Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 568-576, jul. 2024. ilus
Artigo em Espanhol | LILACS | ID: biblio-1538065

RESUMO

This study aimed to determine the repellent and insecticidal activity of four essential oils (EOs) from plants collected in the Chocó rain forest, Colombia, against T. castaneum . Conventional hydrodistillation was used to obtain the EOs. The repellent and insecticidal activities were evaluated by the preference area and gas dispersion methods, espectively. Statistical differences (p<0.05) were determined by applying a student's t-test. EOs of Siparuna guianensis, S. conica, Piper marginatum, and Nectandra acutifolia showed excellent repellent properties as the main findings, highlighting S. conicaEO with 84% repellency (1-hµL/cm2), while P. marginatum showed to be bioactive to the dose of 500 µL/mL (72 h), inducing mortality of 100% of the exposed population. In conclusion, the results evidenced the repellent properties of the EOs evaluated against T. castaneum , which allows us to conclude that these plant species are potential natural sources producing bio-repellents that contribute to the integrated control of T. castaneum.


Se evaluaron cuatro aceites esenciales (AEs) de plantas recolectadas en la selva pluvial del Chocó, Colombia, para determinar su actividad repelente e insecticida contra T. castaneum. Los AEs fueron obtenidos por hidrodestilación convencional. Las actividades repelentes e insecticidas se evaluaron por los métodos de área de preferencia y dispersión de gas, respectivamente. Las diferencias significativas (p<0,05) fueron determinadas aplicando una prueba t de student. Los AEs de Siparuna guianensis, S. conica, Piper marginatum y Nectandra acutifolia mostraron excelentes propiedades repelentes, destacando el AE de S. conicacon un 84% de repelencia (1µL/cm2), mientras que el AE de P. marginatummostró ser bioactivo a la dosis de 500 µL/mL (72 h) al inducir la mortalidad del 100% de la población expuesta. Se concluye que estas especies de plantas son fuentes naturales potencialmente viables para la producción de biorepelentes que contribuyan en el control integrado de T. castaneum.


Assuntos
Tribolium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Inseticidas/farmacologia , Colômbia , Repelentes de Insetos/farmacologia
2.
Front Biosci (Landmark Ed) ; 29(6): 203, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940033

RESUMO

BACKGROUND: Phosphine resistance in Tribolium castaneum challenges grain storage. This study investigates the impact of cytochrome P450 (CYP) enzymes and CYP346 family genes on phosphine resistance in Indian Tribolium castaneum populations. METHODS: Seven field populations of T. castaneum were compared with Lab- susceptible population for their resistance to phosphine. The levels of cytochrome P450 enzyme and expression of certain CYP346 family genes were tracked in these populations. RESULTS: The highly resistant Patiala population showed significantly increased CYP450 activity (11.26 ± 0.14 nmol/min/mg protein, 7.41-fold higher) compared to the lab-susceptible population (1.52 ± 0.09 nmol/min/mg protein) when assayed using 8 mM p-nitroanisole as the substrate. The mRNA expression was measured relative to the standard gene RPS18 and revealed significant upregulation of CYP346B1 and CYP346B3 in highly resistant populations Moga and Patiala (CYP346B1: 12.09 ± 2.19 to 21.74 ± 3.82; CYP346B3: 59.097 ± 10.265 to 50.148 ± 8.272). Patiala's CYP346B1 exhibited an impressive 685.76-fold change, and Moga's CYP346B3 showed a 361.893-fold change compared to lab-susceptible. Linear regression confirmed robust fits for each gene (R2: 0.693 to 0.756). Principal component analysis (PCA) demonstrated a strong positive correlation between CYP346 genes expression; and cytochrome P450 activity. Patiala, Moga, and Hapur populations showed conformity, associating higher resistance with increased P450 activity and CYP346 gene expression. Cluster analysis highlighted a potential correlation between CYP346B1, CYP346B2, and CYP346B3 and P450 activity, with Patiala and Moga clustering together. CONCLUSIONS: Variability in CYP346B1 and CYP346B3 in strong resistance populations may contribute to adaptation and resistance mechanisms. The study provides insights into specific CYP346 family genes associated with phosphine resistance, emphasizing the intricate interaction between CYP450 detoxifying enzymes, CYP346 family genes, and resistance mechanisms. The upregulation of CYP346 genes suggests a survival advantage for T. castaneum against phosphine, diminishing phosphine's efficacy as a pest control measure.


Assuntos
Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Fosfinas , Tribolium , Tribolium/genética , Tribolium/efeitos dos fármacos , Tribolium/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas/genética , Fosfinas/farmacologia , Inseticidas/farmacologia , Índia , Animais
3.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897399

RESUMO

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Assuntos
Tribolium , Inibidores da Tripsina , Animais , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tribolium/enzimologia , Tribolium/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/antagonistas & inibidores , Sementes/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química
4.
Sci Rep ; 14(1): 13951, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886531

RESUMO

The thrust of the study was to determine the chemical composition of the essential oils extracted from Thymus pallescens de Noé and Cymbogon citratus Stapf. as well as to evaluate their efficacy in controlling Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) in either single or combined populations. Carvacrol (56.04%) and geraniol (20.86%) were identified as the major constituents of T. pallescens and C. citratus respectively. The tested essential oils showed pronounced insecticidal activity against the pest species in relation with the applied doses. T. pallescens EO had the highest efficacy and S. zeamais was found to be more susceptible to both individual and combined treatments. With reference to the contact and fumigation assessments, T. pallescens EO effectuated corrected mortality rates ranging from 42.5-100% to 25-100% in S. zeamais with corresponding lethal concentration (LC50) values of 17.7 µl/ml and 15µL/L air respectively. Whereas, the T. pallescens EO exhibited corrected mortality rates of 42.5-100% and 20-100% with corresponding LC50 values of 18.1 µl/ml and 15.5 µL/L air against T. castaneum in contact and fumigation assessments, respectively. The corrected mortality rates increased for both insect species when using combination treatments, with significant increases in the LC50 values, ranging from 8.59 to 49.9% for both pest species. Analysis of energy biomarkers in the treated insects indicate significantly increased protein and carbohydrate contents and decreased lipids levels. The study therefore demonstrated the bio-insecticidal toxicity of the EOs from T. pallescens and C. citratus against two important maize post-harvest pests, concurrently revealing significant positive and negative insecticidal activity gradients in relation to single or combined populations.


Assuntos
Inseticidas , Óleos Voláteis , Thymus (Planta) , Tribolium , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Tribolium/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Thymus (Planta)/química , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Gorgulhos/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química
5.
Pestic Biochem Physiol ; 202: 105970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879314

RESUMO

This study aimed to develop a relatively natural and safe botanical insecticide for controlling the storage pest Tribolium castaneum in the egg and pupal stages. It examined how Elsholtzia densa Benth. essential oil (EO) and its primary components, ß-caryophyllene and limonene, affected T. castaneum eggs and pupae through contact and fumigation. Among th, the contact activities of ß-caryophyllene against T. castaneum eggs and pupae are LD50 (median lethal dose, 50%) = 0.156 mg/cm2 and ED50 (median effective dose, 50%) = 16.35 mg/pupa respectively. The study also investigated the effect of ß-caryophyllene and limonene on T. castaneum eggs and pupae through synergistic contact and fumigation. When the mixing ratio of ß-caryophyllene and limonene was 7:1, the LD50 value of contact activity against T. castaneum eggs was reduced to 0.100 mg/cm2, displaying an obvious synergistic effect. Experiments were conducted to investigate the antitoxic effect of ß-caryophyllene on T. castaneum eggs and pupae, as well as its effects on the enzymatic activity of acetylcholinesterase, succinate dehydrogenase, glutathione S-transferase and carboxylesterase in T. castaneum pupae. Finally, the molecular docking techniques were employed to confirm the aforementioned effects on enzyme function. The findings of this study might help improve storage pest control with T. castaneum and create eco-friendly insecticides using E. densa EO, ß-caryophyllene, and limonene.


Assuntos
Inseticidas , Lamiaceae , Óleos Voláteis , Pupa , Tribolium , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Tribolium/efeitos dos fármacos , Lamiaceae/química , Inseticidas/farmacologia , Inseticidas/química , Pupa/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Limoneno/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química
6.
J Oleo Sci ; 73(5): 761-772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692898

RESUMO

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Assuntos
Inseticidas , Óleos Voláteis , Folhas de Planta , Tribolium , Animais , Inseticidas/isolamento & purificação , Inseticidas/análise , Folhas de Planta/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Tribolium/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/análise , Repelentes de Insetos/análise , Repelentes de Insetos/isolamento & purificação , Repelentes de Insetos/farmacologia , Temperatura
7.
Environ Sci Pollut Res Int ; 31(24): 35455-35469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38730215

RESUMO

Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC50), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC50, respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC50, respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.


Assuntos
Besouros , Fumigação , Óleos Voláteis , Animais , Besouros/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Relação Quantitativa Estrutura-Atividade , Inseticidas/química , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos
8.
Pestic Biochem Physiol ; 201: 105861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685215

RESUMO

Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that ß-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.


Assuntos
Proteínas de Insetos , Simulação de Acoplamento Molecular , Receptores Odorantes , Tribolium , Animais , Tribolium/efeitos dos fármacos , Tribolium/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Sesquiterpenos Policíclicos/farmacologia , Simulação de Dinâmica Molecular
9.
Pest Manag Sci ; 80(7): 3301-3307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372489

RESUMO

BACKGROUND: Wheat grain containers or silos can be perfect habitats for insects, which generate large economic losses to grain production. Natural alternatives to synthetic insecticides have grown in popularity because of health, economic and ecological issues. Diatomaceous earth is a natural compound that has an insecticide effect by enhancing an insect's dehydration with no toxicity on mammals including humans. The aim of this study is to confirm the effect of diatomaceous earth as an insecticide for the wheat grain pest, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) and demonstrate its underlying mechanisms as an insecticide by open-flow respirometry and scanning electron microscopy. RESULTS: Survival bioassays of T. castaneum revealed a dose-dependent insecticide effect of diatomaceous earth. Gravimetric measurements showed that 2 days exposure to diatomaceous earth produces a significant increase of mass loss. Open-flow respirometry measurements showed an increase of total water emission rate on insects due to an increase of both, respiratory and cuticular water loss. Our study revealed that diatomaceous earth produces an increase of insect's cuticle permeability, which is responsible for elevated cuticular water loss. Scanning electron microscopy images provided visual evidence of the lipid absorbent properties of diatomaceous earth particles, and showed a tendency for higher, although not significant, damaged area of the cuticle's surface from diatomaceous earth treated insects compared to control ones. CONCLUSION: With state-of-the art techniques like open-flow respirometry and scanning electron microscopy, we demonstrated the underlying mechanism of diatomaceous earth as an insecticide and provided new cues for understanding the properties of the cuticle and its ecological importance. © 2024 Society of Chemical Industry.


Assuntos
Terra de Diatomáceas , Inseticidas , Tribolium , Animais , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos , Tribolium/fisiologia , Microscopia Eletrônica de Varredura
10.
Pest Manag Sci ; 80(6): 2698-2709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308415

RESUMO

BACKGROUND: Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS: In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION: Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.


Assuntos
Antioxidantes , Glutationa , Resistência a Inseticidas , Larva , Metamorfose Biológica , Tribolium , Animais , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo , Tribolium/efeitos dos fármacos , Glutationa/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Antioxidantes/metabolismo , Resistência a Inseticidas/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Inseticidas/farmacologia
11.
J Econ Entomol ; 114(6): 2598-2609, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34729597

RESUMO

Preventing insect infestations is a critical component for establishing a pest management plan for stored-product insects. Long-lasting insecticide-treated netting (LLIN) is a potential tool to reduce insect movement by providing a chemical barrier, where insects may be able to physically pass through but ultimately die after exposure to the netting. Sublethal effects, such as reduced movement immediately after exposure and reduced ability to colonize, have been reported. Here we examine the sublethal effects of exposure to LLIN on two beetle species, Trogoderma variabile Ballion, warehouse beetle, and Tribolium castaneum Herbst, red flour beetle. We found that both female and male T. castaneum exposed to LLIN produced significantly less adult progeny than those exposed to untreated netting. Adult progeny output did not differ for T. variabile, but survivorship increased in T. variabile females exposed to LLIN. Importantly, the overall net reproductive rate was significantly decreased for both T. variabile and T. castaneum. The number of copulation attempts did not differ between males or females exposed to LLIN compared to untreated netting, but males exposed to LLIN showed increased durations of attempted and successful copulation events. This research demonstrates that the implications of LLIN exposure extend past direct mortality, with sublethal effects on reproductive output potentially increasing the effectiveness of this tool for preventing insect infestations.


Assuntos
Besouros , Mosquiteiros Tratados com Inseticida , Preferência de Acasalamento Animal/efeitos dos fármacos , Tribolium , Animais , Besouros/efeitos dos fármacos , Besouros/fisiologia , Feminino , Masculino , Reprodução , Tribolium/efeitos dos fármacos , Tribolium/fisiologia
12.
Sci Rep ; 11(1): 16152, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373551

RESUMO

Chemical communication via pheromones is an integral component in insect behavior, particularly for mate searching and reproduction. Aggregation pheromones, that attract conspecifics of both sexes, are particularly common and have been identified for hundreds of species. These pheromones are among the most ecologically selective pest suppression agents. In this study, we identified an activating effect of the aggregation pheromone of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenibroidae) on a highly conserved circadian clock gene (Tctimeless). Tribolium castaneum is one of the most damaging cosmopolitan pest of flour and other stored food products. Its male produced aggregation pheromone, 4,8-dimethyldecanal (DMD), attracts both conspecific males and females and is used for pest management via monitoring and mating disruption. The Tctimeless gene is an essential component for daily expression patterns of the circadian clock and plays vital roles in eclosion, egg production, and embryonic development. In this study, we demonstrate that constant exposure to the species-specific aggregation pheromone led to Tctimeless up-regulation and a different pattern of rhythmic locomotive behavior. We propose that changing the well-adapted "alarm clock", using DMD is liable to reduce fitness and can be highly useful for pest management.


Assuntos
Relógios Circadianos/genética , Genes de Insetos , Tribolium/genética , Tribolium/fisiologia , Aldeídos/administração & dosagem , Aldeídos/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos/efeitos dos fármacos , Controle de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Feromônios/administração & dosagem , Feromônios/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/genética , Reprodução/fisiologia , Comportamento Social , Tribolium/efeitos dos fármacos
13.
J Environ Sci Health B ; 56(4): 423-430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678144

RESUMO

In this work, we investigated the bioactivities of the essential oil (EO) extracted from the Rhododendron thymifolium and its principal germacrone against Lasioderma serricorne and Tribolium castaneum. The EO was obtained by steam distillation. Germacrone was obtained by cryogenic crystallization. The bioactivity of EO and germacrone was tested via contact and repellent activity assays. The results showed that EO and germacrone possessed contact and repellent activities against two species of insects. EO exhibited obvious contact activity against the L. serricorn adults, larvae and T. castaneum larvae with LD50 values of 29.15 µg/adult, 42.73 µg/larva, 19.65 µg/larva respectively. Germacrone exhibited excellent contact activity against the L. serricorne adults, larvae and the T. castaneum larvae with LD50 values of 17.18 µg/adult, 20.94 µg/larva, 20.93 µg/larva respectively. And at the highest testing concentrations (78.63 and 15.73 nL/cm2), the repellent activity of EO and germacrone on two target insects was comparable to that of the positive control (DEET) after 30 h exposure. In especially, in the treatment of the 120 h after the repellent activity of EO and germacrone against T.castaneum adults and larvae were still very significant and showed the same level percentage repellency as DEET. Meanwhile, germacrone exhibited inhibition of acetylcholinesterase activity with IC50 values of 3%. The results indicated that the EO of R. thymifolium and germacrone had the potential to be developed as natural insecticides and repellents for the control of T. castaneum and L. serricorne.


Assuntos
Inibidores da Colinesterase/farmacologia , Besouros/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Rhododendron/química , Animais , Inibidores da Colinesterase/química , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Inseticidas/química , Dose Letal Mediana , Óleos Voláteis/química , Sesquiterpenos de Germacrano/farmacologia , Tribolium/química , Tribolium/efeitos dos fármacos
14.
Int J Biol Macromol ; 172: 263-269, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453254

RESUMO

In insects, the cytochrome P450 CYP6B family plays key roles in the detoxification of toxic plant substances. However, the function of CYP6 family genes in degrading plant toxicants in Tribolium castaneum, an extremely destructive global storage pest, have yet to be elucidated. In this study, a T. castaneum CYP gene, TcCYP6BQ7, was characterized. TcCYP6BQ7 expression was significantly induced after exposure to essential oil of the plant Artemisia vulgaris (EOAV). Spatiotemporal expression profiling revealed that TcCYP6BQ7 expression was higher in larval and adult stages of T. castaneum than in other developmental stages, and that TcCYP6BQ7 was predominantly expressed in the brain and hemolymph from the late larval stage. TcCYP6BQ7 silencing by RNA interference increased larvae mortality in response to EOAV from 49.67% to 71.67%, suggesting that this gene is associated with plant toxicant detoxification. Combined results from this study indicate that the CYP6 family gene TcCYP6BQ7 likely plays a pivotal role in influencing the susceptibility of T. castaneum to plant toxicants. These findings may have implications for the development of novel therapeutics to control this agriculturally important pest.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Proteínas de Plantas/genética , Pupa/efeitos dos fármacos , Tribolium/efeitos dos fármacos , Animais , Artemisia/química , Artemisia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação da Expressão Gênica , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Inseticidas/isolamento & purificação , Inseticidas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Longevidade/efeitos dos fármacos , Longevidade/genética , Masculino , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tribolium/genética , Tribolium/crescimento & desenvolvimento , Tribolium/metabolismo
15.
Ecotoxicol Environ Saf ; 208: 111597, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396118

RESUMO

Tribolium castaneum (Herbst) is an important pest of stored grain, and benzoquinones secreted by this pest are harmful to humans. T. castaneum has developed strong resistance to fumigants, and an ecofriendly alternative for managing T. castaneum is urgently needed. 1-Octen-3-ol is a major volatile compound present in many mushrooms and fungi. In the current study, the direct toxicity and sublethal and transgenerational effects of 1-octen-3-ol on T. castaneum were investigated. Our results showed that 1-octen-3-ol had strong insecticidal activity against all developmental stages of T. castaneum and repelled T. castaneum adults. 1-Octen-3-ol showed negative effects on the development and reproduction of parental T. castaneum and the subsequent generation: LC30 and LC50 treatments significantly decreased the pupa and adult weights, pupation and emergence rates and fecundity of the parental generation. In addition, LC50 treatment shortened the larval and pupal periods. In the unexposed progeny (F1) of 1-octen-3-ol-exposed parents, decreased survival and pupation rates as well as reduced pupa and adult weights were observed under LC30 and LC50 treatments. In addition, a model food-system experiment showed that 1-octen-3-ol at 98 µL/L exhibited an efficacy of 100% after 7 days of fumigation and completely eliminated T. castaneum offspring. Although a higher concentration of 1-octen-3-ol was needed to achieve an efficacy equal to that of the positive control, dichlorvos (DDVP), 1-octen-3-ol promoted the seedling growth of wheat seeds, suggesting that the concentration used was not only acceptable but also beneficial for wheat seeds. Overall, 1-octen-3-ol seems to be a promising candidate for use as a fumigant and repellent against T. castaneum as well as a seed protectant.


Assuntos
Besouros/fisiologia , Repelentes de Insetos/toxicidade , Inseticidas/toxicidade , Octanóis/toxicidade , Tribolium/efeitos dos fármacos , Animais , Besouros/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Pupa/efeitos dos fármacos , Triticum/efeitos dos fármacos
16.
Sci Rep ; 11(1): 1145, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441570

RESUMO

Knockdown and mortality of adults of the red flour beetle, Tribolium castaneum (Herbst) and the confused flour beetle, Tribolium confusum Jacquelin du Val, were assessed after exposure to two contact insecticides, chlorfenapyr and cyfluthrin, on a concrete surface. Individuals were rated on a scale for knockdown of exposed adults according to their mobility from 1, representing immobilized adults to 5, representing normally moving (similar to the controls). Only cyfluthrin gave immediate knockdown. Adults were rated at 1, 3 and 7 days post-exposure. After the final assessment, adults were discarded and the same procedure was repeated for 5 consecutive weeks with new adults exposed on the same treated surfaces. Despite initial knockdown, many individuals did not eventually die after exposure to cyfluthrin. In contrast, adults exposed to chlorfenapyr were not initially knocked down after exposure but most died after 7 days. These trends were similar during the entire 5-week residual testing period. The storage of the treated dishes in illuminated or non-illuminated conditions did not affect the insecticidal effect of either insecticide. The results of the present study can be further implemented towards the design of a "lethality index" that can serve as a quick indicator of knockdown and mortality rates caused after exposure to insecticides.


Assuntos
Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Tribolium/efeitos dos fármacos , Animais , Movimento/efeitos dos fármacos , Controle de Pragas , Tribolium/fisiologia
17.
Nat Prod Res ; 35(5): 822-825, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30961365

RESUMO

As a medicinal plant, Artemisia annua is widely distributed in China. The purpose of this work was to analyze the chemical composition of essential oil from A. annua aerial portions, as well as to assess its repellent activity against Lasioderma serricorne and Tribolium castaneum adults. GC-FID and GC-MS analyses enabled the identification of 15 components representing 90.1% of the essential oil. The main components included artemisia ketone (70.6%), α-caryophyllene (5.1%) and germacrene D (3.8%). The essential oil was found to possess considerable ability to repel the two storage pests. This paper provided some evidence for the exploitation and utilization of A. annua resources as a natural repellent.


Assuntos
Artemisia annua/química , Besouros/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Controle Biológico de Vetores , Componentes Aéreos da Planta/química , Tribolium/efeitos dos fármacos , Animais , China , Cromatografia Gasosa-Espectrometria de Massas , Repelentes de Insetos/química , Inseticidas/química , Inseticidas/farmacologia , Monoterpenos/farmacologia
18.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092276

RESUMO

The insecticidal activity is the result of a series of complex interactions between toxic substances as ligands and insect's enzymes as targets. Actually, synthetic insecticides used in pest control programs are harmful to the environment and may affect non-target organisms; thus, the use of natural products as pest control agents can be very attractive. In the present work, the toxic effect of aniseed (Pimpinella anisum L.) essential oil (EO) and its nanoemulsion (NE) against the red flour beetle Tribolium castaneum, has been evaluated. To assess the EO mode of action, the impact of sub-lethal concentrations of aniseed EO and NE was evaluated on enzymatic and macromolecular parameters of the beetles, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, total lipids and glucose. Finally, a molecular docking study was conducted to predict the mode of action of the major EO and NE components namely E-anethole, Limonene, alpha-himalachalene, trans-Verbenol and Linalool at binding site of the enzymes AST and ALT. Herein, the binding location of the main compounds in both proteins are discussed suggesting the possible interactions between the considered enzymes and ligands. The obtained results open new horizons to understand the evolution and response of insect-plant compounds interactions and their effect predicted at the molecular levels and side effects of both animal and human.


Assuntos
Monoterpenos/química , Óleos Voláteis/química , Pimpinella/química , Tribolium/efeitos dos fármacos , Alanina Transaminase/antagonistas & inibidores , Alanina Transaminase/química , Animais , Aspartato Aminotransferases/antagonistas & inibidores , Aspartato Aminotransferases/química , Emulsões/química , Emulsões/farmacologia , Interações Ervas-Drogas , Humanos , Simulação de Acoplamento Molecular , Monoterpenos/farmacologia , Nanoestruturas/química , Óleos Voláteis/farmacologia
19.
Pestic Biochem Physiol ; 168: 104622, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711762

RESUMO

Resistance to phosphine fumigation has been frequently reported in insect pests of stored products and remains one of the obstacles in controlling these pests, including Tribolium castaneum. In this study, six field populations of T. castaneum were collected from different localities in China. Bioassay data showed that SZ population was strongly resistant to phosphine, followed by moderate-resistance populations WL and SF and three susceptible populations JX, YN, and ML. In addition, synergism assays showed that piperonyl butoxide significantly increased the toxicity of phosphine in resistant population SZ. Furthermore, CYP346B subfamily genes, CYP346B1, CYP346B2, and CYP346B3, were significantly overexpressed in resistant populations. Expression of CYP346B1, CYP346B2, and CYP346B3 were significantly upregulated following exposure to phosphine. RNAi assays showed that depletions on the expression levels of CYP346B1, CYP346B2, and CYP346B3 resulted in an increase of susceptibility to phosphine in T. castaneum, respectively. Our data demonstrated that CYP346B subfamily genes in T. castaneum were associated with the resistance of phosphine. Moreover, the study also increased our understanding of the molecular basis of phosphine resistance in stored pest insects.


Assuntos
Inseticidas/farmacologia , Tribolium/efeitos dos fármacos , Animais , China , Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas/efeitos dos fármacos , Fosfinas
20.
Molecules ; 25(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235326

RESUMO

Phosphine resistance is a worldwide issue threatening the grain industry. The cuticles of insects are covered with a layer of lipids, which protect insect bodies from the harmful effects of pesticides. The main components of the cuticular lipids are hydrocarbon compounds. In this research, phosphine-resistant and -susceptible strains of two main stored-grain insects, T. castaneum and R. dominica, were tested to determine the possible role of their cuticular hydrocarbons in phosphine resistance. Direct immersion solid-phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) was applied to extract and analyze the cuticular hydrocarbons. The results showed significant differences between the resistant and susceptible strains regarding the cuticular hydrocarbons that were investigated. The resistant insects of both species contained higher amounts than the susceptible insects for the majority of the hydrocarbons, sixteen from cuticular extraction and nineteen from the homogenized body extraction for T. castaneum and eighteen from cuticular extraction and twenty-one from the homogenized body extraction for R. dominica. 3-methylnonacosane and 2-methylheptacosane had the highest significant difference between the susceptible and resistant strains of T. castaneum from the cuticle and the homogenized body, respectively. Unknown5 from the cuticle and 3-methylhentriacontane from the homogenized body recorded the highest significant differences in R. dominica. The higher hydrocarbon content is a key factor in eliminating phosphine from entering resistant insect bodies, acting as a barrier between insects and the surrounding phosphine environment.


Assuntos
Alcanos/isolamento & purificação , Besouros/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Fosfinas/farmacologia , Tribolium/efeitos dos fármacos , Alcanos/química , Alcanos/classificação , Animais , Besouros/química , Besouros/fisiologia , Misturas Complexas/química , Grão Comestível/parasitologia , Cromatografia Gasosa-Espectrometria de Massas , Tegumento Comum/fisiologia , Microextração em Fase Sólida , Tribolium/química , Tribolium/fisiologia , Triticum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...