Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.807
Filtrar
1.
Arch Dermatol Res ; 316(6): 312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822924

RESUMO

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.


Assuntos
Carcinoma de Célula de Merkel , Hidrazinas , Neoplasias Cutâneas , Triazóis , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Humanos , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Prostaglandinas/metabolismo , Poliomavírus das Células de Merkel , Proteína Exportina 1 , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Antígenos Virais de Tumores , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Drug Dev Res ; 85(4): e22215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837718

RESUMO

Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 µM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 µM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.


Assuntos
Proteínas Quinases Ativadas por AMP , Antineoplásicos , Apoptose , Transdução de Sinais , Triazóis , Humanos , Feminino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Triazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos Endogâmicos BALB C , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 14(1): 13028, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844493

RESUMO

New sulfonamide-triazole-glycoside hybrids derivatives were designed, synthesised, and investigated for anticancer efficacy. The target glycosides' cytotoxic activity was studied with a panel of human cancer cell lines. Sulfonamide-based derivatives, 4, 7 and 9 exhibited promising activity against HepG-2 and MCF-7 (IC50 = 8.39-16.90 µM against HepG-2 and 19.57-21.15 µM against MCF-7) comparing with doxorubicin (IC50 = 13.76 ± 0.45, 17.44 ± 0.46 µM against HepG-2 and MCF-7, rescpectively). To detect the probable action mechanism, the inhibitory activity of these targets was studied against VEGFR-2, carbonic anhydrase isoforms hCA IX and hCA XII. Compoumds 7 and 9 gave favorable potency (IC50 = 1.33, 0.38 µM against VEGFR-2, 66, 40 nM against hCA IX and 7.6, 3.2 nM against hCA XII, respectively), comparing with sorafenib and SLC-0111 (IC50 = 0.43 µM, 53 and 4.8 nM, respectively). Moreover, the docking simulation was assessed to supply better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes that was used for further modification in the anticancer field.


Assuntos
Antineoplásicos , Inibidores da Anidrase Carbônica , Glicosídeos , Simulação de Acoplamento Molecular , Sulfonamidas , Triazóis , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Triazóis/química , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/antagonistas & inibidores , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Células MCF-7 , Células Hep G2 , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Relação Estrutura-Atividade
4.
J Enzyme Inhib Med Chem ; 39(1): 2351861, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38847308

RESUMO

In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , Ftalimidas , SARS-CoV-2 , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Ftalimidas/química , Ftalimidas/farmacologia , Ftalimidas/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Células Vero , Chlorocebus aethiops , SARS-CoV-2/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Modelos Moleculares
5.
Front Immunol ; 15: 1398927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799428

RESUMO

Selinexor, a selective inhibitor of nuclear export (SINE), is gaining recognition beyond oncology for its potential in anti-inflammatory therapy. This review elucidates Selinexor's dual action, highlighting its anti-tumor efficacy in various cancers including hematologic malignancies and solid tumors, and its promising anti-inflammatory effects. In cancer treatment, Selinexor has demonstrated benefits as monotherapy and in combination with other therapeutics, particularly in drug-resistant cases. Its role in enhancing the effectiveness of bone marrow transplants has also been noted. Importantly, the drug's impact on key inflammatory pathways provides a new avenue for the management of conditions like sepsis, viral infections including COVID-19, and chronic inflammatory diseases such as Duchenne Muscular Dystrophy and Parkinson's Disease. The review emphasizes the criticality of managing Selinexor's side effects through diligent dose optimization and patient monitoring. Given the complexities of its broader applications, extensive research is called upon to validate Selinexor's long-term safety and effectiveness, with a keen focus on its integration into clinical practice for a diverse spectrum of disorders.


Assuntos
Hidrazinas , Triazóis , Humanos , Hidrazinas/uso terapêutico , Triazóis/uso terapêutico , Triazóis/farmacologia , Anti-Inflamatórios/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/imunologia , COVID-19/imunologia , SARS-CoV-2 , Antineoplásicos/uso terapêutico
6.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773631

RESUMO

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Assuntos
Proteína Exportina 1 , Doença de Hodgkin , Carioferinas , Receptores Citoplasmáticos e Nucleares , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Camundongos , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/patologia , Doença de Hodgkin/metabolismo , Doença de Hodgkin/genética , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP110/genética , Linhagem Celular Tumoral , Neoplasias do Mediastino/tratamento farmacológico , Neoplasias do Mediastino/metabolismo , Neoplasias do Mediastino/patologia , Neoplasias do Mediastino/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Triazóis/farmacologia , Triazóis/uso terapêutico , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Feminino , Fator de Transcrição STAT6/metabolismo , Terapia de Alvo Molecular
7.
Dokl Biochem Biophys ; 516(1): 66-72, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700817

RESUMO

The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.


Assuntos
Sobrevivência Celular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Triazóis , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Triazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia
8.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791308

RESUMO

Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid ß-oxidation, autophagy, and virulence.


Assuntos
Fusarium , Heme , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Heme/biossíntese , Heme/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estresse Fisiológico , Estresse Oxidativo/efeitos dos fármacos , Triazóis/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Ferroquelatase/metabolismo , Ferroquelatase/genética
9.
Mycoses ; 67(5): e13732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712846

RESUMO

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Assuntos
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Mutação , Triazóis , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Humanos , Burkina Faso/epidemiologia , Proteínas Fúngicas/genética , Antifúngicos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Testes de Sensibilidade Microbiana , Aspergilose/microbiologia , Aspergilose/epidemiologia , Microbiologia do Ar
10.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731811

RESUMO

Recently studied N-(ß-d-glucopyranosyl)-3-aryl-1,2,4-triazole-5-carboxamides have proven to be low micromolar inhibitors of glycogen phosphorylase (GP), a validated target for the treatment of type 2 diabetes mellitus. Since in other settings, the bioisosteric replacement of the 1,2,4-triazole moiety with imidazole resulted in significantly more efficient GP inhibitors, in silico calculations using Glide molecular docking along with unbound state DFT calculations were performed on N-(ß-d-glucopyranosyl)-arylimidazole-carboxamides, revealing their potential for strong GP inhibition. The syntheses of the target compounds involved the formation of an amide bond between per-O-acetylated ß-d-glucopyranosylamine and the corresponding arylimidazole-carboxylic acids. Kinetics experiments on rabbit muscle GPb revealed low micromolar inhibitors, with the best inhibition constants (Kis) of ~3-4 µM obtained for 1- and 2-naphthyl-substituted N-(ß-d-glucopyranosyl)-imidazolecarboxamides, 2b-c. The predicted protein-ligand interactions responsible for the observed potencies are discussed and will facilitate the structure-based design of other inhibitors targeting this important therapeutic target. Meanwhile, the importance of the careful consideration of ligand tautomeric states in binding calculations is highlighted, with the usefulness of DFT calculations in this regard proposed.


Assuntos
Inibidores Enzimáticos , Glicogênio Fosforilase , Imidazóis , Simulação de Acoplamento Molecular , Cinética , Coelhos , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/química , Imidazóis/química , Imidazóis/síntese química , Imidazóis/farmacologia , Simulação por Computador , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732120

RESUMO

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Corpo Estriado , Modelos Animais de Doenças , Doença de Parkinson , Receptor A2A de Adenosina , Animais , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Ratos , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Receptor A2A de Adenosina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Triazóis/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley
12.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769341

RESUMO

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Assuntos
Antifúngicos , Aspergilose , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferases , Triazóis , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Antifúngicos/farmacologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Ergosterol/metabolismo , Ergosterol/biossíntese , Triazóis/farmacologia , Regulação Fúngica da Expressão Gênica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Feminino , Testes de Sensibilidade Microbiana , Virulência/genética
13.
Nat Commun ; 15(1): 4357, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821954

RESUMO

Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.


Assuntos
Apoptose , Ascomicetos , Fungicidas Industriais , Doenças das Plantas , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Fungicidas Industriais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/microbiologia , Azóis/farmacologia , Ergosterol/biossíntese , Ergosterol/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Autofagia/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Oryza/microbiologia , Oryza/metabolismo , Triazóis/farmacologia , Produtos Agrícolas/microbiologia
14.
Int Immunopharmacol ; 134: 112212, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728882

RESUMO

Chronic myeloid leukemia (CML) is a type of hematologic malignancies caused by BCR-ABL chimeric oncogene. Resistance to tyrosine kinase inhibitors (TKIs) leads to the progression of CML into advanced stages. Selinexor is a small molecule inhibitor that targets a nuclear transporter called Exportin 1. Combined with imatinib, selinexor has been shown to disrupt nuclear-cytoplasmic transport signal of leukemia stem cells, resulting in cell death. The objective of this study was to investigate the mechanism of drug resistance to selinexor in CML. We established K562 cell line resistant to selinexor and conducted single cell dynamic transcriptome sequencing to analyze the heterogeneity within the parental and selinexor resistant cell populations. We identified specific gene expression changes associated with resistance to selinexor. Our results revealed differential expression patterns in genes such as MT2A, TFPI, MTND3, and HMGCS1 in the total RNA, as well as MT-TW, DNAJB1, and HSPB1 in the newly synthesized RNA, between the parental and drug-resistant groups. By applying pseudo-time analysis, we discovered that a specific cluster of cells exhibited characteristics of tumor stem cells. Furthermore, we observed a gradual decrease in the expression of ferroptosis-related molecules as drug resistance developed. In vitro experiments confirmed that the combination of a ferroptosis inducer called RSL3 effectively overcame drug resistance. In conclusion, this study revealed the resistance mechanism of selinexor in CML. In conclusion, we identified a subgroup of CML cells with tumor stem cell properties and demonstrated that ferroptosis inducer improved the efficacy of selinexor in overcoming drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Hidrazinas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Triazóis , Humanos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Resistencia a Medicamentos Antineoplásicos/genética , Triazóis/farmacologia , Células K562 , Análise de Célula Única , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única
15.
Int J Biol Macromol ; 269(Pt 1): 132036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697429

RESUMO

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed Ki values of 30 µM for MAL12 (GPESB16) and 37 µM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cinética , Ligantes , Suínos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Animais , Domínio Catalítico , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Triazóis/química , Triazóis/farmacologia , Modelos Moleculares
16.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704133

RESUMO

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Assuntos
Azepinas , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Hidroximetilglutaril-CoA Sintase , Neoplasias Pancreáticas , Triazóis , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Linhagem Celular Tumoral , Triazóis/farmacologia , Azepinas/farmacologia , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Proteínas que Contêm Bromodomínio
17.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789974

RESUMO

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Assuntos
Fungicidas Industriais , Filogenia , China , Fungicidas Industriais/farmacologia , Agaricales/genética , Agaricales/efeitos dos fármacos , Agaricales/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Triazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
18.
Bioorg Chem ; 148: 107457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763000

RESUMO

Based on the significant biological activities and the remarkable physical and chemical properties of 1H-1,2,3-triazole pharmacophore, we herein adopted the strategy of click chemistry to combine the triazole fragment and the unique scaffold of 25-OCH3-PPD (AD-1) to design a series of potent compounds inducing apoptosis and DNA damage. The anti-proliferative effect was verified by MTT assay and colony formation assay. DNA double-stand breaks (DSBs) were obtained by observing the nuclear focus formation and the protein expression of γ-H2AX. Cell cycle arrest was evaluated by the cycle-related proteins such as CDK2, CDK4, CDK6, Cyclin D1 and P21. Apoptosis was assessed by flow cytometry, mitochondrial membrane potential (MMP) detection and the expression of apoptosis-related proteins. Reactive oxygen species (ROS) generation was measured with 2', 7'-dichlorofluorescein diacetate (DCFH-DA) staining. According to SAR analysis, the most potent compound 6a exhibited great inhibitory effect against A549 cells, which IC50 value of 2.84 ± 0.68 µM. Furthermore, 6a remarkably induced DNA damage, cell cycle arrest and apoptosis in A549 cells. 6a treatment increased the levels of ROS. Network pharmacology and molecular docking predicted the potential signaling pathways and ligand-receptor interactions, and the results of western blotting showed that 6a inhibited the PI3K/Akt/Bcl-2 signaling pathway by decreasing PI3K and Bcl-2 and total level of Akt expression, while Bax and Cyt c were increasing in 6a-treated A549 cells. As mentioned above, 6a has a potent inhibitory effect in A549 cells through induction of DNA damage, apoptosis via ROS generation and modulation of PI3K/Akt/Bcl-2 signaling pathway.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio , Triazóis , Humanos , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Células A549
19.
Bioorg Med Chem Lett ; 108: 129800, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763480

RESUMO

In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 µM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.


Assuntos
Antimaláricos , Antituberculosos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Plasmodium falciparum , Quinazolinonas , Triazóis , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Antimaláricos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinonas/química , Quinazolinonas/farmacologia , Quinazolinonas/síntese química , Camundongos , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Relação Dose-Resposta a Droga , Células RAW 264.7
20.
Bioorg Chem ; 148: 107430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728909

RESUMO

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates many cytokine and growth factor signals. Tyrosine kinase 2 (TYK2), one of the members of this pathway and the first described member of the JAK family. TYK2 associates with inflammatory and autoimmune diseases, cancer and diabetes. Here, we present novel compounds as selective inhibitors of the canonical kinase domain of TYK2 enzyme. These compounds were rationally designed and synthesized with appropriate reactions. Molecular modeling techniques were used to design and optimize the candidates for TYK2 inhibition and to determine the estimated binding orientations of them inside JAKs. Designed compounds potently inhibited TYK2 with good selectivity against other JAKs as determined by in vitro assays. In order to verify its selectivity properties, compound A8 was tested against 58 human kinases (KinaseProfiler™ assay). The effects of the selected seven compounds on the protein levels of members of the JAK/STAT family were also detected in THP-1 monocytes although the basal level of these proteins is poorly detectable. Therefore, their expression was induced by lipopolysaccharide treatment and compounds A8, A15, A18, and A19 were found to be potent inhibitors of the TYK2 enzyme, (9.7 nM, 6.0 nM, 5.0 nM and 10.3 nM, respectively), and have high selectivity index for the JAK1, JAK2, and JAK3 enzymes. These findings suggest that triazolo[1,5-a]pyrimidinone derivatives may be lead compounds for developing potent TYK2-selective inhibitors targeting enzymes' active site.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases , TYK2 Quinase , Humanos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , TYK2 Quinase/antagonistas & inibidores , TYK2 Quinase/metabolismo , Janus Quinases/química , Janus Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA