Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.769
Filtrar
1.
Protein Sci ; 33(10): e5166, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291929

RESUMO

Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.


Assuntos
Proteínas de Bactérias , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Trealose/química , Trealose/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Ligação Proteica , Fatores Corda
2.
Cell Mol Life Sci ; 81(1): 396, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261338

RESUMO

High dietary sugar (HDS), a contemporary dietary concern due to excessive intake of added sugars and carbohydrates, escalates the risk of metabolic disorders and concomitant cancers. However, the molecular mechanisms underlying HDS-induced cancer progression are not completely understood. We found that phosphoenolpyruvate carboxykinase 1 (PEPCK1), a pivotal enzyme in gluconeogenesis, is paradoxically upregulated in tumors by HDS, but not by normal dietary sugar (NDS), during tumor progression. Targeted knockdown of pepck1, but not pepck2, specifically in tumor tissue in Drosophila in vivo, not only attenuates HDS-induced tumor growth but also significantly improves the survival of Ras/Src tumor-bearing animals fed HDS. Interestingly, HP1a-mediated heterochromatin interacts directly with the pepck1 gene and downregulates pepck1 gene expression in wild-type Drosophila. Mechanistically, we demonstrated that, under HDS conditions, pepck1 knockdown reduces both wingless and TOR signaling, decreases evasion of apoptosis, reduces genome instability, and suppresses glucose uptake and trehalose levels in tumor cells in vivo. Moreover, rational pharmacological inhibition of PEPCK1, using hydrazinium sulfate, greatly improves the survival of tumor-bearing animals with pepck1 knockdown under HDS. This study is the first to show that elevated levels of dietary sugar induce aberrant upregulation of PEPCK1, which promotes tumor progression through altered cell signaling, evasion of apoptosis, genome instability, and reprogramming of carbohydrate metabolism. These findings contribute to our understanding of the complex relationship between diet and cancer at the molecular, cellular, and organismal levels and reveal PEPCK1 as a potential target for the prevention and treatment of cancers associated with metabolic disorders.


Assuntos
Progressão da Doença , Proteínas de Drosophila , Regulação para Cima , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Apoptose/genética , Transdução de Sinais , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Glucose/metabolismo , Instabilidade Genômica , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Linhagem Celular Tumoral , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica , Trealose/metabolismo , Carboidratos da Dieta/efeitos adversos , Drosophila/metabolismo
3.
Molecules ; 29(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124891

RESUMO

Desert strains of the genus Chroococcidiopsis are among the most desiccation-resistant cyanobacteria capable of anhydrobiosis. The accumulation of two sugars, sucrose and trehalose, facilitates the entrance of anhydrobiotes into a reversible state of dormancy by stabilizing cellular components upon water removal. This study aimed to evaluate, at the atomistic level, the role of trehalose in desiccation resistance by using as a model system the 30S ribosomal subunit of the desert cyanobacterium Chroococcidiopsis sp. 029. Molecular dynamic simulations provided atomistic evidence regarding its protective role on the 30S molecular structure. Trehalose forms an enveloping shell around the ribosomal subunit and stabilizes the structures through a network of direct interactions. The simulation confirmed that trehalose actively interacts with the 30S ribosomal subunit and that, by replacing water molecules, it ensures ribosomal structural integrity during desiccation, thus enabling protein synthesis to be carried out upon rehydration.


Assuntos
Cianobactérias , Simulação de Dinâmica Molecular , Trealose , Trealose/metabolismo , Trealose/química , Cianobactérias/metabolismo , Cianobactérias/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Dessecação , Modelos Moleculares
4.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125965

RESUMO

Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.


Assuntos
Antioxidantes , Tardígrados , Animais , Tardígrados/metabolismo , Tardígrados/genética , Antioxidantes/metabolismo , Estresse Oxidativo , Planeta Terra , Trealose/metabolismo
5.
J Agric Food Chem ; 72(33): 18649-18657, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109746

RESUMO

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.


Assuntos
Proteínas de Bactérias , Deinococcus , Glucosiltransferases , Maltose , Trealose , Glucosiltransferases/genética , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/química , Trealose/metabolismo , Trealose/química , Maltose/metabolismo , Maltose/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Mutação
6.
Sci Adv ; 10(34): eadq0294, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167637

RESUMO

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.


Assuntos
Azidas , Química Click , Azidas/química , Química Click/métodos , Humanos , Trealose/metabolismo , Trealose/química , Carboidratos/química , Corantes Fluorescentes/química , Transporte Biológico
7.
J Agric Food Chem ; 72(32): 18234-18246, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087623

RESUMO

Escherichia coli Nissle 1917 (EcN) is one of the most widely used probiotics to treat gastrointestinal diseases. Recently, many studies have engineered EcN to release therapeutic proteins to treat specific diseases. However, because EcN exhibits intestinal metabolic activities, it is difficult to predict outcomes after administration. In silico and fermentation profiles revealed mucin metabolism of EcN. Multiomics revealed that fucose metabolism contributes to the intestinal colonization of EcN by enhancing the synthesis of flagella and nutrient uptake. The multiomics results also revealed that excessive intracellular trehalose synthesis in EcN, which is responsible for galactose metabolism, acts as a metabolic bottleneck, adversely affecting growth. To improve the ability of EcN to metabolize galactose, otsAB genes for trehalose synthesis were deleted, resulting in the ΔotsAB strain; the ΔotsAB strain exhibited a 1.47-fold increase in the growth rate and a 1.37-fold increase in the substrate consumption rate relative to wild-type EcN.


Assuntos
Escherichia coli , Intestinos , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Intestinos/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Probióticos/metabolismo , Galactose/metabolismo , Fermentação , Trealose/metabolismo , Humanos , Fucose/metabolismo
8.
BMC Plant Biol ; 24(1): 783, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152388

RESUMO

BACKGROUND: Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS: Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS: The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.


Assuntos
Cromo , Estresse Fisiológico , Trealose , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/metabolismo , Trealose/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
9.
PLoS One ; 19(7): e0305730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024233

RESUMO

Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively. Analysis of cis-acting elements in the promoters revealed the presence of multiple hormone- and abiotic stress-responsive elements in the promoter regions of AhTPPs. Expression pattern analysis showed that members of the TPP gene family in peanut responded significantly to various abiotic stresses, including low temperature, drought, and nitrogen deficiency, and exhibited certain tissue specificity. Salt stress significantly upregulated AhTPPs, with a higher number of responsive genes observed at the seedling stage compared to the podding stage. The intuitive physiological effect was reflected in the significantly higher accumulation of trehalose content in the leaves of plants under salt stress compared to the control. These findings indicate that the TPP gene family plays a crucial role in peanut's response to abiotic stresses, laying the foundation for further functional studies and utilization of these genes.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Família Multigênica , Estresse Salino , Arachis/genética , Arachis/metabolismo , Estresse Salino/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Trealose/metabolismo
10.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979511

RESUMO

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Assuntos
Fímbrias Bacterianas , Osmorregulação , Trealose , Bexiga Urinária , Infecções Urinárias , Animais , Trealose/metabolismo , Camundongos , Bexiga Urinária/microbiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Animais de Doenças , Feminino , Pressão Osmótica , Escherichia coli Extraintestinal Patogênica/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Ureia/metabolismo , Trealase/metabolismo , Trealase/genética , Deleção de Genes , Glucose/metabolismo
11.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-39046035

RESUMO

Trehalose serves as a primary circulatory sugar in insects which is crucial in energy metabolism and stress recovery. It is hydrolyzed into two glucose molecules by trehalase. Silencing or inhibiting trehalase results in reduced fitness, developmental defects, and insect mortality. Despite its importance, the molecular response of insects to trehalase inhibition is not known. Here, we performed transcriptomic analyses of Helicoverpa armigera treated with validamycin A (VA), a trehalase inhibitor. VA ingestion resulted in increased mortality, developmental delay, and reduced ex vivo trehalase activity. Pathway enrichment and gene ontology analyses suggest that key genes involved in carbohydrate, protein, fatty acid, and mitochondria-related metabolisms are deregulated. The activation of protein and fat degradation may be necessary to fulfil energy requirements, evidenced by the dysregulated expression of critical genes in these metabolisms. Co-expression analysis supports the notion that trehalase inhibition leads to putative interaction with key regulators of other pathways. Metabolomics correlates with transcriptomics to show reduced levels of key energy metabolites. VA generates an energy-deficient condition, and insects activate alternate pathways to facilitate the energy demand. Overall, this study provides insights into the molecular mechanisms underlying the response of insects to trehalase inhibition and highlights potential targets for insect control.


Assuntos
Metabolismo Energético , Trealase , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Helicoverpa armigera , Inositol/farmacologia , Inositol/metabolismo , Inositol/análogos & derivados , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva , Transcriptoma/genética , Trealase/metabolismo , Trealase/genética , Trealase/antagonistas & inibidores , Trealose/metabolismo
12.
Chem Biol Drug Des ; 104(1): e14571, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013779

RESUMO

Pterygium is a frequent eye surface condition that is characterized by a high rate of proliferation, fibrovascular development, cellular migration, corneal infiltration, and angiogenesis. We investigated that ex vivo primary pterygium and conjunctival cell cultures were generated to analyze the effect of trehalose on cellular proliferation. After trehalose treatment, we performed microarray analysis to evaluate changes in the mRNA profile. We analyzed gene ontology (GO) and KEGG pathways to identify hub genes that changed expression levels after treatment and were associated with pterygium development. We selected three genes to verify their expression levels using qRT-PCR. The study also evaluated the impact of trehalose treatment on cell migration through a wound-healing assay. Our results suggested that pterygium cell proliferation was inhibited in a dose-dependent manner by trehalose. 2354 DEG were identified in pterygium and conjunctiva cells treated with trehalose compared to untreated groups. Functional enrichment analysis showed that differentially expressed mRNAs are involved in proliferation, vasculature development, and cell migration. We identified ten hub genes including upregulated (RANBP3L, SLC5A3, RERG, ANKRD1, DHCR7, RAB27B, GPRC5B, MSMO1, ASPN, DRAM1) and downregulated (TNC, PTGS2, GREM2, NPTX1, NR4A1, HMOX1, CXCL12, IL6, MYH2, TXNIP). Microarray analysis and functional investigations suggest that trehalose affects the pathogenesis of pterygium by modifying the expression of genes involved in crucial pathways related to cell function.


Assuntos
Movimento Celular , Proliferação de Células , Túnica Conjuntiva , Pterígio , Trealose , Pterígio/metabolismo , Pterígio/tratamento farmacológico , Pterígio/genética , Pterígio/patologia , Humanos , Trealose/farmacologia , Trealose/metabolismo , Proliferação de Células/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/patologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Masculino , Pessoa de Meia-Idade
13.
Plant Physiol Biochem ; 214: 108917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976941

RESUMO

Sweet potato [Ipomoea batatas (L.) Lam], the crop with the seventh highest annual production globally, is susceptible to various adverse environmental influences, and the study of stress-resistant genes is important for improving its tolerance to abiotic stress. The enzyme trehalose-6-phosphate synthase (TPS) is indispensable in the one pathway for synthesizing trehalose in plants. TPS is known to participate in stress response in plants, but information on TPS in sweet potato is limited. This study produced the N-terminal truncated IbTPS1 gene (△NIbTPS1) overexpression lines of Arabidopsis thaliana and sweet potato. Following salt and mannitol-induced drought treatment, the germination rate, root elongation, and fresh weight of the transgenic A. thaliana were significantly higher than that in the wild type. Overexpression of △NIbTPS1 elevated the photosynthetic efficiency (Fv/Fm) and the activity of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in sweet potato during drought and salt treatments, while reducing malondialdehyde and O2∙- contents, although expression of the trehalose-6-phosphate phosphatase gene IbTPP and trehalose concentrations were not affected. Thus, overexpressing the △NIbTPS1 gene can improve the stress tolerance of sweet potato to drought and salt by enhancing the photosynthetic efficiency and antioxidative enzyme system. These results will contribute to understand the functions of the △NIbTPS1 gene and trehalose in the response mechanism of higher plants to abiotic stress.


Assuntos
Arabidopsis , Glucosiltransferases , Ipomoea batatas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/enzimologia , Ipomoea batatas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Trealose/metabolismo
14.
Food Chem ; 460(Pt 2): 140607, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068804

RESUMO

The high temperature induces conformational changes in ß-glucosidase, making it inactive and limiting its application field. In this paper, the effect of trehalose on the thermostability of ß-glucosidase from low-moisture Hevea brasiliensis seeds was investigated. The results showed that the residual enzyme activities of ß-glucosidase supplemented with trehalose after high-temperature treatment were significantly higher than that of the control group. The improvement of thermostability could be explained by low-field nuclear magnetic resonance (LF-NMR) and molecular dynamics (MD) simulations at the molecular level. Moreover, adding trehalose increased the water activity and water content of ß-glucosidase, leading to a more stable conformation. Trehalose replaced some water and formed a stable network of hydrogen bonds with protein and surrounding water. The glass formed by trehalose also reduced molecular movement, thus providing good protection for enzymes.


Assuntos
Estabilidade Enzimática , Simulação de Dinâmica Molecular , Trealose , Água , beta-Glucosidase , Trealose/química , Trealose/metabolismo , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Água/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Temperatura Alta , Sementes/química , Sementes/enzimologia , Ligação de Hidrogênio
15.
Plant J ; 119(5): 2349-2362, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981025

RESUMO

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.


Assuntos
Ácido Abscísico , Avicennia , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Sódio , Trealose , Trealose/metabolismo , Tolerância ao Sal/genética , Ácido Abscísico/metabolismo , Avicennia/fisiologia , Avicennia/genética , Sódio/metabolismo , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia
16.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083421

RESUMO

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Assuntos
Antifúngicos , Cryptococcus neoformans , Glucosiltransferases , Trealose , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Trealose/metabolismo , Trealose/análogos & derivados , Trealose/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Modelos Moleculares , Humanos , Domínio Catalítico , Cristalografia por Raios X
17.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937448

RESUMO

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Assuntos
Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons , Trealose , Tuberculose , Animais , Mycobacterium tuberculosis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trealose/metabolismo , Tuberculose/diagnóstico por imagem , Tuberculose/microbiologia , Tuberculose/metabolismo , Humanos , Camundongos , Radioisótopos de Flúor , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/química , Compostos Radiofarmacêuticos/metabolismo , Modelos Animais de Doenças , Feminino
18.
Sci Rep ; 14(1): 14191, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902334

RESUMO

Feeding behavior, the most fundamental physiological activity, is controlled by two opposing groups of factors, orexigenic and anorexigenic factors. The sulfakinin family, an insect analogue of the mammalian satiety factor cholecystokinin (CCK), has been shown to suppress food intake in various insects. Nevertheless, the mechanisms through which sulfakinin regulates feeding behavior remain a biological question. This study aimed to elucidate the signaling pathway mediated by the anorexigenic peptide sulfakinin in Bombyx mori. We identified the Bombyx mori neuropeptide G protein-coupled receptor A9 (BNGR-A9) as the receptor for sulfakinin through functional assays. Stimulation with sulfakinin triggered a swift increase in intracellular IP3, Ca2+, and a notable enhancement of ERK1/2 phosphorylation, in a manner sensitive to a Gαq-specific inhibitor. Treatment with synthetic sulfakinin resulted in decreased food consumption and average body weight. Additionally, administering synthetic sulfakinin to silkworms significantly elevated hemolymph trehalose levels, an effect markedly reduced by pre-treatment with BNGR-A9 dsRNA. Consequently, our findings establish the sulfakinin/BNGR-A9 signaling pathway as a critical regulator of feeding behavior and hemolymph trehalose homeostasis in Bombyx mori, highlighting its roles in the negative control of food intake and the positive regulation of energy balance.


Assuntos
Bombyx , Comportamento Alimentar , Hemolinfa , Homeostase , Proteínas de Insetos , Trealose , Animais , Bombyx/metabolismo , Bombyx/fisiologia , Trealose/metabolismo , Trealose/análogos & derivados , Trealose/farmacologia , Hemolinfa/metabolismo , Comportamento Alimentar/fisiologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores Acoplados a Proteínas G/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
20.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744088

RESUMO

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Assuntos
Temperatura Baixa , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Trealose/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Giberelinas/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...