

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Ferroptose/efeitos dos fármacos , Animais , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
2.
Sci Prog ; 107(2): 368504241257060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807538

RESUMO

INTRODUCTION: Ischemia-reperfusion (IR) injury is a major concern that frequently occurs during vascular surgeries. Hydrogen-rich saline (HRS) solution exhibits antioxidant and anti-inflammatory properties. This study aimed to examine the effects of HRS applied before ischemia in the lungs of rats using a lower extremity IR model. MATERIAL AND METHODS: After approval was obtained from the ethics committee, 18 male Wistar albino rats weighing 250-280 g were randomly divided into three groups: control (C), IR and IR-HRS. In the IR and IR-HRS groups, an atraumatic microvascular clamp was used to clamp the infrarenal abdominal aorta, and skeletal muscle ischemia was induced. After 120 min, the clamp was removed, and reperfusion was achieved for 120 min. In the IR-HRS group, HRS was administered intraperitoneally 30 min before the procedure. Lung tissue samples were examined under a light microscope and stained with hematoxylin-eosin (H&E). Malondialdehyde (MDA) levels, total sulfhydryl (SH) levels, and histopathological parameters were evaluated in the tissue samples. RESULTS: MDA and total SH levels were significantly higher in the IR group than in the control group (p < 0.0001 and p = 0.001, respectively). MDA and total SH levels were significantly lower in the IR-HRS group than in the IR group (p < 0.0001 and p = 0.013, respectively). A histopathological examination revealed that neutrophil infiltration/aggregation, alveolar wall thickness, and total lung injury score were significantly higher in the IR group than in the control group (p < 0.0001, p = 0.001, and p < 0.0001, respectively). Similarly, alveolar wall thickness and total lung injury scores were significantly higher in the IR-HRS group than in the control group (p = 0.009 and p = 0.004, respectively). A statistically significant decrease was observed in neutrophil infiltration/aggregation and total lung injury scores in the IR-HRS group compared to those in the IR group (p = 0.023 and p = 0.022, respectively). CONCLUSION: HRS at a dose of 20 mg/kg, administered intraperitoneally 30 min before ischemia in rats, reduced lipid peroxidation and oxidative stress, while also reducing IR damage in lung histopathology. We believe that HRS administered to rats prior to IR exerts a lung-protective effect.


Assuntos
Hidrogênio , Pulmão , Malondialdeído , Músculo Esquelético , Ratos Wistar , Traumatismo por Reperfusão , Solução Salina , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Ratos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Solução Salina/farmacologia , Solução Salina/química , Solução Salina/administração & dosagem , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Malondialdeído/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico
3.
Biomolecules ; 14(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785932

RESUMO

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.


Assuntos
Apoptose , Homeostase , Traumatismo por Reperfusão , Retina , Células Ganglionares da Retina , alfa-MSH , Animais , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Apoptose/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Homeostase/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Masculino , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Modelos Animais de Doenças , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico
4.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774758

RESUMO

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Assuntos
Fígado , Sistema de Sinalização das MAP Quinases , Metiltransferases , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Camundongos , Metiltransferases/genética , Metiltransferases/metabolismo , Fígado/patologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Modelos Animais de Doenças , Masculino , Apoptose/genética , Camundongos Knockout , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , Hepatócitos/metabolismo , Hepatócitos/patologia , Camundongos Endogâmicos C57BL
5.
J Transl Med ; 22(1): 447, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741132

RESUMO

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Assuntos
Apigenina , Dinâmica Mitocondrial , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Células Ganglionares da Retina , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Dinâmica Mitocondrial/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Biológicos , Camundongos Endogâmicos C57BL
6.
PLoS One ; 19(5): e0292628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748746

RESUMO

Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.


Assuntos
Inibidores do Fator Xa , Fígado , Sistema de Sinalização das MAP Quinases , Piridinas , Receptor PAR-2 , Traumatismo por Reperfusão , Tiazóis , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Inibidores do Fator Xa/farmacologia , Receptor PAR-2/metabolismo , Piridinas/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/irrigação sanguínea , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
7.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721693

RESUMO

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla , Glucose , Inflamação , MAP Quinase Quinase Quinase 5 , Neurônios , Oxigênio , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
8.
Sci Rep ; 14(1): 10783, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734725

RESUMO

Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸß2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.


Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante , Perfilação da Expressão Gênica , Traumatismo por Reperfusão , Animais , Enterocolite Necrosante/genética , Enterocolite Necrosante/patologia , Enterocolite Necrosante/metabolismo , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Precondicionamento Isquêmico/métodos , Transcriptoma
9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731829

RESUMO

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Assuntos
Injúria Renal Aguda , Proteínas de Ciclo Celular , Túbulos Renais Proximais , Camundongos Knockout , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Proliferação de Células , Transdução de Sinais , Via de Sinalização Hippo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710691

RESUMO

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Assuntos
Glicogênio Sintase Quinase 3 beta , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Ratos , Proteínas S100/metabolismo , Proteínas S100/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Transdução de Sinais , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Camundongos Endogâmicos C57BL , Rim/metabolismo , Rim/patologia , Apoptose , Linhagem Celular , Hipóxia Celular , Camundongos Knockout
11.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709282

RESUMO

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Assuntos
Butiratos , Proteína HMGB1 , Fator 88 de Diferenciação Mieloide , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Butiratos/farmacologia , Masculino , Simulação de Acoplamento Molecular , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
12.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802835

RESUMO

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Assuntos
Injúria Renal Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tretinoína , Injúria Renal Aguda/terapia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Humanos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Ácido Hialurônico/farmacologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
13.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767771

RESUMO

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Assuntos
Isquemia Encefálica , Mitocôndrias , Neurônios , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuína 1 , Sirtuína 3 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Mitocôndrias/metabolismo , Masculino , Sirtuína 3/metabolismo , Sirtuína 3/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Apoptose , Sirtuínas
14.
Eur J Pharmacol ; 974: 176617, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679120

RESUMO

Acute kidney injury and other renal disorders are thought to be primarily caused by renal ischemia-reperfusion (RIR). Cyclic adenosine monophosphate (cAMP) has plenty of physiological pleiotropic effects and preserves tissue integrity and functions. This research aimed to examine the potential protective effects of the ß3-adrenergic receptors agonist mirabegron in a rat model of RIR and its underlying mechanisms. Male rats enrolled in this work were given an oral dose of 30 mg/kg mirabegron for two days before surgical induction of RIR. Renal levels of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), Interleukin-10 (IL-10), cAMP, cAMP-responsive element binding protein (pCREB), and glycogen synthase kinase-3 beta (GSK-3ß) were assessed along with blood urea nitrogen and serum creatinine. Additionally, caspase-3 and nuclear factor-kappa B (NF-κB) p65 were explored by immunohistochemical analysis. Renal specimens were inspected for histopathological changes. RIR led to renal tissue damage with elevated blood urea nitrogen and serum creatinine levels. The renal KIM-1, MCP-1, TNF-α, and GSK-3ß were significantly increased, while IL-10, cAMP, and pCREB levels were reduced. Moreover, upregulation of caspase-3 and NF-κB p65 protein expression was seen in RIR rats. Mirabegron significantly reduced kidney dysfunction, histological abnormalities, inflammation, and apoptosis in the rat renal tissues. Mechanistically, mirabegron mediated these effects via modulation of cAMP/pCREB and GSK-3ß/NF-κB p65 signaling pathways. Mirabegron administration could protect renal tissue and maintain renal function against RIR.


Assuntos
Acetanilidas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , AMP Cíclico , Glicogênio Sintase Quinase 3 beta , Rim , Traumatismo por Reperfusão , Transdução de Sinais , Tiazóis , Fator de Transcrição RelA , Animais , Masculino , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Ratos , Glicogênio Sintase Quinase 3 beta/metabolismo , AMP Cíclico/metabolismo , Acetanilidas/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ratos Sprague-Dawley , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico
15.
F S Sci ; 5(2): 195-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580179

RESUMO

OBJECTIVE: To compare salpingectomy and detorsion procedures and investigate the biochemical and histopathological changes in the fallopian tubes in the experimentally isolated fallopian tube torsion model in rats. DESIGN: Experimental study. SETTING: Experimental surgery laboratory in a training and research hospital. ANIMAL(S): Twenty-seven Sprague-Dawley rats in the reproductive period. INTERVENTION(S): Group 1, control group (n = 6); group 2, bilateral total salpingectomy group after 4 hours of tubal ischemia (n = 7); group 3: 4 hours of bilateral tubal ischemia plus 1 week of reperfusion (n = 7); and group 4, 4-hour period of bilateral tubal ischemia plus 30 days of reperfusion (n = 7). A 22-gauge catheter was administered before and after surgery using methylene blue through the uterine horn of the rat to evaluate tubal patency. MAIN OUTCOME MEASURE(S): Preoperative and postoperative serum antimüllerian hormone (AMH) levels, histopathological examination of the rat tuba uterine and histopathological damage scores, antioxidant compounds (superoxide dismutase [SOD], catalase, and glutathione peroxidase [GSH-Px]), and oxidative stress end product levels (malondialdehyde [MDA] and 8-hydroxy-2'-deoxyguanosine [8-OHdG]). RESULT(S): Although a significant difference was observed in the tissue SOD, GSH-Px, MDA, and 8-OHdG values, no significant difference was observed between the groups in serum samples. The tissue SOD and tissue GSH-Px levels in group 2 significantly decreased, and a significant increase was observed in the tissue MDA and 8-OHdG values in group 2. Among the histopathological parameters, epithelial changes, vascular congestion, and the total fallopian tube mean damage score of 4 showed a significant decrease in group 4. When the methylene blue transitions before and after ischemia-reperfusion injury were compared, the values of the methylene blue transition after ischemia-reperfusion injury in groups 2-4 significantly decreased. When the serum AMH levels were analyzed, the postoperative AMH value in group 2 significantly increased. CONCLUSION(S): This study reveals that biochemical and histopathological improvement is observed in the fallopian tube tissues gradually when the detorsion procedure is performed for the necrotized tubal tissue instead of salpingectomy. Although there is restoration of epithelial integrity after reperfusion, tubal passage remains absent. CLINICAL TRIAL REGISTRATION NUMBER: This study was approved by the Local Ethics Committee for Animal Experiments of the Health Sciences University, Istanbul Hamidiye Medicine Faculty (approval number 27.05.2022-9269). The study followed the ethics standards recommended by the Declaration of Helsinki.


Assuntos
Tubas Uterinas , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Salpingectomia , Animais , Feminino , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Tubas Uterinas/patologia , Tubas Uterinas/cirurgia , Tubas Uterinas/lesões , Ratos , Modelos Animais de Doenças , Hormônio Antimülleriano/sangue , Malondialdeído/metabolismo , Malondialdeído/sangue , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Estresse Oxidativo , Catalase/metabolismo
16.
Int Immunopharmacol ; 132: 112002, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608473

RESUMO

BACKGROUND: Renal ischemia-reperfusion is the primary cause of acute kidney injury (AKI). Clinically, most patients who experience ischemia-reperfusion injury eventually progress gradually to renal fibrosis and chronic kidney disease (CKD). However, the underlying mechanism for AKI to CKD transition remain absent. Our study demonstrated that the downregulation of sirtuin 1 (Sirt1)-mediated fatty acid oxidation (FAO) facilitates IRI-induced renal fibrosis. METHODS: The IRI animal model was established, and ribonucleic acid (RNA) sequencing was used to explore potential differentially expressed genes (DEGs) and pathways. The SIRT1 knockout mice were generated, and a recombinant adeno-associated virus that overexpresses SIRT1 was injected into mice to explore the function of SIRT1 in renal fibrosis induced by renal IRI. In vitro, hypoxia/reoxygenation (H/R) was used to establish the classical model of renal IRI and overexpression or knockdown of SIRT1 to investigate the SIRT1 function through lentiviral plasmids. The underlying molecular mechanism was explored through RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay. RESULTS: RNA sequencing analysis and western blot demonstrated that the expression of SIRT1 was significantly decreased in IRI mice. Overexpression of SIRT1 improved renal function and reduced lipid deposition and renal fibrosis. On the contrary, knockout of SIRT1 aggravated kidney injury and renal fibrosis. RNA sequencing, bioinformatics analysis, and chromatin immunoprecipitation assay mechanistically revealed that SIRT1 impairs the acetylation of histone H3K27 on the promoter region of ACLY, thereby impeding FAO activity and promoting renal fibrosis. Additionally, SP1 regulated FAO by directly modulating SIRT1 expression. CONCLUSION: Our findings highlight that downregulation of SIRT1-modulated FAO facilitated by the SP1/SIRT1/ACLY axis in the kidney increases IRI, suggesting SIRT1 to be a potential therapeutic target for renal fibrosis induced by renal IRI.


Assuntos
Ácidos Graxos , Fibrose , Rim , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Traumatismo por Reperfusão , Transdução de Sinais , Sirtuína 1 , Fator de Transcrição Sp1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ácidos Graxos/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Camundongos , Rim/patologia , Rim/metabolismo , Masculino , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Humanos , Modelos Animais de Doenças
17.
Biomed Pharmacother ; 174: 116539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615610

RESUMO

This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples. Histological examinations (H&E staining), DNA fragmentation analysis (TUNEL) were performed, along with Caspase-3 assessment. The ALLN-treated groups exhibited significant improvements in biochemical markers and a remarkable reduction in apoptosis compared to the damaged groups (CuO-NP and I/R). H&E and Caspase-3 staining revealed damage-related morphological changes and reduced apoptosis in the ALLN-treated group. However, no differences were observed among the groups with TUNEL staining. The findings suggest that ALLN, as a calpain inhibitor, has potential implications for anti-apoptotic treatment, specifically in mitigating neuroapoptotic cell damage caused by CuO-NP and I/R.


Assuntos
Calpaína , Cobre , Modelos Animais de Doenças , Glicoproteínas , Leupeptinas , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Cobre/toxicidade , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Ratos , Apoptose/efeitos dos fármacos , Nanopartículas , Oligopeptídeos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Caspase 3/metabolismo
18.
Sci Rep ; 14(1): 9820, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684767

RESUMO

In critically ill patients, overweight and obesity are associated with acute respiratory distress syndrome and acute kidney injury (AKI). However, the effect of obesity on ischemia-reperfusion injury (IRI)-induced AKI is unknown. We hypothesized that obesity would aggravate renal IRI in mice. We fed mice a standard or high-fat diet for eight weeks. The mice were divided into four groups and submitted to sham surgery or IRI: obese, normal, normal + IRI, obese, and obese + IRI. All studies were performed 48 h after the procedures. Serum glucose, cholesterol, and creatinine clearance did not differ among the groups. Survival and urinary osmolality were lower in the obese + IRI group than in the normal + IRI group, whereas urinary neutrophil gelatinase-associated lipocalin levels, tubular injury scores, and caspase 3 expression were higher. Proliferating cell nuclear antigen expression was highest in the obese + IRI group, as were the levels of oxidative stress (urinary levels of thiobarbituric acid-reactive substances and renal heme oxygenase-1 protein expression), whereas renal Klotho protein expression was lowest in that group. Expression of glutathione peroxidase 4 and peroxiredoxin 6, proteins that induce lipid peroxidation, a hallmark of ferroptosis, was lower in the obese + IRI group. Notably, among the mice not induced to AKI, macrophage infiltration was greater in the obese group. In conclusion, greater oxidative stress and ferroptosis might aggravate IRI in obese individuals, and Klotho could be a therapeutic target in those with AKI.


Assuntos
Injúria Renal Aguda , Obesidade , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Obesidade/complicações , Obesidade/metabolismo , Camundongos , Masculino , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Glucuronidase/metabolismo , Rim/metabolismo , Rim/patologia
19.
Eur J Pharmacol ; 972: 176553, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574838

RESUMO

Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.


Assuntos
Benzamidas , Ferroptose , Microglia , Fator 2 Relacionado a NF-E2 , Pirróis , Traumatismo por Reperfusão , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Linhagem Celular , Transporte Ativo do Núcleo Celular/efeitos dos fármacos
20.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574839

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Assuntos
Chalconas , Fármacos Neuroprotetores , Parthanatos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Sirtuínas , Animais , Ratos , Masculino , Chalconas/farmacologia , Chalconas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Parthanatos/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/complicações , Sobrevivência Celular/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA