Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125635

RESUMO

Exercise training is a valuable tool for improving body weight and composition in overweight or obese adults, which leads to a negative energy balance. It is relevant to consider whether exercise can help people lose weight or prevent weight gain because any energy expended in exercise increases the severity of hunger and promotes food consumption. Over the past decade, the identification of the circulating peptide ghrelin, which alerts the brain to the body's nutritional state, has significantly expanded our understanding of this homeostatic mechanism that controls appetite and body weight. To shed more light on this issue, we decided to investigate the effects of resistance and endurance training on plasma ghrelin and leptin levels. In addition, we sought to understand the mechanisms by which acute and chronic exercise can regulate hunger. This review analyzes studies published in the last fifteen years that focused on changes suffered by ghrelin, leptin, or both after physical exercise in overweight or obese individuals. Most studies have shown a decrease in leptin levels and an increase in ghrelin levels in these cases. Exercise regimens that support weight maintenance need further investigation.


Assuntos
Treino Aeróbico , Grelina , Leptina , Obesidade , Sobrepeso , Treinamento Resistido , Grelina/sangue , Humanos , Leptina/sangue , Obesidade/sangue , Obesidade/terapia , Treino Aeróbico/métodos , Sobrepeso/sangue , Sobrepeso/terapia , Sobrepeso/metabolismo , Exercício Físico/fisiologia
2.
J Strength Cond Res ; 38(9): 1568-1575, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39074222

RESUMO

ABSTRACT: Díaz-García, J, López-Gajardo, MÁ, Parraca, JA, Batalla, N, López-Rodríguez, R, and Ring, C. Brain endurance training improves and maintains chest press and squat jump performance when fatigued. J Strength Cond Res 38(9): 1568-1575, 2024-Mental fatigue can impair resistance exercise performance. Brain endurance training (BET)-the addition of demanding cognitive tasks to standard exercise training-improves endurance exercise performance more than standard training. Although BET has yet to be evaluated with resistance exercise, it is expected to improve performance, particularly when the performer feels mentally fatigued. The study employed a pretest (week 0), midtest (week 3), posttest (week 6), and follow-up (week 9) design, with subjects randomized to BET ( n = 46) or control (exercise training) ( n = 45) groups. In testing sessions, subjects performed chest press and squat jump exercises to failure before (feeling fresh) and after (feeling tired) a 30-minute cognitively demanding Stroop task. Training comprised 5 BET or control training sessions per week for 6 weeks. In each training session, subjects completed 4 sets of each exercise to failure, with each exercise set preceded by a 3-minute cognitive task (BET) or rest (control). Exercise performance (number of repetitions to failure) and mental fatigue markers were assessed. In pretesting, exercise performance did not differ between the groups. In midtesting and posttesting, BET performed more chest press and squat jump repetitions when fatigued by the 30-minute Stroop than control. The mental fatigue elicited by the Stroop task gradually declined with training in BET compared with control. In conclusion, BET enhanced resistance exercise performance compared with standard training when tested subsequent to a mentally fatiguing cognitive task. These benefits were maintained weeks after training ended. Brain endurance training is an effective method to mitigate the deleterious effects of mental fatigue on resistance exercise performance.


Assuntos
Treino Aeróbico , Treinamento Resistido , Humanos , Masculino , Adulto Jovem , Adulto , Treinamento Resistido/métodos , Treino Aeróbico/métodos , Fadiga Mental , Feminino , Resistência Física/fisiologia , Encéfalo/fisiologia , Desempenho Atlético/fisiologia , Teste de Stroop , Fadiga Muscular/fisiologia
3.
Mol Metab ; 86: 101980, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950777

RESUMO

OBJECTIVE: In this investigation, we addressed the contribution of the core circadian clock factor, BMAL1, in skeletal muscle to both acute transcriptional responses to exercise and transcriptional remodeling in response to exercise training. Additionally, we adopted a systems biology approach to investigate how loss of skeletal muscle BMAL1 altered peripheral tissue homeostasis as well as exercise training adaptations in iWAT, liver, heart, and lung of male mice. METHODS: Combining inducible skeletal muscle specific BMAL1 knockout mice, physiological testing and standardized exercise protocols, we performed a multi-omic analysis (transcriptomics, chromatin accessibility and metabolomics) to explore loss of muscle BMAL1 on muscle and peripheral tissue responses to exercise. RESULTS: Muscle-specific BMAL1 knockout mice demonstrated a blunted transcriptional response to acute exercise, characterized by the lack of upregulation of well-established exercise responsive transcription factors including Nr4a3 and Ppargc1a. Six weeks of exercise training in muscle-specific BMAL1 knockout mice induced significantly greater and divergent transcriptomic and metabolomic changes in muscle. Surprisingly, liver, lung, inguinal white adipose and heart showed divergent exercise training transcriptomes with less than 5% of 'exercise-training' responsive genes shared for each tissue between genotypes. CONCLUSIONS: Our investigation has uncovered the critical role that BMAL1 plays in skeletal muscle as a key regulator of gene expression programs for both acute exercise and training adaptations. In addition, our work has uncovered the significant impact that altered exercise response in muscle and its likely impact on the system plays in the peripheral tissue adaptations to exercise training. Our work also demonstrates that if the muscle adaptations diverge to a more maladaptive state this is linked to increased gene expression signatures of inflammation across many tissues. Understanding the molecular targets and pathways contributing to health vs. maladaptive exercise adaptations will be critical for the next stage of therapeutic design for exercise mimetics.


Assuntos
Fatores de Transcrição ARNTL , Camundongos Knockout , Músculo Esquelético , Condicionamento Físico Animal , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Músculo Esquelético/metabolismo , Camundongos , Condicionamento Físico Animal/fisiologia , Masculino , Adaptação Fisiológica , Transcriptoma , Fígado/metabolismo , Treino Aeróbico , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Resistência Física/fisiologia , Resistência Física/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
4.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984994

RESUMO

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Assuntos
Adaptação Fisiológica , Envelhecimento , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Feminino , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Ratos , Envelhecimento/fisiologia , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treino Aeróbico
5.
Scand J Med Sci Sports ; 34(7): e14688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973702

RESUMO

AIM: To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS: Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS: Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION: Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.


Assuntos
Treino Aeróbico , Hipóxia , Ácido Láctico , Perna (Membro) , Músculo Esquelético , Potássio , Humanos , Potássio/metabolismo , Potássio/sangue , Hipóxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Perna (Membro)/irrigação sanguínea , Adulto , Ácido Láctico/sangue , Adulto Jovem , Prótons , Fluxo Sanguíneo Regional , ATPase Trocadora de Sódio-Potássio/metabolismo , Exercício Físico/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo
6.
Eur J Sport Sci ; 24(7): 857-869, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956784

RESUMO

The purpose of this study was firstly to examine the sensitivity of heart rate (HR)-based and subjective monitoring markers to intensified endurance training; and secondly, to investigate the validity of these markers to distinguish individuals in different fatigue states. A total of 24 recreational runners performed a 3-week baseline period, a 2-week overload period, and a 1-week recovery period. Performance was assessed before and after each period with a 3000m running test. Recovery was monitored with daily orthostatic tests, nocturnal HR recordings, questionnaires, and exercise data. The participants were divided into subgroups (overreached/OR, n = 8; responders/RESP, n = 12) based on the changes in performance and subjective recovery. The responses to the second week of the overload period were compared between the subgroups. RESP improved their baseline 3000 m time (p < 0.001) after the overload period (-2.5 ± 1.0%), and the change differed (p < 0.001) from OR (0.6 ± 1.2%). The changes in nocturnal HR (OR 3.2 ± 3.1%; RESP -2.8 ± 3.7%, p = 0.002) and HR variability (OR -0.7 ± 1.8%; RESP 2.1 ± 1.6%, p = 0.011) differed between the subgroups. In addition, the decrease in subjective readiness to train (p = 0.009) and increase in soreness of the legs (p = 0.04) were greater in OR compared to RESP. Nocturnal HR, readiness to train, and exercise-derived HR-running power index had ≥85% positive and negative predictive values in the discrimination between OR and RESP individuals. In conclusion, exercise tolerance can vary substantially in recreational runners. The results supported the usefulness of nocturnal HR and subjective recovery assessments in recognizing fatigue states.


Assuntos
Fadiga , Frequência Cardíaca , Corrida , Humanos , Frequência Cardíaca/fisiologia , Corrida/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Treino Aeróbico/métodos , Inquéritos e Questionários , Resistência Física/fisiologia , Teste de Esforço/métodos
7.
Diabetes Obes Metab ; 26(9): 4087-4099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014526

RESUMO

AIM: To compare the effectiveness of strength versus endurance training on reducing visceral fat in individuals with obesity. MATERIALS AND METHODS: For the STrength versus ENdurance (STEN) 24-month randomized clinical trial, we assigned 239 participants with abdominal obesity to either strength or endurance training (two to three times a week, 60 min/training session) in addition to standard nutritional counselling to promote a healthy diet. Changes in abdominal visceral adipose tissue (VAT) area quantified by magnetic resonance imaging after 12 months were defined as a primary endpoint. RESULTS: Participants (aged 44 years, 74% women, body mass index: 37 kg/m2, mean VAT volume: 4050 cm3) had an approximately 50% retention rate and a 30% good training programme adherence at 12 months. There was no difference between strength and endurance training in VAT volume dynamics after 12 and 24 months (p = .13). Only in the good adherence group did we find a trend for reduced VAT volume in both training regimens. Independently of the exercise programme, there was a continuous trend for moderate loss of abdominal subcutaneous AT volume, body fat mass, body mass index and improved parameters of insulin sensitivity. Although parameters of physical fitness improved upon both exercise interventions, the dynamics of resting energy expenditure, glucose and lipid metabolism parameters were not different between the intervention groups and did not significantly improve during the 2-year trial (p > .05). CONCLUSIONS: Despite heterogeneous individual training responses, strength and endurance training neither affected VAT volume nor key secondary endpoints differently.


Assuntos
Treino Aeróbico , Gordura Intra-Abdominal , Obesidade Abdominal , Treinamento Resistido , Humanos , Feminino , Masculino , Gordura Intra-Abdominal/diagnóstico por imagem , Adulto , Treino Aeróbico/métodos , Treinamento Resistido/métodos , Pessoa de Meia-Idade , Obesidade Abdominal/terapia , Obesidade Abdominal/fisiopatologia , Índice de Massa Corporal , Imageamento por Ressonância Magnética , Resultado do Tratamento , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Redução de Peso/fisiologia
8.
PeerJ ; 12: e17621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026541

RESUMO

Background: As women age, especially after menopause, cardiovascular disease (CVD) prevalence rises, posing a significant global health concern. Regular exercise can mitigate CVD risks by improving blood pressure and lipid levels in postmenopausal women. Yet, the optimal exercise modality for enhancing vascular structure and function in this demographic remains uncertain. This study aims to compare five exercise forms to discern the most effective interventions for reducing cardiovascular risk in postmenopausal women. Methods: The study searched PubMed, Web of Science, Cochrane, EBSCO, and Embase databases. It conducted a network meta-analysis (NMA) of randomized controlled trials (RCTs) on five exercise interventions: continuous endurance training (CET), interval training (INT), resistance training (RT), aerobic combined with resistance training (CT), and hybrid-type training (HYB). Outcome measures included carotid artery intima-media thickness (IMT), nitric oxide (NO), augmentation index (AIx), pulse wave velocity (PWV), and flow-mediated dilatation (FMD) of the brachial artery. Eligible studies were assessed for bias using the Cochrane tool. A frequentist random-effects NMA was employed to rank exercise effects, calculating standardized mean differences (SMDs) with 95% confidence intervals (CIs). Results: The analysis of 32 studies (n = 1,427) indicates significant increases in FMD with CET, INT, RT, and HYB in postmenopausal women. Reductions in PWV were significant with CET, INT, RT, CT, and HYB. AIx decreased significantly with INT and HYB. CET, INT, and CT significantly increased NO levels. However, no significant reduction in IMT was observed. SUCRA probabilities show INT as most effective for increasing FMD, CT for reducing PWV, INT for decreasing AIx, CT for lowering IMT, and INT for increasing NO in postmenopausal women. Conclusion: The study demonstrates that CET, INT, RT, and HYB have a significant positive impact on FMD in postmenopausal women. Furthermore, all five forms of exercise significantly enhance PWV in this population. INT and HYB were found to have a significant positive effect on AIx in postmenopausal women, while CET, INT, and CT were found to significantly improve NO levels. For improving vascular function in postmenopausal women, it is recommended to prioritize INT and CT exercise modalities. On the other hand, as CET and RT were not ranked at the top of the Sucra value ranking in this study and were less effective than INT and CT as exercise interventions to improve vascular function in postmenopausal women, it is not recommended that CET and RT be considered the preferred exercise modality.


Assuntos
Exercício Físico , Metanálise em Rede , Pós-Menopausa , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Feminino , Pós-Menopausa/fisiologia , Exercício Físico/fisiologia , Treinamento Resistido/métodos , Doenças Cardiovasculares/prevenção & controle , Espessura Intima-Media Carotídea , Análise de Onda de Pulso , Pessoa de Meia-Idade , Treino Aeróbico/métodos
9.
PLoS One ; 19(7): e0307275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038041

RESUMO

PURPOSE: Very low intensity endurance training (LIT) does not seem to improve maximal oxygen uptake. The purpose of the present study was to investigate if very high volume of LIT could compensate the lack of intensity and is LIT affecting differently low and high intensity performances. METHODS: Recreationally active untrained participants (n = 35; 21 females) cycled either LIT (mean training time 6.7 ± 0.7 h / week at 63% of maximal heart rate, n = 16) or high intensity training (HIT) (1.6 ± 0.2 h /week, n = 19) for 10 weeks. Two categories of variables were measured: Low (first lactate threshold, fat oxidation at low intensity exercise, post-exercise recovery) and high (aerobic capacity, second lactate threshold, sprinting power, maximal stroke volume) intensity performance. RESULTS: Only LIT enhanced pooled low intensity performance (LIT: p = 0.01, ES = 0.49, HIT: p = 0.20, ES = 0.20) and HIT pooled high intensity performance (LIT: p = 0.34, ES = 0.05, HIT: p = 0.007, ES = 0.48). CONCLUSIONS: Overall, very low endurance training intensity cannot fully be compensated by high training volume in adaptations to high intensity performance, but it nevertheless improved low intensity performance. Therefore, the intensity threshold for improving low intensity performance is lower than that for improving high intensity performance. Consequently, evaluating the effectiveness of LIT on endurance performance cannot be solely determined by high intensity performance tests.


Assuntos
Treino Aeróbico , Consumo de Oxigênio , Resistência Física , Humanos , Feminino , Masculino , Treino Aeróbico/métodos , Adulto , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Adulto Jovem , Ácido Láctico/sangue , Frequência Cardíaca/fisiologia , Volume Sistólico/fisiologia
10.
J Appl Physiol (1985) ; 137(2): 223-232, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900860

RESUMO

Endurance exercise training improves exercise capacity as well as skeletal muscle and whole body metabolism, which are hallmarks of high quality-of-life and healthy aging. However, its mechanisms are not yet fully understood. Exercise-induced mitophagy has emerged as an important step in mitochondrial remodeling. Unc-51-like autophagy-activating kinase 1, ULK1, specifically its activation by phosphorylation at serine 555, was discovered as an autophagy driver and to be important for energetic stress-induced mitophagy in skeletal muscle, making it a potential mediator of the beneficial effects of exercise on mitochondrial remodeling. Here, we used CRISPR/Cas9-mediated gene editing and generated knock-in mice with a serine-to-alanine mutation of Ulk1 on serine 555. We now report that these mice displayed normal endurance capacity and cardiac function at baseline with a mild impairment in energy metabolism as indicated by an accelerated increase of respiratory exchange ratio (RER) during acute exercise stress; however, this was completely corrected by 8 wk of voluntary running. Ulk1-S555A mice also retained the exercise-mediated improvements in exercise capacity and metabolic flux. We conclude that Ulk1 phosphorylation at S555 is not required for exercise-mediated improvements of exercise and metabolic capacity in healthy mice.NEW & NOTEWORTHY We have used CRISPR/Cas9-mediated gene editing to generate Ulk1-S555A knock-in mice to show that loss of phosphorylation of Ulk1 at S555 blunted exercise-induced mitophagy and mildly impairs energy metabolism during exercise in healthy mice. However, the knock-in mice retained exercise training-mediated improvements of endurance capacity and energy metabolism during exercise. These findings suggest that exercise-induced mitophagy through Ulk1 activation is not required for the metabolic adaptation and improved exercise capacity in young, healthy mice.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Metabolismo Energético , Músculo Esquelético , Condicionamento Físico Animal , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Fosforilação , Camundongos , Condicionamento Físico Animal/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Treino Aeróbico/métodos , Mitofagia/fisiologia , Técnicas de Introdução de Genes
11.
Physiol Behav ; 283: 114614, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866299

RESUMO

The aim of this study was to analyze the impact of endurance training (E), strength training (S), or combined training (SE), along with caloric restriction diet, compared to only diet and physical activity recommendations (C, control), on the quality of life in individuals with obesity. One hundred and twenty obese participants (61 males), aged 18-50 years, were randomly assigned to the different experimental groups, with ninety-six completing the study. The intervention period spanned 22 weeks (3 times per week). All subjects followed a hypocaloric diet, and quality of life was assessed using the SF36 questionnaire before and after the training program. A significant improvement was observed in emotional role following the S (Baseline: 85.06 ± 30.32; Post: 96.00 ± 11.06; p = 0.030) and SE (Baseline: 76.67 ± 35.18; Post: 91.30 ± 22.96; p = 0.010) programs, but not after E (Baseline: 83.33 ± 29.40; Post: 78.26 ± 35.69; p = 0.318) and C (Baseline: 77.01 ± 34.62; Post: 79.37 ± 37.23; p = 0.516). No significant main effect was observed in any other outcome measured. Overall, all groups demonstrated improvements in quality-of-life outcomes. In conclusion, any physical exercise intervention combined with caloric restriction, physical activity recommendations, and nutritional habits resulted in an enhancement of quality of life.


Assuntos
Restrição Calórica , Exercício Físico , Obesidade , Qualidade de Vida , Humanos , Masculino , Qualidade de Vida/psicologia , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Exercício Físico/psicologia , Exercício Físico/fisiologia , Obesidade/psicologia , Obesidade/dietoterapia , Treinamento Resistido , Treino Aeróbico , Inquéritos e Questionários , Resultado do Tratamento
12.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849720

RESUMO

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Assuntos
Restrição Calórica , Metabolismo Energético , Fígado , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Condicionamento Físico Animal , Animais , Músculo Esquelético/metabolismo , Masculino , Camundongos , Restrição Calórica/métodos , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Metabolismo Energético/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Camundongos Endogâmicos ICR , Treino Aeróbico/métodos , Transportador de Glucose Tipo 4/metabolismo , Adaptação Fisiológica/fisiologia , Citrato (si)-Sintase/metabolismo , Proteínas Musculares
14.
Sci Rep ; 14(1): 12653, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825590

RESUMO

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Assuntos
Arritmias Cardíacas , Infecções por Coxsackievirus , Modelos Animais de Doenças , Enterovirus Humano B , Fibrose , Camundongos Endogâmicos C57BL , Miocardite , Condicionamento Físico Animal , Animais , Miocardite/virologia , Miocardite/patologia , Masculino , Camundongos , Arritmias Cardíacas/etiologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/complicações , Miocárdio/patologia , Treino Aeróbico
15.
Scand J Med Sci Sports ; 34(6): e14681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881390

RESUMO

BACKGROUND: Neuromuscular function is considered as a determinant factor of endurance performance during adulthood. However, whether endurance training triggers further neuromuscular adaptations exceeding those of growth and maturation alone over the rapid adolescent growth period is yet to be determined. OBJECTIVE: The present study investigated the concurrent role of growth, maturation, and endurance training on neuromuscular function through a 9-month training period in adolescent triathletes. METHODS: Thirty-eight 13- to 15-year-old males (23 triathletes [~6 h/week endurance training] and 15 untrained [<2 h/week endurance activity]) were evaluated before and after a 9-month triathlon training season. Maximal oxygen uptake (V̇O2max) and power at V̇O2max were assessed during incremental cycling. Knee extensor maximal voluntary isometric contraction torque (MVCISO) was measured and the voluntary activation level (VAL) was determined using the twitch interpolation technique. Knee extensor doublet peak torque (T100Hz) and normalized vastus lateralis (VL) electromyographic activity (EMG/M-wave) were also determined. VL and rectus femoris (RF) muscle architecture was assessed using ultrasonography. RESULTS: Absolute V̇O2max increased similarly in both groups but power at V̇O2max only significantly increased in triathletes (+13.8%). MVCISO (+14.4%), VL (+4.4%), and RF (+15.8%) muscle thicknesses and RF pennation angle (+22.1%) increased over the 9-month period in both groups similarly (p < 0.01), although no changes were observed in T100Hz, VAL, or VL EMG/M-wave. No changes were detected in any neuromuscular variables, except for coactivation. CONCLUSION: Endurance training did not induce detectible, additional neuromuscular adaptations. However, the training-specific cycling power improvement in triathletes may reflect continued skill enhancement over the training period.


Assuntos
Adaptação Fisiológica , Eletromiografia , Treino Aeróbico , Contração Isométrica , Consumo de Oxigênio , Torque , Humanos , Masculino , Adolescente , Estudos Longitudinais , Consumo de Oxigênio/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Resistência Física/fisiologia , Ciclismo/fisiologia , Músculo Esquelético/fisiologia , Joelho/fisiologia , Ultrassonografia , Força Muscular/fisiologia , Atletas , Natação/fisiologia
16.
Nutrients ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892683

RESUMO

Astaxanthin, a potent antioxidant found in marine organisms such as microalgae and krill, may offer ergogenic benefits to endurance athletes. Originally used in fish feed, astaxanthin has shown a greater ability to mitigate various reactive oxygen species and maintain the structural integrity of mitochondria compared to other exogenous antioxidants. More recent work has shown that astaxanthin may improve: (1) cycling time trial performance, (2) cardiorespiratory measures such as submaximal heart rate during running or cycling, (3) recovery from delayed-onset muscle soreness, and (4) endogenous antioxidant capacity such as whole blood glutathione within trained populations. In this review, the history of astaxanthin and its chemical structure are first outlined before briefly describing the various adaptations (e.g., mitochondrial biogenesis, enhanced endogenous antioxidant capacity, etc.) which take place specifically at the mitochondrial level as a result of chronic endurance training. The review then concludes with the potential additive effects that astaxanthin may offer in conjunction with endurance training for the endurance athlete and offers some suggested practical recommendations for athletes and coaches interested in supplementing with astaxanthin.


Assuntos
Adaptação Fisiológica , Antioxidantes , Atletas , Suplementos Nutricionais , Resistência Física , Xantofilas , Xantofilas/farmacologia , Humanos , Resistência Física/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Treino Aeróbico , Desempenho Atlético/fisiologia , Animais
17.
Sports Med ; 54(8): 2071-2095, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717713

RESUMO

BACKGROUND: Polarized training intensity distribution (POL) was recently suggested to be superior to other training intensity distribution (TID) regimens for endurance performance improvement. OBJECTIVE: We aimed to systematically review and meta-analyze evidence comparing POL to other TIDs on endurance performance. METHODS: PRISMA guidelines were followed. The protocol was registered at PROSPERO (CRD42022365117). PubMed, Scopus, and Web of Science were searched up to 20 October 2022 for studies in adults and young adults for ≥ 4 weeks comparing POL with other TID interventions regarding VO2peak, time-trial (TT), time to exhaustion (TTE) or speed or power at the second ventilatory or lactate threshold (V/P at VT2/LT2). Risk of bias was assessed with RoB-2 and ROBINS-I. Certainty of evidence was assessed with GRADE. Results were analyzed by random effects meta-analysis using standardized mean differences. RESULTS: Seventeen studies met the inclusion criteria (n = 437 subjects). Pooled effect estimates suggest POL superiority for improving VO2peak (SMD = 0.24 [95% CI 0.01, 0.48]; z = 2.02 (p = 0.040); 11 studies, n = 284; I2 = 0%; high certainty of evidence). Superiority, however, only occurred in shorter interventions (< 12 weeks) (SMD = 0.40 [95% CI 0.08, 0.71; z = 2.49 (p = 0.01); n = 163; I2 = 0%) and for highly trained athletes (SMD = 0.46 [95% CI 0.10, 0.82]; z = 2.51 (p = 0.01); n = 125; I2 = 0%). The remaining endurance performance surrogates were similarly affected by POL and other TIDs: TT (SMD = - 0.01 [95% CI -0.28, 0.25]; z = - 0.10 (p = 0.92); n = 221; I2 = 0%), TTE (SMD = 0.30 [95% CI - 0.20, 0.79]; z = 1.18 (p = 0.24); n = 66; I2 = 0%) and V/P VT2/LT2 (SMD = 0.04 [95% CI -0.21, 0.29]; z = 0.32 (p = 0.75); n = 253; I2 = 0%). Risk of bias for randomized controlled trials was rated as of some concern and for non-randomized controlled trials as low risk of bias (two studies) and some concerns (one study). CONCLUSIONS: POL is superior to other TIDs for improving VO2peak, particularly in shorter duration interventions and highly trained athletes. However, the effect of POL was similar to that of other TIDs on the remaining surrogates of endurance performance. The results suggest that POL more effectively improves aerobic power but is similar to other TIDs for improving aerobic capacity.


Assuntos
Desempenho Atlético , Treino Aeróbico , Consumo de Oxigênio , Resistência Física , Humanos , Treino Aeróbico/métodos , Resistência Física/fisiologia , Desempenho Atlético/fisiologia
19.
Nat Commun ; 15(1): 3690, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750012

RESUMO

Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).


Assuntos
Atletas , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metabolismo dos Lipídeos , Humanos , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Adulto , Pessoa de Meia-Idade , Treino Aeróbico , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo
20.
PLoS One ; 19(5): e0303748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809828

RESUMO

BACKGROUND: Overreaching is often linked to a deterioration in sleep quality, yet a comprehensive review is lacking. The aim of this systemic review and meta-analysis was to synthesise the literature and quantify the effect of overreaching from endurance-based training on sleep quality. METHOD: The review was conducted following the PRISMA guidelines. The final search was conducted in May 2023 using four electronic databases (Web of Science Core Collection, MEDLINE, Cochrane Central Database, SPORTDiscus). Studies were included for a qualitative review, while random-effects meta-analyses were conducted for objective and subjective sleep. RESULTS AND DISCUSSION: The search returned 805 articles. Fourteen studies were included in the systematic review; Three and eight articles were eligible for the meta-analyses (objective and subjective, respectively). On average, the overreaching protocols were sixteen days in length (6 to 28 days) and included exercise modalities such as cycling (number of studies [k] = 5), rowing (k = 4), triathlon (k = 3), running (k = 2), and swimming (k = 1). Actigraphy was the only form of objective sleep measurement used across all studies (k = 3), while various instruments were used to capture subjective sleep quality (k = 13). When comparing objective sleep quality following the overreaching intervention to baseline (or a control), there was a significant reduction in sleep efficiency (mean difference = -2.0%; 95% CI -3.2, -0.8%; Glass' Δ = -0.83; p < 0.01). In contrast, when comparing subjective sleep quality following the overreaching intervention to baseline (or a control), there was no effect on subjective sleep quality (Glass' Δ = -0.27; 95% CI -0.79, 0.25; p = 0.08). Importantly, none of the included studies were judged to have a low risk of bias. While acknowledging the need for more high-quality studies, it appears that overreaching from endurance-based training can deteriorate objective sleep without influencing the perception of sleep quality. PROTOCOL REGISTRATION: This protocol was registered in The International Prospective Register of Systematic Reviews (PROSPERO) on 21st November 2022, with the registration number CRD42022373204.


Assuntos
Treino Aeróbico , Humanos , Treino Aeróbico/métodos , Sono/fisiologia , Qualidade do Sono , Resistência Física/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...