Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
1.
Eur J Med Chem ; 278: 116795, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216381

RESUMO

Ischemic stroke (IS) is a disease of high death and disability worldwide with few medications in clinical treatment. Neuroinflammation and oxidative stress are considered as crucial factors in the progression of IS. In our previous studies, N-salicyloyl tryptamine derivative (NST) L7 exhibited promising anti-inflammatory properties and is considered a potential clinical therapy for IS but had limited antioxidant capacity. Here, we have designed, synthesized, and biologically evaluated 30 novel NSTs for their neuroprotective effects against cerebral ischemia-reperfusion (CI/R) injury. To identify a multifunctional neuroprotectant with enhanced antioxidant and anti-inflammatory capacity, as well as an effective therapeutic agent for CI/R damage. Among them, M11 exhibited synergistic highly anti-oxidant, anti-inflammatory, anti-ferroptosis, and anti-apoptosis effects and surpassed the parent compound L7. Further studies demonstrated that the synergistic and efficient neuroprotective role of M11 was mainly achieved by activating Nrf2 and stimulating its downstream target HO-1/GCLC/NQO1/GPX4. In addition, M11 possessed good blood-brain barrier permeability. Moreover, M11 effectively reduced cerebral infarct volume and improved neurological deficits in MCAO/R mice. Its hydrochloride form, M11·HCl, exhibited better pharmacokinetic properties, high safety, and a significant reduction in infarct volume, which is comparable to Edaravone. In conclusion, our findings suggested that M11 capable of activating Nrf2, could represent a promising candidate agent for IS.


Assuntos
Desenho de Fármacos , AVC Isquêmico , Fármacos Neuroprotetores , Triptaminas , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Animais , AVC Isquêmico/tratamento farmacológico , Camundongos , Triptaminas/farmacologia , Triptaminas/química , Triptaminas/síntese química , Triptaminas/uso terapêutico , Relação Estrutura-Atividade , Estrutura Molecular , Masculino , Relação Dose-Resposta a Droga , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos
2.
Nat Chem ; 16(10): 1592-1604, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39138346

RESUMO

Covalent chemistry is a versatile approach for expanding the ligandability of the human proteome. Activity-based protein profiling (ABPP) can infer the specific residues modified by electrophilic compounds through competition with broadly reactive probes. However, the extent to which such residue-directed platforms fully assess the protein targets of electrophilic compounds in cells remains unclear. Here we evaluate a complementary protein-directed ABPP method that identifies proteins showing stereoselective reactivity with alkynylated, chiral electrophilic compounds-termed stereoprobes. Integration of protein- and cysteine-directed data from cancer cells treated with tryptoline acrylamide stereoprobes revealed generally well-correlated ligandability maps and highlighted features, such as protein size and the proteotypicity of cysteine-containing peptides, that explain gaps in each ABPP platform. In total, we identified stereoprobe binding events for >300 structurally and functionally diverse proteins, including compounds that stereoselectively and site-specifically disrupt MAD2L1BP interactions with the spindle assembly checkpoint complex leading to delayed mitotic exit in cancer cells.


Assuntos
Acrilamida , Proteômica , Humanos , Acrilamida/química , Estereoisomerismo , Triptaminas/química , Triptaminas/farmacologia , Proteoma/metabolismo , Linhagem Celular Tumoral , Ligação Proteica , Carbolinas
3.
Neuroimage ; 297: 120718, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964563

RESUMO

N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.


Assuntos
Alucinógenos , Imageamento por Ressonância Magnética , Humanos , Alucinógenos/farmacologia , Adulto , Masculino , Feminino , Adulto Jovem , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Distorção da Percepção/efeitos dos fármacos , Distorção da Percepção/fisiologia , N,N-Dimetiltriptamina/farmacologia , Campos Visuais/efeitos dos fármacos , Campos Visuais/fisiologia , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia , Triptaminas/farmacologia , Córtex Visual Primário/efeitos dos fármacos , Córtex Visual Primário/fisiologia , Córtex Visual Primário/diagnóstico por imagem , Mapeamento Encefálico/métodos
4.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965339

RESUMO

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Assuntos
Biofilmes , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatogênica , Vagina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Triptaminas/farmacologia , Feminino , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Probióticos/farmacologia , Vagina/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Adulto , Antibacterianos/farmacologia
5.
PeerJ ; 12: e17517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846751

RESUMO

Background: Psilocybin and related tryptamines have come into the spotlight in recent years as potential therapeutics for depression. Research on the mechanisms of these effects has historically focused on the direct effects of these drugs on neural processes. However, in addition to such neural effects, alterations in peripheral physiology may also contribute to their therapeutic effects. In particular, substantial support exists for a gut microbiome-mediated pathway for the antidepressant efficacy of other drug classes, but no prior studies have determined the effects of tryptamines on microbiota. Methods: To address this gap, in this preliminary study, male Long Evans rats were treated with varying dosages of oral psilocybin (0.2 or 2 mg/kg), norbaeocystin (0.25 or 2.52 mg/kg), or vehicle and their fecal samples were collected 1 week and 3 weeks after exposure for microbiome analysis using integrated 16S ribosomal DNA sequencing to determine gut microbiome composition. Results: We found that although treatment with neither psilocybin nor norbaeocystin significantly affected overall microbiome diversity, it did cause significant dose- and time-dependent changes in bacterial abundance at the phylum level, including increases in Verrucomicrobia and Actinobacteria, and decreases in Proteobacteria. Conclusion and Implications: These preliminary findings support the idea that psilocybin and other tryptamines may act on the gut microbiome in a dose- and time-dependent manner, potentially identifying a novel peripheral mechanism for their antidepressant activity. The results from this preliminary study also suggest that norbaeocystin may warrant further investigation as a potential antidepressant, given the similarity of its effects to psilocybin.


Assuntos
Fezes , Microbioma Gastrointestinal , Ratos Long-Evans , Triptaminas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Triptaminas/farmacologia , Triptaminas/administração & dosagem , Ratos , Fezes/microbiologia , Psilocibina/farmacologia , Psilocibina/administração & dosagem , Administração Oral , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem
6.
Reprod Domest Anim ; 59(6): e14598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881434

RESUMO

Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.


Assuntos
Criopreservação , Melatonina , Fator 2 Relacionado a NF-E2 , Ovário , Estresse Oxidativo , Receptor MT1 de Melatonina , Transdução de Sinais , Animais , Feminino , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ovário/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/genética , Transdução de Sinais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Criopreservação/veterinária , Triptaminas/farmacologia , Apoptose/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/genética , Óxido Nítrico/metabolismo , Malondialdeído/metabolismo , Proteínas de Membrana , Heme Oxigenase-1
7.
ACS Chem Neurosci ; 15(13): 2484-2503, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865609

RESUMO

Neuroinflammation is an important factor that exacerbates neuronal death and abnormal synaptic function in neurodegenerative diseases (NDDs). Due to the complex pathogenesis and the presence of blood-brain barrier (BBB), no effective clinical drugs are currently available. Previous results showed that N-salicyloyl tryptamine derivatives had the potential to constrain the neuroinflammatory process. In this study, 30 new N-salicyloyl tryptamine derivatives were designed and synthesized to investigate a structure-activity relationship (SAR) for the indole ring of tryptamine in order to enhance their antineuroinflammatory effects. Among them, both in vitro and in vivo compound 18 exerted the best antineuroinflammatory effects by suppressing the activation of microglia, which is the culprit of neuroinflammation. The underlying mechanism of its antineuroinflammatory effect may be related to the inhibition of transcription, expression and phosphorylation of signal transducer and activator of transcription 3 (STAT3) that subsequently regulated downstream cyclooxygenase-2 (COX-2) expression and activity. With its excellent BBB permeability and pharmacokinetic properties, compound 18 exhibited significant neuroprotective effects in the hippocampal region of lipopolysaccharides (LPS)-induced mice than former N-salicyloyl tryptamine derivative L7. In conclusion, compound 18 has provided a new approach for the development of highly effective antineuroinflammatory therapeutic drugs targeting microglia activation.


Assuntos
Microglia , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Triptaminas , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Triptaminas/farmacologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade , Masculino , Ciclo-Oxigenase 2/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
8.
Br J Pharmacol ; 181(19): 3627-3641, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38825326

RESUMO

BACKGROUND AND PURPOSE: Demand for new antidepressants has resulted in a re-evaluation of the therapeutic potential of psychedelic drugs. Several tryptamines found in psilocybin-containing "magic" mushrooms share chemical similarities with psilocybin. Early work suggests they may share biological targets. However, few studies have explored their pharmacological and behavioural effects. EXPERIMENTAL APPROACH: We compared baeocystin, norbaeocystin and aeruginascin with psilocybin to determine if they are metabolized by the same enzymes, similarly penetrate the blood-brain barrier, serve as ligands for similar receptors and modulate behaviour in rodents similarly. We also assessed the stability and optimal storage and handling conditions for each compound. KEY RESULTS: In vitro enzyme kinetics assays found that all compounds had nearly identical rates of dephosphorylation via alkaline phosphatase and metabolism by monoamine oxidase. Further, we found that only the dephosphorylated products of baeocystin and norbaeocystin crossed a blood-brain barrier mimetic to a similar degree as the dephosphorylated form of psilocybin, psilocin. The dephosphorylated form of norbaeocystin was found to activate the 5-HT2A receptor with similar efficacy to psilocin and norpsilocin in in vitro cell imaging assays. Behaviourally, only psilocybin induced head twitch responses in rats, a marker of 5-HT2A-mediated psychedelic effects and hallucinogenic potential. However, like psilocybin, norbaeocystin improved outcomes in the forced swim test. All compounds caused minimal changes to metrics of renal and hepatic health, suggesting innocuous safety profiles. CONCLUSIONS AND IMPLICATIONS: Collectively, this work suggests that other naturally occurring tryptamines, especially norbaeocystin, may share overlapping therapeutic potential with psilocybin, but without causing hallucinations.


Assuntos
Agaricales , Alucinógenos , Psilocibina , Triptaminas , Animais , Psilocibina/farmacologia , Psilocibina/análogos & derivados , Triptaminas/farmacologia , Masculino , Alucinógenos/farmacologia , Ratos , Ratos Sprague-Dawley , Comportamento Animal/efeitos dos fármacos , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos
9.
Fluids Barriers CNS ; 21(1): 39, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711118

RESUMO

BACKGROUND: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.


Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Camundongos Knockout , Pirrolidinas , Triptaminas , Triptaminas/farmacologia , Triptaminas/metabolismo , Triptaminas/farmacocinética , Animais , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Transporte Biológico/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Masculino , Antiporters/metabolismo , Pirilamina/metabolismo , Pirilamina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
10.
ACS Chem Neurosci ; 15(12): 2386-2395, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38758589

RESUMO

Results from randomized clinical trials of psilocybin in depressive disorders highlight the therapeutic potential of serotonergic psychedelic compounds in mental health disorders. The synthetic 5-hydroxytryptamine 2A receptor agonist 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT) is structurally similar to psilocin but is reported to have a shorter duration (2-3 h) of psychedelic effects, suggesting the potential for psilocybin-like therapeutic activity with reduced clinical resource burden. Here, we describe the preclinical and translational characterization of RE104, a 4-OH-DiPT prodrug comprising a glutarate moiety designed to cleave rapidly in situ and thus provide reasonable bioavailability of the active drug. Plasma concentration of 4-HO-DiPT over time in PK experiments in rats was correlated with head-twitch intensity. The half-life of 4-OH-DiPT was 40 min after subcutaneous administration of RE104 in rats. In a forced swim test, a single dose of RE104 (1 mg/kg) significantly reduced mean immobility time at 1 week compared with vehicle (P < 0.001), confirming translational antidepressant potential. Taken together, these data with RE104 show that the glutarate ester can act as an efficient prodrug strategy for 4-HO-DiPT, a unique short-duration psychedelic with potential in depressive disorders.


Assuntos
Alucinógenos , Pró-Fármacos , Ratos Sprague-Dawley , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Alucinógenos/farmacologia , Alucinógenos/síntese química , Masculino , Ratos , Triptaminas/farmacologia , Triptaminas/síntese química , Triptaminas/química , Antidepressivos/farmacologia , Antidepressivos/síntese química
11.
Biomed Pharmacother ; 173: 116335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422661

RESUMO

Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 µM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.


Assuntos
Antineoplásicos , Corynebacterium , Neoplasias , Humanos , Survivina , Apoptose , Fator de Indução de Apoptose , Triptaminas/farmacologia , Triptaminas/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Estresse Oxidativo , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células
12.
Curr Med Chem ; 31(25): 3997-4021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347783

RESUMO

BACKGROUND: While granulatamides A and B have been previously isolated, their biological activities have been only partially examined. The aim of this study was to synthesize granulatamide B (4b), a tryptamine-derivative naturally occurring in Eunicella coral species, using the well-known procedure of Sun and Fürstner and its 12 structural analogues by modifying the side chain, which differs in length, degree of saturation as well as number and conjugation of double bonds. METHODS: The prepared library of compounds underwent comprehensive assessment for their biological activities, encompassing antioxidative, antiproliferative, and antibacterial properties, in addition to in vivo toxicity evaluation using a Zebrafish model. Compound 4i, which consists of a retinoic acid moiety, exhibited the strongest scavenging activity against ABTS radicals (IC50 = 36 ± 2 µM). In addition, 4b and some of the analogues (4a, 4c and 4i), mostly containing an unsaturated chain and conjugated double bonds, showed moderate but non-selective activity with certain IC50 values in the range of 20-40 µM. RESULTS: In contrast, the analogue 4l, a derivative of alpha-linolenic acid, was the least toxic towards normal cell lines. Moreover, 4b was also highly active against Gram-positive Bacillus subtilis with an MIC of 125 µM. Nevertheless, both 4b and 4i, known for the best-observed effects, caused remarkable developmental abnormalities in the zebrafish model Danio rerio. CONCLUSION: Since modification of the side chain did not significantly alter the change in biological activities compared to the parent compound, granulatamide B (4b), the substitution of the indole ring needs to be considered. Our group is currently carrying out new syntheses focusing on the functionalization of the indole core.


Assuntos
Antibacterianos , Peixe-Zebra , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antozoários/química , Triptaminas/química , Triptaminas/farmacologia , Triptaminas/síntese química , Linhagem Celular Tumoral
13.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276568

RESUMO

Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Monoaminoxidase , Humanos , Monoaminoxidase/metabolismo , Doença de Alzheimer/metabolismo , Inibidores da Monoaminoxidase/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Triptaminas/farmacologia , Acetilcolinesterase/metabolismo , Ligantes
14.
Bioorg Med Chem ; 100: 117604, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290306

RESUMO

Colistin is considered as the last-resort antibiotics to treat multi-drug resistant Gram-negative bacterial infections in humans. However, the clinical use of colistin was limited because of the apparition of chromosomal mutations and mobile colistin resistance genes in bacterial isolates. One promising strategy is to combine existing antibiotics with promising non-antibiotics to overcome the widespread emergence of antibiotic-resistant pathogens. Moreover, colistin resistance would be regulated by two component systems PhoP/PhoQ which leads to permanent synthesis of cationic groups compensating for Mg2+ deficiency. In this study, the synthesis of a small library of tryptamine urea derivatives was carried out. In addition, antibiotic susceptibility, antibiotic adjuvant screening and checkerboard assays were used to investigate the antibacterial activity of these synthesized compounds and the potential synergistic activity of their combination with colistin. Conformational analysis of the docked binding modes of the active compound in the predicted binding pocket of bacterial response regulator PhoP were carried out, to see if the active compound inhibits PhoP which is involved in colistin resistance. Finally, hemolytic activity studies have been conducted on the most active compound.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Farmacorresistência Bacteriana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Triptaminas/química , Triptaminas/farmacologia , Ureia/química , Ureia/farmacologia
15.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778463

RESUMO

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Assuntos
Receptores de Hidrocarboneto Arílico , Receptores de Esteroides , Humanos , Receptor de Pregnano X/genética , Células CACO-2 , Receptores de Hidrocarboneto Arílico/metabolismo , Indóis/farmacologia , Triptaminas/farmacologia , Receptores de Esteroides/metabolismo
16.
Steroids ; 200: 109326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827441

RESUMO

In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.


Assuntos
Apoptose , Glioma , Animais , Ratos , Hidroxiesteroides/farmacologia , Glioma/metabolismo , Indóis/farmacologia , Autofagia , Triptaminas/farmacologia , Linhagem Celular Tumoral
17.
Drug Dev Res ; 84(8): 1578-1594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675624

RESUMO

Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-ß (Aß) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aß modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aß aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Donepezila , Peptídeos beta-Amiloides , Triptaminas/farmacologia , Triptaminas/uso terapêutico
18.
Nat Commun ; 14(1): 4986, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591886

RESUMO

The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Síndrome do Intestino Irritável , Síndrome Metabólica , Humanos , Animais , Camundongos , Disbiose , Fenetilaminas/farmacologia , Triptaminas/farmacologia
19.
Phytochemistry ; 213: 113752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330032

RESUMO

Four undescribed tryptamine-derived alkaloids, hunteriasines A - D, were isolated and identified from Hunteria umbellata (Apocynaceae), together with fifteen known indole alkaloids. The chemical structure and absolute configuration of hunteriasine A were determined by spectroscopic and X-ray crystallographic data analyses. Hunteriasine A, featuring with a unique scaffold comprised of tryptamine and an unprecedented "12-carbon unit" moiety, is a zwitterionic indole-derived and pyridinium-containing alkaloid. Hunteriasines B - D were identified by spectroscopic data analyses and theoretical calculations. A plausible biogenetic pathway for hunteriasines A and B was proposed. The lipopolysaccharide-stimulated mouse macrophage cell line J774A.1 cell-based bioactivity assays revealed that (+)-eburnamine, strictosidinic acid, and (S)-decarbomethoxydihydrogambirtannine enhance the release of interleukin-1ß.


Assuntos
Alcaloides , Apocynaceae , Alcaloides de Triptamina e Secologanina , Camundongos , Animais , Alcaloides/farmacologia , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Apocynaceae/química , Extratos Vegetais/química , Triptaminas/farmacologia , Estrutura Molecular , Alcaloides de Triptamina e Secologanina/química
20.
ACS Chem Neurosci ; 14(11): 2146-2158, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170554

RESUMO

Cerebral ischemia/reperfusion (I/R) injury is a key reason for the poor prognosis of ischemic stroke. As only a few neuroprotective medications for cerebral I/R injury have been applied in the clinic, it is necessary to design a new therapeutic strategy to treat cerebral I/R injury. The N-salicyloyl tryptamine derivative LZWL02003, synthesized from melatonin and salicylic acid, exhibits a wide range of biological properties. In this study, we assessed the neuroprotective capabilities of LZWL02003 in vivo and in vitro and investigated its possible mechanisms. Oxygen-glucose deprivation/reoxygenation was utilized to create an in vitro model of cerebral I/R damage. Middle cerebral artery occlusion/reperfusion was employed to imitate cerebral I/R injury in vivo. Neuronal apoptosis, oxidative stress, mitochondrial dysfunction, and neuroinflammation are associated with the pathogenesis of cerebral I/R injury. Our findings demonstrated that LZWL02003 upregulated the expression of Bcl-2 and downregulated the expression of Bax, thus maintaining the homeostasis of Bcl-2/Bax proteins and preventing apoptosis. LZWL02003 also reduced oxidative stress by reducing malondialdehyde and reactive oxygen species levels, increasing the superoxide dismutase activity, and resolving mitochondrial malfunction. LZWL02003 can lower interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 levels, which in turn suppress neuroinflammation. Activation of the nuclear factor-kappa B (NF-κB) pathway is involved in various pathophysiologies, including cerebral I/R injury. We discovered that LZWL02003 suppressed the phosphorylation activation of NF-κB pathway-related proteins and decreased the nuclear translocation of NF-κB p65 subunits. Taken together, our results suggest that LZWL02003 is a neuroprotective drug with pleiotropic effects and may be a candidate for treating cerebral I/R injury.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína X Associada a bcl-2 , Doenças Neuroinflamatórias , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Triptaminas/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...