Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.203
Filtrar
1.
Toxins (Basel) ; 16(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39195766

RESUMO

In the context of the potential immunomodulatory properties of curcumin in counteracting the detrimental effects of concurrent exposure to Deoxynivalenol (DON) and Aflatoxin B1 (AFB1), a comprehensive 28-days trial was conducted utilizing 60 randomly allocated mice divided into four groups. Administration of curcumin at a dosage of 5 mg/kg body weight in conjunction with DON at 0.1 mg/kg and AFB1 at 0.01 mg/kg body weight was undertaken to assess its efficacy. Results indicated that curcumin intervention demonstrated mitigation of splenic structural damage, augmentation of serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels, elevation in T lymphocyte subset levels, and enhancement in the mRNA expression levels of pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-6. Furthermore, curcumin exhibited a suppressive effect on apoptosis in mice, as evidenced by decreased activity of caspase-3 and caspase-9, reduced expression levels of pro-apoptotic markers Bax and Cytochrome-c (Cyt-c) at both the protein and mRNA levels, and the maintenance of a balanced expression ratio of mitochondrial apoptotic regulators Bax and Bcl-2. Collectively, these findings offer novel insights into the therapeutic promise of curcumin in mitigating immunosuppression and apoptotic events triggered by mycotoxin co-exposure.


Assuntos
Aflatoxina B1 , Apoptose , Curcumina , Citocinas , Baço , Tricotecenos , Animais , Tricotecenos/toxicidade , Curcumina/farmacologia , Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia , Camundongos , Citocinas/metabolismo , Citocinas/genética , Masculino
2.
Toxins (Basel) ; 16(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39195763

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC-J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.


Assuntos
Microbioma Gastrointestinal , Tricotecenos , Tricotecenos/toxicidade , Animais , Linhagem Celular , Microbioma Gastrointestinal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suínos , Intestinos/efeitos dos fármacos , Contaminação de Alimentos/análise , China , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Triticum/microbiologia
3.
Toxicology ; 508: 153920, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39137830

RESUMO

Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.


Assuntos
Ácido Clorogênico , Imunidade Inata , Macrófagos Alveolares , Dinâmica Mitocondrial , Micotoxinas , Tricotecenos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/análogos & derivados , Micotoxinas/toxicidade , Suínos , Dinâmica Mitocondrial/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Tricotecenos/toxicidade , Imunidade Inata/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ocratoxinas/toxicidade , Aflatoxina B1/toxicidade , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
4.
Toxicology ; 508: 153923, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147090

RESUMO

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.


Assuntos
Citocromo P-450 CYP2E1 , Ferroptose , Hepatócitos , Espécies Reativas de Oxigênio , Tricotecenos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferroptose/efeitos dos fármacos , Tricotecenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Células Hep G2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
5.
Toxicology ; 508: 153928, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153657

RESUMO

Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.


Assuntos
Depsipeptídeos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Tricotecenos , Proteínas ras , Tricotecenos/toxicidade , Humanos , Células CACO-2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Depsipeptídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Espécies Reativas de Oxigênio/metabolismo , Intestinos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
6.
Food Chem Toxicol ; 192: 114916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128691

RESUMO

Trichothecenes are naturally occurring chemicals, produced by fungi, that can be found in contaminated crops. Trichothecenes have the potential to indirectly damage DNA and exacerbate genotoxic effects of genotoxicants. However, genotoxicity data for most trichothecenes are limited and data gaps remain. Here we use the γH2AX/pH3 assay to evaluate DNA damage in vitro of 13 trichothecenes. Three human cell lines (SH-SY5Y, ACHN, and HepG2) were exposed to each trichothecene (0.001-100 µM) to assess toxicity as models for the brain, kidney, and liver, respectively. Concentration-dependent induction of DNA damage, illustrated by γH2AX induction, was observed for all trichothecenes. In vitro-in vivo extrapolation (IVIVE) modeling was employed to support in vivo equivalent potency ranking and screen for risk potential. Diacetoxyscirpenol, T-2, and HT-2 had the highest genotoxic potency, notably in SH-SY5Y cells. Administered equivalent doses (AEDs) derived from IVIVE were compared against exposure data from French total diet studies to assess risk potential. AEDs derived for T-2 and HT-2 from the SH-SY5Y model were within 100-fold of exposure levels for infants aged one year or less. Overall, the potential for trichothecenes to damage DNA and higher exposures in infants highlights the need to investigate the cumulative effects across the broader trichothecene family.


Assuntos
Dano ao DNA , Tricotecenos , Tricotecenos/toxicidade , Humanos , Medição de Risco , Dano ao DNA/efeitos dos fármacos , Células Hep G2 , Linhagem Celular Tumoral
7.
Toxins (Basel) ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057937

RESUMO

Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Lipopolissacarídeos , Estresse Oxidativo , Tricotecenos , Animais , Tricotecenos/toxicidade , Ração Animal/análise , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Contaminação de Alimentos , Vitamina E/farmacologia , Vitamina E/administração & dosagem , Dieta/veterinária , Calcifediol
8.
Toxins (Basel) ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057934

RESUMO

Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives. For further validation, we explored lipid metabolism in depth and found that PC (15:0/16:0), PC (16:1/18:3), PC (18:1/22:6), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/18:1), PC (14:0/18:2), PE (14:0/16:0) and PE (18:1/18:3) were downregulated for all nine lipids. Combined with the transcriptome results, we found that hepatic steatosis induced by the three toxins, DON, 15-ADON and 3-ADON, was associated with altered expression of genes related to lipid oxidation, lipogenesis and lipolysis, and their effects on lipid metabolism in L-02 cells were mainly realized through the PC-PE cycle.


Assuntos
Hepatócitos , Metabolismo dos Lipídeos , Tricotecenos , Humanos , Tricotecenos/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Células Cultivadas
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000093

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.


Assuntos
Apoptose , Curcumina , Estresse do Retículo Endoplasmático , Tricotecenos , Tricotecenos/farmacologia , Tricotecenos/toxicidade , Animais , Curcumina/farmacologia , Suínos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Toxicology ; 506: 153880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960307

RESUMO

Deoxynivalenol (DON) is widely found in food and feed, posing a threat to human and animal health. Lycopene (Lyc) is a natural plant extracts with significant antioxidant properties. This study was conducted to investigate the protective effects of Lyc on IPEC-J2 cells upon DON exposure. The detection of cell viability and trypan blue staining showed that Lyc alleviated cell damage and decreased cell apoptotic rate induced by DON. The analysis of reactive oxygen species (ROS) level and antioxidant parameter measurements showed that Lyc significantly down-regulated the content of ROS and restored antioxidant enzyme activity. Furthermore, mitochondrial membrane potential (ΔΨm) detection, mitochondrial DNA copy number (mtDNAcn) assay and adenosine triphosphate (ATP) concentration detection showed Lyc improved mitochondrial function after DON exposure. The results of transcriptome analysis, ROS detection and CCK8 assay suggested that Lyc may activated the oxidative phosphorylation (OXPHOS) to improve mitochondrial function. Conclusively, our results suggested that Lyc alleviated DON-induced oxidative stress by improving mitochondrial function through OXPHOS signaling pathway.


Assuntos
Sobrevivência Celular , Células Epiteliais , Licopeno , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tricotecenos , Animais , Tricotecenos/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Licopeno/farmacologia , Suínos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
11.
Chem Res Toxicol ; 37(7): 1139-1154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875017

RESUMO

Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.


Assuntos
Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tricotecenos , Tricotecenos/toxicidade , Humanos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dinaminas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dinâmica Mitocondrial/efeitos dos fármacos , Linhagem Celular Tumoral
12.
Ecotoxicol Environ Saf ; 281: 116607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908055

RESUMO

Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.


Assuntos
Apoptose , Mioblastos , Tricotecenos , Animais , Tricotecenos/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Mioblastos/efeitos dos fármacos , Linhagem Celular , Mitose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos
13.
J Agric Food Chem ; 72(25): 14349-14363, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869217

RESUMO

Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3ß/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3ß/TFEB pathway, thereby reducing liver injury.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Glicogênio Sintase Quinase 3 beta , Hesperidina , Fígado , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Tricotecenos , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Tricotecenos/toxicidade , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Hesperidina/farmacologia , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Linhagem Celular
14.
Ecotoxicol Environ Saf ; 280: 116547, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843744

RESUMO

Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Gases em Plasma , Tricotecenos , Animais , Camundongos , Tricotecenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Humanos , Inativação Metabólica , Linhagem Celular
15.
J Hazard Mater ; 474: 134601, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823098

RESUMO

Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.


Assuntos
Histona-Lisina N-Metiltransferase , Necroptose , Tricotecenos , Tricotecenos/toxicidade , Animais , Necroptose/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Suínos , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia
16.
Toxicology ; 506: 153868, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906241

RESUMO

Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 µM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated ß-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Transdução de Sinais , Tricotecenos , Proteína Supressora de Tumor p53 , Animais , Senescência Celular/efeitos dos fármacos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Supressora de Tumor p53/metabolismo , Tricotecenos/toxicidade , Células RAW 264.7 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Cell Biol Toxicol ; 40(1): 41, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833095

RESUMO

Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Hipocampo , Neurônios , Tricotecenos , Regulação para Cima , Animais , Tricotecenos/toxicidade , Tricotecenos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/citologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular , Regiões 3' não Traduzidas/genética , Neurogênese/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Estabilidade de RNA/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Metilação/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-38929054

RESUMO

Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.


Assuntos
Exposição Dietética , Tricotecenos , Humanos , Tricotecenos/toxicidade , Tricotecenos/análise , Criança , Lactente , Contaminação de Alimentos/análise , Pré-Escolar
19.
Food Chem Toxicol ; 189: 114745, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763499

RESUMO

Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 µg/mL, AFB1 at 0.04 µg/mL, and mixtures of DON and AFB1 (0.5 µg/mL, 0.04 µg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).


Assuntos
Aflatoxina B1 , Apoptose , Tricotecenos , Animais , Tricotecenos/toxicidade , Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Camundongos , Suínos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Baço/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Imunoglobulina A , Feminino
20.
Ecotoxicol Environ Saf ; 279: 116468, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776783

RESUMO

Deoxynivalenol (DON), a type B trichothecene mycotoxin, commonly occurs in cereal grains, and poses significant health risks to humans and animals. Numerous studies reveal its obvious toxic effects on male reproductive performance as well as its ability to transfer from the lactating mother to the suckling offspring through colostrum and milk. The objective of this study was to evaluate the toxic effect of lactational DON exposure on testicular morphology, hormonal levels, inflammation, apoptosis and proliferation of germ cells, tight junction, and sperm quality in male offspring. Sixty-six male offspring mice from lactating dams exposed to DON were euthanized at PND 21 and PND 70 to investigate the reproductive toxicity. Our results indicated that maternal DON exposure had a significant impact on the weight and volume of the testes, caused testicular histopathology, and reduced testosterone levels by downregulating expressions of StAR, CYP11A1, and CYP17A1 in male offspring. We also found that maternal DON exposure led to testicular inflammation in male offspring, which was attributed to increased levels of inflammatory markers, including IL-1ß, IL-6, TNF-α, and IFN-γ. Maternal DON exposure resulted in impaired tight junctions of Sertoli cells in male offspring, as evidenced by decreased expressions of ZO-1, Occludin, and Claudin-3. In addition, maternal DON exposure caused a reduction in the number of Sertoli cells and germ cells, ultimately leading to decreased sperm count and quality in adult male offspring. Collectively, these findings provide compelling evidence that maternal exposure to DON during lactation causes testicular toxicity in both pubertal and adult male offspring.


Assuntos
Lactação , Exposição Materna , Testículo , Tricotecenos , Animais , Feminino , Masculino , Testículo/efeitos dos fármacos , Testículo/patologia , Camundongos , Tricotecenos/toxicidade , Exposição Materna/efeitos adversos , Testosterona/sangue , Gravidez , Apoptose/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...