Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.533
Filtrar
1.
Cells ; 13(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39272996

RESUMO

Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs' proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios.


Assuntos
Córtex Cerebral , Ácido Cinurênico , Cinurenina , Memantina , Animais , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Memantina/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Ratos , Masculino , Triptofano/metabolismo , Ratos Wistar
2.
J Inorg Biochem ; 261: 112707, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39217822

RESUMO

Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.


Assuntos
Heme , Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano Oxigenase , Humanos , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/química , Heme/química , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Cinurenina/metabolismo , Cinurenina/química , Triptofano/química , Triptofano/metabolismo , Animais
3.
Appl Microbiol Biotechnol ; 108(1): 469, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298023

RESUMO

Prior research has indicated that the gut-lung-axis can be influenced by the intestinal microbiota, thereby impacting lung immunity. Rifaximin is a broad-spectrum antibacterial drug that can maintain the homeostasis of intestinal microflora. In this study, we established an influenza A virus (IAV)-infected mice model with or without rifaximin supplementation to investigate whether rifaximin could ameliorate lung injury induced by IAV and explore the molecular mechanism involved. Our results showed that IAV caused significant weight loss and disrupted the structure of the lung and intestine. The analysis results of 16S rRNA and metabolomics indicated a notable reduction in the levels of probiotics Lachnoclostridium, Ruminococcaceae_UCG-013, and tryptophan metabolites in the fecal samples of mice infected with IAV. In contrast, supplementation with 50 mg/kg rifaximin reversed these changes, including promoting the repair of the lung barrier and increasing the abundance of Muribaculum, Papillibacter and tryptophan-related metabolites content in the feces. Additionally, rifaximin treatment increased ILC3 cell numbers, IL-22 level, and the expression of RORγ and STAT-3 protein in the lung. Furthermore, our findings demonstrated that the administration of rifaximin can mitigate damage to the intestinal barrier while enhancing the expression of AHR, IDO-1, and tight junction proteins in the small intestine. Overall, our results provided that rifaximin alleviated the imbalance in gut microbiota homeostasis induced by IAV infection and promoted the production of tryptophan-related metabolites. Tryptophan functions as a signal to facilitate the activation and movement of ILC3 cells from the intestine to the lung through the AHR/STAT3/IL-22 pathway, thereby aiding in the restoration of the barrier. KEY POINTS: • Rifaximin ameliorated IAV infection-caused lung barrier injury and induced ILC3 cell activation. • Rifaximin alleviated IAV-induced gut dysbiosis and recovered tryptophan metabolism. • Tryptophan mediates rifaximin-induced ILC3 cell activation via the AHR/STAT3/IL-22 pathway.


Assuntos
Microbioma Gastrointestinal , Vírus da Influenza A , Pulmão , Infecções por Orthomyxoviridae , Rifaximina , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Rifaximina/uso terapêutico , Camundongos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Modelos Animais de Doenças , RNA Ribossômico 16S/genética , Interleucinas/metabolismo , Interleucinas/genética , Interleucina 22 , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Fator de Transcrição STAT3/metabolismo , Fezes/microbiologia , Triptofano/metabolismo , Lesão Pulmonar/tratamento farmacológico , Probióticos/administração & dosagem , Probióticos/farmacologia
4.
J Org Chem ; 89(18): 13359-13366, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39239664

RESUMO

Indole alkaloids are privileged secondary metabolites, and their production may be achieved by the microbial biotransformation of tryptophan analogues. By feeding 1-methyl-L-tryptophan (1-MT) into the culture of endophytic Nigrospora chinensis GGY-3, six novel (1-6) and seven known indole alkaloids (7-13) were generated. Their structures were elucidated by means of NMR spectroscopy, experimental electronic circular dichroism (ECD) spectra, and X-ray crystallography analysis. A Friedel-Crafts reaction was proposed as the key reaction responsible for the formation of the new compounds. Racemates 4 and 6 were separated into isomers by chiral HPLC, with their absolute configurations determined by X-ray and ECD calculation. Compounds 3, 4, and 8 display good herbicidal activity against dicotyledon weed Eclipta prostrata, of which 4 and 8 exhibited 88.50% and 100% inhibition rates on the radicle at 200 µg/mL, respectively, a similar effect compared to the positive control penoxsulam.


Assuntos
Biotransformação , Herbicidas , Alcaloides Indólicos , Triptofano , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/isolamento & purificação , Triptofano/química , Triptofano/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Herbicidas/metabolismo , Ascomicetos/química , Ascomicetos/metabolismo , Estrutura Molecular , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular
5.
Amino Acids ; 56(1): 56, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292313

RESUMO

Lupus nephritis (LN) is an immunoinflammatory glomerulonephritis associated with renal involvement in systemic lupus erythematosus (SLE). Given the close relationship between plasma amino acids (AAs) and renal function, this study aimed to elucidate the plasma AA profiles in LN patients and identify key AAs and diagnostic patterns that distinguish LN patients from those with SLE and healthy controls. Participants were categorized into three groups: normal controls (NC), SLE, and LN. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to quantify AA levels in human plasma. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to identify key AAs. The diagnostic capacity of the models was assessed using receiver operating characteristic (ROC) curve analysis and area under the ROC curve (AUC) values. Significant alterations in plasma AA profiles were observed in LN patients compared to the SLE and NC groups. The OPLS-DA model effectively separated LN patients from the SLE and NC groups. A joint model using histidine (His), lysine (Lys), and tryptophan (Trp) demonstrated exceptional diagnostic performance, achieving an AUC of 1.0 with 100% sensitivity, specificity, and accuracy in predicting LN. Another joint model comprising arginine (Arg), valine (Val), and Trp also exhibited robust predictive performance, with an AUC of 0.998, sensitivity of 93.80%, specificity of 100%, and accuracy of 95.78% in distinguishing between SLE and LN. The joint forecasting models showed excellent predictive capabilities in identifying LN and categorizing lupus disease status. This approach provides a novel perspective for the early identification, prevention, treatment, and management of LN based on variations in plasma AA levels.


Assuntos
Aminoácidos , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/sangue , Nefrite Lúpica/diagnóstico , Feminino , Adulto , Masculino , Lúpus Eritematoso Sistêmico/sangue , Aminoácidos/sangue , Pessoa de Meia-Idade , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Curva ROC , Triptofano/sangue , Biomarcadores/sangue , Diagnóstico Diferencial
6.
Int J Med Sci ; 21(12): 2402-2413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310266

RESUMO

Lower limb ischemia is characterized by reduced arterial perfusion in the lower limbs, leading to tissue ischemia and cell death. It is primarily caused by thrombosis and the rupture of arterial plaques, resulting in damage to ischemic muscle tissues. Metabolic processes are crucial in its development. Herein we combined single-cell data with metabolomics data to explore the pathways and mechanisms influencing lower limb ischemia. We analyzed single-cell and metabolomics data. In single-cell analysis, we identified different cell subpopulations and key regulatory genes, and biological enrichment analysis was performed to understand their functions and relationships. For metabolomics, mass spectrometry and chromatography techniques were employed to analyze metabolites in clinical samples. We performed differential analysis, correlation analysis, and Mendelian randomization to determine the relationships between key metabolites and genes. Nebl, Dapl1, Igfbp4, Lef1, Klrd1, Ciita, Il17f, Cd8b1, Il17a, Cd180, Il17re, Trim7, and Slc6a19 were identified to play a crucial role in lower limb ischemia. Important metabolites included L-threonine and L-tryptophan. The metabolism of L-threonine and L-tryptophan is linked to lower limb ischemia and thrombosis. B0AT1, encoded by SLC6A19, is closely related to these metabolites and appears to play a key role in lower limb ischemia development. Our analysis revealed the roles of key genes and metabolites in lower limb ischemia. These findings enhance our understanding of the pathogenesis of lower limb ischemia and provide new insights into its prevention and treatment.


Assuntos
Isquemia , Extremidade Inferior , Triptofano , Humanos , Triptofano/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Extremidade Inferior/irrigação sanguínea , Metabolômica/métodos , Masculino
7.
Int J Nanomedicine ; 19: 8847-8882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220190

RESUMO

Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.


Assuntos
Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Nanopartículas , Neoplasias , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Nanopartículas/química , Animais , Nanomedicina , Triptofano/química , Triptofano/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Cinurenina
8.
Arch Microbiol ; 206(9): 390, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222088

RESUMO

Essential amino acid, tryptophan which intake from food plays a critical role in numerous metabolic functions, exhibiting extensive biological functions and applications. Tryptophan is beneficial for the food sector by enhancing nutritional content and promoting the development of functional foods. A putative gene encoding tryptophan synthase was the first identified in Sphingobacterium soilsilvae Em02, a cellulosic bacterium making it inherently more environmentally friendly. The gene was cloned and expressed in exogenous host Escherichia coli, to elucidate its function. The recombinant tryptophan synthase with a molecular weight 42 KDa was expressed in soluble component. The enzymatic activity to tryptophan synthase in vivo was assessed using indole and L-serine and purified tryptophan synthase. The optimum enzymatic activity for tryptophan synthase was recorded at 50 ºC and pH 7.0, which was improved in the presence of metal ions Mg2+, Sr2+ and Mn2+, whereas Cu2+, Zn2+ and Co2+ proved to be inhibitory. Using site-directed mutagenesis, the consensus pattern HK-S-[GGGSN]-E-S in the tryptophan synthase was demonstrated with K100Q, S202A, G246A, E361A and S385A as the active sites. Tryptophan synthase has been demonstrated to possess the defining characteristics of the ß-subunits. The tryptophan synthase may eventually be useful for tryptophan production on a larger scale. Its diverse applications highlight the potential for improving both the quality and health benefits of food products, making it an essential component in advancing food science and technology.


Assuntos
Escherichia coli , Mutagênese Sítio-Dirigida , Triptofano Sintase , Triptofano , Triptofano Sintase/metabolismo , Triptofano Sintase/genética , Triptofano Sintase/química , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Domínio Catalítico , Clonagem Molecular , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Catálise , Serina/metabolismo
9.
Carbohydr Polym ; 344: 122527, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218534

RESUMO

The root of Millettia pulchra (YLS) has been traditionally used as a folk medicine for the treatment of depression and insomnia in the Zhuang nationality of China, and its polysaccharides have potential antidepressant effect. In this study, a novel homogeneous polysaccharide (YLP-1) was purified from the crude polysaccharides of YLS, and it is mainly composed of glucose, arabinose and mannose with molar ratio of 87.25%, 10.77%, and 1.98%, respectively. YLP-1 is a novel α-glucan with the backbone of 1,4-Glcp and branched at C6 of 1,4,6-Glcp to combine 1,4-Manp and 1,5-Araf. The microstructure of YLP-1 displayed a uniform ellipsoidal-like chain morphology and dispersed uniformly in solution. YLP-1 effectively ameliorated depression-like ethological behaviors and restored the decreased catecholamine levels in chronic variable stress (CVS)-induced depression rats. Additionally, it significantly improved the disturbance of gut microbiota induced by CVS stimuli, particularly affecting bacteria that produce short-chain fatty acids (SCFAs), such as bacteria species Lactobacillus spp.. In vitro fermentation study further confirmed that YLP-1 intake could promote SCFAs production by Lactobacillus spp. YLP-1 also mitigated the disruption of tryptophan metabolites in urine and serum. These findings provide evidences for the further development of YLP-1 as a macromolecular antidepressant drug.


Assuntos
Antidepressivos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Millettia , Polissacarídeos , Triptofano , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/química , Masculino , Ratos , Polissacarídeos/farmacologia , Polissacarídeos/química , Millettia/química , Triptofano/metabolismo , Ácidos Graxos Voláteis/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Ratos Sprague-Dawley
10.
Anal Chim Acta ; 1327: 343149, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266061

RESUMO

BACKGROUND: We have developed and validated methods for the determination of three major tryptophan metabolites metabolized by the kynurenine pathway, namely kynurenine (KYN), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA). KYN and 3-HK were determined using RP-HPLC-UV, and 3-HAA using RP-HPLC-FL. We then developed a comparative method based on CE-UV. The developed methods were validated and 36 samples of human brain glioma tissue homogenates were assayed in all 4 grades of malignancy, and the concentration levels of assayed metabolites were compared with available clinical data. RESULTS: Each of the methods is characterized by high precision, accuracy and repeatability, and the determined LOQ values indicate the possibility of performing quantitative analysis on the available samples of human glioma tumors (36 samples in grades G1-G4). The concentration values of selected metabolites obtained using HPLC methods were subjected to statistical analysis and preliminary clinical data processing. We found statistically significant differences in the concentrations of KYN, 3-HK and 3-HAA between the various grades of the disease, and characterized these differences more precisely by means of the Dunn-Bonferroni post hoc test. We did not find that the patient's environment or habits significantly affected the metabolites concentration of the study samples population. In addition, we showed a high positive correlation between KYN, 3-HK and 3-HAA, which appears to be a characteristic that describes metabolic changes of Trp in relation to KYN, 3-HK and 3-HAA, and indicates potential diagnostic value. SIGNIFICANCE: The preliminary studies carried out contribute new knowledge on the molecular basis of human brain glioma. They also provide valuable information useful for the development of glioma diagnostics, differentiation of disease grades and assessment of the patient's condition. The obtained relationships between metabolite concentrations and the grade of malignancy of the disease and correlations between metabolite concentrations constitute the basis for further broader biochemical and clinical analysis.


Assuntos
Neoplasias Encefálicas , Glioma , Cinurenina , Triptofano , Humanos , Triptofano/metabolismo , Triptofano/análise , Glioma/metabolismo , Cromatografia Líquida de Alta Pressão , Cinurenina/metabolismo , Cinurenina/análogos & derivados , Cinurenina/análise , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias Encefálicas/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Ácido 3-Hidroxiantranílico/análise , Adulto , Idoso
11.
Anal Chim Acta ; 1328: 343125, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266191

RESUMO

BACKGROUND: TRY-NAD metabolic network includes TRY (tryptophan), 5-HT (5-hydroxytryptamine), KYN (kynurenine), and NAD (nicotinamide adenine dinucleotide) pathway, which plays a significant role in neurological diseases and ageing. It is important to monitor these metabolites for studying the pathological anatomy of disease and treatment of responses evaluation. Although previous studies have reported quantitative methods for several metabolites in the network, the bottlenecks of simultaneously quantifying the whole metabolic network are their similar structures, diverse physico-chemical properties, and instability. Standardized protocols for the whole metabolic network are still missing, which hinders the in-depth study of TRY-NAD metabolic network in laboratory research and clinical screening. RESULTS: We developed a LC-MS/MS method for quantifying 28 metabolites in the TRY-NAD network simultaneously. Optimization was done for the mass spectral parameters, chromatographic conditions and sample pretreatment process. The developed method was fully validated in terms of standard curves, sensitivity, carryover, recovery, matrix effect, accuracy, precision, and stability. The pretreatment of 30 samples only takes 90 min, and the LC-MS/MS running time of one sample is only 13 min. With this method, we bring to light the chaos of global TRY-NAD metabolic network in sleep deprivation mice for the first time, including serum, clotted blood cells, hippocampus, cerebral cortex, and liver. NAD pathway levels in brain and blood decreased, whereas the opposite happened in the liver. The 5-HT pathway decreased and the concentration of KYN increased significantly in the brain. The concentration of many metabolites in KYN pathway (NAD+ de novo synthesis pathway) increased in the liver. SIGNIFICANCE: This method is the first time to determine the metabolites of KYN, 5-HT and NAD pathway at the same time, and it is found that TRY-NAD metabolic network will be disordered after sleep deprivation. This work clarifies the importance of the pH of the extraction solution, the time and temperature control in pretreatment in standardized protocols building, and overcoming the problems of inconsistent sample pretreatment, separation, matrix effect interference and potential metabolite degradation. This method exhibits great prospects in providing more information on metabolic disturbances caused by sleep deprivation as well as neurological diseases and ageing.


Assuntos
NAD , Privação do Sono , Espectrometria de Massas em Tandem , Triptofano , Animais , Espectrometria de Massas em Tandem/métodos , NAD/metabolismo , Camundongos , Triptofano/metabolismo , Triptofano/sangue , Triptofano/análise , Privação do Sono/metabolismo , Privação do Sono/sangue , Masculino , Redes e Vias Metabólicas , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Espectrometria de Massa com Cromatografia Líquida
12.
BMC Vet Res ; 20(1): 390, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227948

RESUMO

BACKGROUND: This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp). The kynurenine assay was used to examine if Trp or prostaglandin E2 (PGE2) can increase the production of kynurenine in the bovine endometrial epithelial cells. RESULTS: Trp significantly stimulates insulin growth factor binding protein 1 (IGFBP1) expression, a common endometrial marker of conceptus elongation and uterus receptivity for ruminants. When bovine endometrial epithelial cells are treated with Trp, tryptophan hydroxylase-1 remains unchanged, but tryptophan 2,3-dioxygenase 2 (TDO2) is significantly increased, suggesting tryptophan is mainly metabolized through the kynurenine pathway. Kynurenine significantly stimulates IGFBP1 expression. Furthermore, Trp and kynurenine significantly increase the expression of aryl hydrocarbon receptor (AHR). CH223191, an AHR inhibitor, abrogates the induction of Trp and kynurenine on IGFBP1. PGE2 significantly induces the expression of TDO2, AHR, and IGFBP1. CONCLUSIONS: The regulation between Trp / kynurenine and PGE2 may be crucial for the receptivity of the bovine uterus.


Assuntos
Endométrio , Células Epiteliais , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Cinurenina , Receptores de Hidrocarboneto Arílico , Triptofano Oxigenase , Triptofano , Animais , Bovinos , Feminino , Triptofano/farmacologia , Triptofano/metabolismo , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/genética , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética
13.
Protein Sci ; 33(10): e5152, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39275999

RESUMO

γ-Hydroxybutyric acid (GHB) analogs are small molecules that bind competitively to a specific cavity in the oligomeric CaMKIIα hub domain. Binding affects conformation and stability of the hub domain, which may explain the neuroprotective action of some of these compounds. Here, we describe molecular details of interaction of the larger-type GHB analog 2-(6-(4-chlorophenyl)imidazo[1,2-b]pyridazine-2-yl)acetic acid (PIPA). Like smaller-type analogs, PIPA binding to the CaMKIIα hub domain promoted thermal stability. PIPA additionally modulated CaMKIIα activity under sub-maximal CaM concentrations and ultimately led to reduced substrate phosphorylation. A high-resolution X-ray crystal structure of a stabilized CaMKIIα (6x mutant) hub construct revealed details of the binding mode of PIPA, which involved outward placement of tryptophan 403 (Trp403), a central residue in a flexible loop close to the upper hub cavity. Small-angle X-ray scattering (SAXS) solution structures and mass photometry of the CaMKIIα wild-type hub domain in the presence of PIPA revealed a high degree of ordered self-association (stacks of CaMKIIα hub domains). This stacking neither occurred with the smaller compound 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA), nor when Trp403 was replaced with leucine (W403L). Additionally, CaMKIIα W403L hub was stabilized to a larger extent by PIPA compared to CaMKIIα hub wild type, indicating that loop flexibility is important for holoenzyme stability. Thus, we propose that ligand-induced outward placement of Trp403 by PIPA, which promotes an unforeseen mechanism of hub domain stacking, may be involved in the observed reduction in CaMKIIα kinase activity. Altogether, this sheds new light on allosteric regulation of CaMKIIα activity via the hub domain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Domínios Proteicos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Espalhamento a Baixo Ângulo , Triptofano/química , Triptofano/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Fosforilação
14.
Cell Rep Med ; 5(9): 101717, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39243754

RESUMO

Indoleamine-2,3-dioxygenase (IDO)1 degrades tryptophan, obtained through dietary intake, into immunoregulatory metabolites of the kynurenine pathway. Deficiency or blockade of IDO1 results in the enhancement of autoimmune severity in rodent models and increased susceptibility to developing autoimmunity in humans. Despite this, therapeutic modalities that leverage IDO1 for the treatment of autoimmunity remain limited. Here, we use messenger (m)RNA formulated in lipid nanoparticles (LNPs) to deliver a human IDO1 variant containing the myristoylation site of Src to anchor the protein to the inner face of the plasma membrane. This membrane-anchored IDO1 has increased protein production, leading to increased metabolite changes, and ultimately ameliorates disease in three models of T cell-mediated autoimmunity: experimental autoimmune encephalomyelitis (EAE), rat collagen-induced arthritis (CIA), and acute graft-versus-host disease (aGVHD). The efficacy of IDO1 is correlated with hepatic expression and systemic tryptophan depletion. Thus, the delivery of membrane-anchored IDO1 by mRNA suppresses the immune response in several well-characterized models of autoimmunity.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental , Indolamina-Pirrol 2,3,-Dioxigenase , RNA Mensageiro , Linfócitos T , Triptofano , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Animais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/genética , Ratos , Triptofano/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Artrite Experimental/imunologia , Artrite Experimental/genética , Artrite Experimental/patologia , Camundongos , Nanopartículas/química , Feminino
15.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287867

RESUMO

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Obesidade , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Obesidade/metabolismo , Obesidade/enzimologia , Triptofano/metabolismo , Animais , Serotonina/metabolismo , Tecido Adiposo/metabolismo , Cinurenina/metabolismo
16.
Sci Total Environ ; 952: 175931, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218096

RESUMO

Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid found in plants of the Crotalaria genus. As primary pollinators of Crotalaria plants, honeybees come into contact with this harmful substance. However, limited research has been conducted on the effects of MCT on Apis mellifera, particularly the risks of long-term exposure to sublethal concentrations. Through evaluating the proboscis extension reflex (PER) ability, analyzing the honeybee brain transcriptome, and analyzing the honeybee hemolymph metabolome, we discovered that sublethal concentrations of MCT impair the olfactory and memory capabilities of honeybees by affecting tryptophan (Trp) metabolism. Furthermore, MCT upregulates the expression of the corazonin receptor (CrzR) gene in the honeybee brain, which elevates reactive oxygen species (ROS) levels in the brain while reducing glucose levels in the hemolymph, consequently shortening the honeybees' lifespan. Our findings regarding the multifaceted impact of MCT on honeybees lay the foundation for exploring its toxicological pathways and management in honeybee populations.


Assuntos
Monocrotalina , Triptofano , Animais , Abelhas/fisiologia , Abelhas/efeitos dos fármacos , Triptofano/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Comportamento Animal/efeitos dos fármacos , Hemolinfa/metabolismo , Neuropeptídeos
17.
Nat Commun ; 15(1): 7939, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261458

RESUMO

Acinetobacter baumannii is a pathogenic and multidrug-resistant Gram-negative bacterium that causes severe nosocomial infections. To better understand the mechanism of pathogenesis, we compare the proteomes of uninfected and infected human cells, revealing that transcription factor FOS is the host protein most strongly induced by A. baumannii infection. Pharmacological inhibition of FOS reduces the cytotoxicity of A. baumannii in cell-based models, and similar results are also observed in a mouse infection model. A. baumannii outer membrane vesicles (OMVs) are shown to activate the aryl hydrocarbon receptor (AHR) of host cells by inducing the host enzyme tryptophan-2,3-dioxygenase (TDO), producing the ligand kynurenine, which binds AHR. Following ligand binding, AHR is a direct transcriptional activator of the FOS gene. We propose that A. baumannii infection impacts the host tryptophan metabolism and promotes AHR- and FOS-mediated cytotoxicity of infected cells.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Cinurenina , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Animais , Camundongos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/metabolismo , Cinurenina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Triptofano/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Interações Hospedeiro-Patógeno
18.
Mediators Inflamm ; 2024: 1484806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262415

RESUMO

Background: Colitis is a refractory intestinal inflammatory disease significantly affecting the quality of a patient's life and increasing the risk of exacerbation. The primary factors leading to colitis encompass infections, insufficient blood flow, and the buildup of collagen as well as white blood cells. Among various available therapeutics, 5-methoxytryptophan (5-MTP) has emerged as one of the protectants by inhibiting inflammatory damage. Nonetheless, there is no report on the role of 5-MTP in the treatment of colitis. Materials and Methods: To verify the anti-inflammatory effect of 5-MTP in vivo, we first constructed mouse model with dextran sulfate sodium-induced colitis. Furthermore, the macrophage infiltration and release of inflammatory factors through western blot (WB) and hematoxylin-eosin staining analyses were examined. Intestinal epithelial cell tight junction damage and apoptosis were investigated by WB analysis, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Finally, we examined the generation of cellular inflammation and analyzed the influence of 5-MTP on M1 polarization at the cellular level. Results: This study initially confirmed that 5-MTP possessed an excellent therapeutic effect on colitis. 5-MTP inhibits macrophage infiltration and the generation of inflammatory factors. In addition to its effects on immune cells, 5-MTP significantly inhibits intestinal epithelial cell tight junction damage and apoptosis in vivo. Moreover, it inhibits inflammation and M1 polarization response in vitro. Conclusion: 5-MTP counteracts excessive inflammation, thereby preventing intestinal epithelial tight junction damage. In addition, inhibition of apoptosis suggests that 5-MTP may be a potential therapeutic agent for colitis.


Assuntos
Colite , Sulfato de Dextrana , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Triptofano , Animais , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Triptofano/análogos & derivados , Triptofano/farmacologia , Inflamação/tratamento farmacológico , Masculino , Apoptose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Humanos , Modelos Animais de Doenças , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
19.
BMC Infect Dis ; 24(1): 943, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251983

RESUMO

BACKGROUND: HIV-1 has well-established mechanisms to disrupt essential pathways in people with HIV, such as inflammation and metabolism. Moreover, diversity of the amino acid sequences in fundamental HIV-1 proteins including Tat and Vif, have been linked to dysregulating these pathways, and subsequently influencing clinical outcomes in people with HIV. However, the relationship between Tat and Vif amino acid sequence variation and specific immune markers and metabolites of the tryptophan-kynurenine (Trp-Kyn) pathway remains unclear. Therefore, this study aimed to investigate the relationship between Tat/Vif amino acid sequence diversity and Trp-Kyn metabolites (quinolinic acid (QUIN), Trp, kynurenic acid (KA), Kyn and Trp/Kyn ratio), as well as specific immune markers (sCD163, suPAR, IL-6, NGAL and hsCRP) in n = 67 South African cART-naïve people with HIV. METHODS: Sanger sequencing was used to determine blood-derived Tat/Vif amino acid sequence diversity. To measure Trp-Kyn metabolites, a LC-MS/MS metabolomics platform was employed using a targeted approach. To measure immune markers, Enzyme-linked immunosorbent assays and the Particle-enhanced turbidimetric assay was used. RESULTS: After adjusting for covariates, sCD163 (p = 0.042) and KA (p = 0.031) were higher in participants with Tat signatures N24 and R57, respectively, and amino acid variation at position 24 (adj R2 = 0.048, ß = -0.416, p = 0.042) and 57 (adj R2 = 0.166, ß = 0.535, p = 0.031) of Tat were associated with sCD163 and KA, respectively. CONCLUSIONS: These preliminary findings suggest that amino acid variation in Tat may have an influence on underlying pathogenic HIV-1 mechanisms and therefore, this line of work merits further investigation.


Assuntos
Infecções por HIV , HIV-1 , Inflamação , Cinurenina , Triptofano , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Triptofano/metabolismo , Infecções por HIV/virologia , Infecções por HIV/genética , Masculino , HIV-1/genética , Adulto , Feminino , Cinurenina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Pessoa de Meia-Idade , Biomarcadores/sangue , Receptores de Superfície Celular , Antígenos de Diferenciação Mielomonocítica , Antígenos CD
20.
Brain Behav Immun ; 122: 44-57, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39128569

RESUMO

Prenatal stress (PNS) profoundly impacts maternal and offspring health, with enduring effects including microbiome alterations, neuroinflammation, and behavioral disturbances such as reductions in social behavior. Converging lines of evidence from preclinical and clinical studies suggest that PNS disrupts tryptophan (Trp) metabolic pathways and reduces gut Bifidobacteria, a known beneficial bacterial genus that metabolizes Trp. Specifically, previous work from our lab demonstrated that human prenatal mood disorders in mothers are associated with reduced Bifidobacterium dentium in infants at 13 months. Given that Bifidobacterium has been positively associated with neurodevelopmental and other health benefits and is depleted by PNS, we hypothesized that supplementing PNS-exposed pregnant dams with B. dentium would ameliorate PNS-induced health deficits. We measured inflammatory outputs, Trp metabolite levels and enzymatic gene expression in dams and fetal offspring, and social behavior in adult offspring. We determined that B. dentium reduced maternal systemic inflammation and fetal offspring neuroinflammation, while modulating tryptophan metabolism and increasing kynurenic acid and indole-3-propionic acid intergenerationally. Additional health benefits were demonstrated by the abrogation of PNS-induced reductions in litter weight. Finally, offspring of the B. dentium cohort demonstrated increased sociability in males primarily and increased social novelty primarily in females. Together these data illustrate that B. dentium can orchestrate interrelated host immune, metabolic and behavioral outcomes during and after gestation for both dam and offspring and may be a candidate for prevention of the negative sequelae of stress.


Assuntos
Inflamação , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Triptofano , Feminino , Gravidez , Animais , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Triptofano/metabolismo , Inflamação/metabolismo , Masculino , Bifidobacterium/metabolismo , Estresse Psicológico/metabolismo , Microbioma Gastrointestinal/fisiologia , Comportamento Animal/fisiologia , Probióticos/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...