Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.903
Filtrar
1.
BMC Microbiol ; 24(1): 384, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354342

RESUMO

Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.


Assuntos
Ciclo do Ácido Cítrico , Escherichia coli , Trealose , Zinco , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Trealose/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Zinco/metabolismo , Estresse Oxidativo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia , Proteômica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Adaptação Fisiológica , Transcriptoma , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/efeitos dos fármacos
2.
Int Ophthalmol ; 44(1): 398, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352586

RESUMO

OBJECTIVE: This Systematic review aims to assess the efficacy of trehalose and hyaluronic acid in enhancing ocular recovery post-cataract surgery, focusing on their impact on tear film stability, ocular surface integrity, and patient-reported outcomes. METHODS: A comprehensive search was conducted across MEDLINE, PubMed, and Cochrane Library databases to identify randomized controlled trials investigating the efficacy of trehalose, hyaluronic acid, or their combination in post-cataract surgery care. The inclusion criteria focused on peer-reviewed studies in English, detailing outcomes relevant to ocular recovery such as tear film stability, ocular surface integrity, patient-reported discomfort, or visual acuity (VA). The quality of the included studies was assessed using the Cochrane Risk of Bias Tool and synthesized the data qualitatively. RESULTS: Four qualitative investigations met the inclusion criteria. The studies collectively assessed the efficacy of a 3% trehalose and 0.15% hyaluronic acid eye drop solution in reducing postoperative eye symptoms compared to various control solutions. Parameters measured included tear break-up time (TBUT), Fluorescein staining, tear production (Schirmer test), and Ocular Surface Disease Index (OSDI) scores. The results indicated significant improvements in tear film stability and ocular surface health for the treatment groups compared to controls, with a notable decrease in patient-reported discomfort. The study showed an improvement of - 18 (± 14.6) in the treatment group compared to - 7 (± 8.0) in the control group for OSDI. For TBUT, the treatment group improved by 3 (± 1.2) s, whereas the control group improved by 0.3 (± 0.71) s. VA, measured on a scale of 0-100, increased to 17 (± 0.7) in the treatment group compared to 15 (± 1.1) in the control group. CONCLUSIONS: Trehalose and hyaluronic acid may be beneficial in the postoperative period by enhancing tear film stability and ocular surface health. While the results are promising, further research is needed to confirm these findings, understand the mechanisms of action, and explore broader applications.


Assuntos
Ácido Hialurônico , Lágrimas , Trealose , Humanos , Trealose/farmacologia , Trealose/uso terapêutico , Lágrimas/metabolismo , Lágrimas/fisiologia , Síndromes do Olho Seco/tratamento farmacológico , Soluções Oftálmicas , Assistência ao Paciente/métodos , Acuidade Visual
3.
Sci Rep ; 14(1): 22824, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354093

RESUMO

Nitrogen deficiency in low organic matter soils significantly reduces crop yield and plant health. The effects of foliar applications of indole acetic acid (IAA), trehalose (TA), and nanoparticles-coated urea (NPCU) on the growth and physiological attributes of tomatoes in nitrogen-deficient soil are not well documented in the literature. This study aims to explore the influence of IAA, TA, and NPCU on tomato plants in nitrogen-deficient soil. Treatments included control, 2mM IAA, 0.1% TA, and 2mM IAA + 0.1% TA, applied with and without NPCU. Results showed that 2mM IAA + 0.1% TA with NPCU significantly improved shoot length (~ 30%), root length (~ 63%), plant fresh (~ 48%) and dry weight (~ 48%), number of leaves (~ 38%), and leaf area (~ 58%) compared to control (NPCU only). Additionally, significant improvements in chlorophyll content, total protein, and total soluble sugar, along with a decrease in antioxidant activity (POD, SOD, CAT, and APX), validated the effectiveness of 2mM IAA + 0.1% TA with NPCU. The combined application of 2mM IAA + 0.1% TA with NPCU can be recommended as an effective strategy to enhance tomato growth and yield in nitrogen-deficient soils. This approach can be integrated into current agricultural practices to improve crop resilience and productivity, especially in regions with poor soil fertility. To confirm the efficacy of 2mM IAA + 0.1% TA with NPCU in various crops and climatic conditions, additional field studies are required.


Assuntos
Ácidos Indolacéticos , Nitrogênio , Solo , Solanum lycopersicum , Trealose , Ureia , Óxido de Zinco , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Solo/química , Trealose/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanopartículas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fertilizantes
4.
Cell Mol Life Sci ; 81(1): 396, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261338

RESUMO

High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.


Assuntos
Progressão da Doença , Proteínas de Drosophila , Regulação para Cima , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Apoptose/genética , Transdução de Sinais , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Glucose/metabolismo , Instabilidade Genômica , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Linhagem Celular Tumoral , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica , Trealose/metabolismo , Carboidratos da Dieta/efeitos adversos , Drosophila/metabolismo
5.
AAPS PharmSciTech ; 25(7): 220, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313719

RESUMO

Ketoconazole (K) is a poorly water-soluble drug that faces significant challenges in achieving therapeutic efficacy. This study aimed to enhance the dissolution rate of ketoconazole by depositing spray-dried ketoconazole (SK) onto the surface of ground trehalose dihydrate (T) using spray drying. Ketoconazole-trehalose surface solid dispersions (SKTs) were prepared in ratios of 1:1 (SK1T1), 1:4 (SK1T4), and 1:10 (SK1T10), and characterized them using particle size analysis, scanning electron microscopy, powder X-ray diffraction, and in vitro dissolution studies. Results showed that the dissolution rates of the dispersions were significantly higher than those of pure ketoconazole, with the 1:10 ratio showing the highest dissolution rate. The improved dissolution was attributed to the formation of a new crystalline phase and better dispersion of ketoconazole particles. These findings suggest that the surface solid dispersion approach could be a valuable method for enhancing the bioavailability of poorly water-soluble drugs.


Assuntos
Cetoconazol , Tamanho da Partícula , Solubilidade , Trealose , Difração de Raios X , Cetoconazol/química , Cetoconazol/administração & dosagem , Trealose/química , Difração de Raios X/métodos , Microscopia Eletrônica de Varredura/métodos , Secagem por Atomização , Química Farmacêutica/métodos , Pós/química , Disponibilidade Biológica , Composição de Medicamentos/métodos , Antifúngicos/química , Antifúngicos/administração & dosagem
6.
Protein Sci ; 33(10): e5166, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291929

RESUMO

Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.


Assuntos
Proteínas de Bactérias , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Trealose/química , Trealose/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Ligação Proteica , Fatores Corda
7.
Elife ; 122024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324403

RESUMO

Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.


Assuntos
Glucose , Mitocôndrias , Fosfatos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Glucose/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Glicólise , Trealose/metabolismo , Endopeptidases
9.
Cells ; 13(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329727

RESUMO

We investigated whether the elimination of two major enzymes responsible for triacylglycerol synthesis altered the structure and physical state of organelle membranes under mild heat shock conditions in the fission yeast, Schizosaccharomyces pombe. Our study revealed that key intracellular membrane structures, lipid droplets, vacuoles, the mitochondrial network, and the cortical endoplasmic reticulum were all affected in mutant fission yeast cells under mild heat shock but not under normal growth conditions. We also obtained direct evidence that triacylglycerol-deficient cells were less capable than wild-type cells of adjusting their membrane physical properties during thermal stress. The production of thermoprotective molecules, such as HSP16 and trehalose, was reduced in the mutant strain. These findings suggest that an intact system of triacylglycerol metabolism significantly contributes to membrane protection during heat stress.


Assuntos
Resposta ao Choque Térmico , Schizosaccharomyces , Triglicerídeos , Schizosaccharomyces/metabolismo , Triglicerídeos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Trealose/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo
10.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337517

RESUMO

The Macrophage-Inducible C-type Lectin receptor (Mincle) plays a critical role in innate immune recognition and pathology, and therefore represents a promising target for vaccine adjuvants. Innovative trehalose-based Mincle agonists with improved pharmacology and potency may prove useful in the development of Th17-mediated adaptive immune responses. Herein, we report on in vitro and in silico investigations of specific Mincle ligand-receptor interactions required for the effective receptor engagement and activation of Th17-polarizing cytokines. Specifically, we employed a library of trehalose benzoate scaffolds, varying the degree of aryl lipidation and regiochemistry that produce inflammatory cytokines in a Mincle-dependent fashion. In vitro interleukin-6 (IL-6) cytokine production by human peripheral blood mononuclear cells (hPBMCs) indicated that the lipid regiochemistry is key to potency and maximum cytokine output, with the tri-substituted compounds inducing higher levels of IL-6 in hPBMCs than the di-substituted derivatives. Additionally, IL-6 production trended higher after stimulation with compounds that contained lipids ranging from five to eight carbons long, compared to shorter (below five) or longer (above eight) carbon chains, across all the substitution patterns. An analysis of the additional cytokines produced by hPBMCs revealed that compound 4d, tri-substituted and five carbons long, induced significantly greater levels of interleukin-1ß (IL-1ß), tumor necrosis factor- α (TNF-α), interleukin-23 (IL-23), and interferon- γ (IFN-γ) than the other compounds tested in this study. An in silico assessment of 4d highlighted the capability of this analogue to bind to the human Mincle carbohydrate recognition domain (CRD) efficiently. Together, these data highlight important structure-activity findings regarding Mincle-specific cytokine induction, generating a lead adjuvant candidate for future formulations and immunological evaluations.


Assuntos
Lectinas Tipo C , Leucócitos Mononucleares , Trealose , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/agonistas , Trealose/farmacologia , Trealose/química , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Citocinas/metabolismo , Interleucina-6/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Simulação de Acoplamento Molecular , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo
11.
Sci Transl Med ; 16(766): eadk8446, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321267

RESUMO

Activation of extracellular matrix-producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)-, carbon tetrachloride (CCl4)-, or bile duct ligation (BDL)-induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.


Assuntos
Citocromo P-450 CYP1B1 , Células Estreladas do Fígado , Cirrose Hepática , Trealose , Animais , Feminino , Humanos , Masculino , Camundongos , Autofagia/efeitos dos fármacos , Citocromo P-450 CYP1B1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Trealose/farmacologia , Trealose/análogos & derivados , Trealose/metabolismo , Trealose/uso terapêutico
12.
J Cell Mol Med ; 28(17): e18512, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39248454

RESUMO

Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.


Assuntos
Glucuronidase , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Camundongos , Glucuronidase/metabolismo , Glucuronidase/antagonistas & inibidores , Trealose/farmacologia , Trealose/uso terapêutico , Ceruletídeo , Aspirina/farmacologia , Aspirina/uso terapêutico , Modelos Animais de Doenças , Doença Aguda , Autofagia/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/enzimologia , Masculino , Camundongos Transgênicos , Lipase/metabolismo , Lipase/antagonistas & inibidores , Amilases/sangue , Camundongos Endogâmicos C57BL , Saponinas
13.
New Phytol ; 244(3): 900-913, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187924

RESUMO

The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Lactonas , Mutação , Brotos de Planta , Transdução de Sinais , Fosfatos Açúcares , Trealose , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Lactonas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos Açúcares/metabolismo , Mutação/genética , Trealose/análogos & derivados , Trealose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Plantas Geneticamente Modificadas , Compostos Heterocíclicos com 3 Anéis
14.
Int J Pharm ; 664: 124626, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39208952

RESUMO

The manufacturing of tablets containing biologics exposes the biologics to thermal and shear stresses, which are likely to induce structural changes (e.g., aggregation and denaturation), leading to the loss of their activity. Saccharides often act as stabilizers of proteins in formulations, yet their stabilizing ability throughout solid oral dosage processing, such as tableting, has been barely studied. This work aimed to investigate the effects of formulation and process (tableting and spray-drying) variables on catalase tablets containing dextran, mannitol, and trehalose as potential stabilizers. Non-spray-dried and spray-dried formulations were prepared and tableted (100, 200, and 400 MPa). The enzymatic activity, number of aggregates, reflecting protein aggregation and structure modifications were studied. A principal component analysis was performed to reveal underlying correlations. It was found that tableting and spray-drying had a notable negative effect on the activity and number of aggregates formed in catalase formulations. Overall, dextran and mannitol failed to preserve the catalase activity in any unit operation studied. On the other hand, trehalose was found to preserve the activity during spray-drying but not necessarily during tableting. The study demonstrated that formulation and process variables must be considered and optimized together to preserve the characteristics of catalase throughout processing.


Assuntos
Catalase , Dextranos , Composição de Medicamentos , Excipientes , Manitol , Comprimidos , Trealose , Catalase/química , Trealose/química , Manitol/química , Dextranos/química , Excipientes/química , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Secagem por Atomização , Agregados Proteicos
15.
BMC Plant Biol ; 24(1): 783, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152388

RESUMO

BACKGROUND: Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS: Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS: The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.


Assuntos
Cromo , Estresse Fisiológico , Trealose , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/metabolismo , Trealose/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
16.
J Agric Food Chem ; 72(32): 18234-18246, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087623

RESUMO

Escherichia coli Nissle 1917 (EcN) is one of the most widely used probiotics to treat gastrointestinal diseases. Recently, many studies have engineered EcN to release therapeutic proteins to treat specific diseases. However, because EcN exhibits intestinal metabolic activities, it is difficult to predict outcomes after administration. In silico and fermentation profiles revealed mucin metabolism of EcN. Multiomics revealed that fucose metabolism contributes to the intestinal colonization of EcN by enhancing the synthesis of flagella and nutrient uptake. The multiomics results also revealed that excessive intracellular trehalose synthesis in EcN, which is responsible for galactose metabolism, acts as a metabolic bottleneck, adversely affecting growth. To improve the ability of EcN to metabolize galactose, otsAB genes for trehalose synthesis were deleted, resulting in the ΔotsAB strain; the ΔotsAB strain exhibited a 1.47-fold increase in the growth rate and a 1.37-fold increase in the substrate consumption rate relative to wild-type EcN.


Assuntos
Escherichia coli , Intestinos , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Intestinos/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Probióticos/metabolismo , Galactose/metabolismo , Fermentação , Trealose/metabolismo , Humanos , Fucose/metabolismo
17.
Int J Pharm ; 664: 124608, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39163929

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.


Assuntos
Antituberculosos , Inaladores de Pó Seco , Leucina , Lipossomos , Tamanho da Partícula , Tuberculose Pulmonar , Administração por Inalação , Antituberculosos/administração & dosagem , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Humanos , Leucina/química , Leucina/administração & dosagem , Trealose/química , Trealose/administração & dosagem , Aerossóis , Solubilidade , Excipientes/química , Pós , Liberação Controlada de Fármacos , Secagem por Atomização , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis
18.
J Agric Food Chem ; 72(33): 18649-18657, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109746

RESUMO

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.


Assuntos
Proteínas de Bactérias , Deinococcus , Glucosiltransferases , Maltose , Trealose , Glucosiltransferases/genética , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/química , Trealose/metabolismo , Trealose/química , Maltose/metabolismo , Maltose/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mutação
19.
Curr Biol ; 34(18): 4160-4169.e7, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39168123

RESUMO

Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.


Assuntos
Daphnia , Água Doce , Trealose , Animais , Trealose/metabolismo , Daphnia/fisiologia , Daphnia/genética , Tolerância ao Sal/genética , Salinidade , Estudo de Associação Genômica Ampla , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...