Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.161
Filtrar
1.
BMC Vet Res ; 20(1): 390, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227948

RESUMO

BACKGROUND: This study aimed to identify the roles of L-tryptophan (Trp) and its rate-limiting enzymes on the receptivity of bovine endometrial epithelial cells. Real-time PCR was conducted to analyze the differential expression of genes between different groups of bovine endometrial epithelial cells. Western blot was performed to detect Cyclooxygenase-2 (COX2) expression after treatment with Trp or kynurenine (the main metabolites of Trp). The kynurenine assay was used to examine if Trp or prostaglandin E2 (PGE2) can increase the production of kynurenine in the bovine endometrial epithelial cells. RESULTS: Trp significantly stimulates insulin growth factor binding protein 1 (IGFBP1) expression, a common endometrial marker of conceptus elongation and uterus receptivity for ruminants. When bovine endometrial epithelial cells are treated with Trp, tryptophan hydroxylase-1 remains unchanged, but tryptophan 2,3-dioxygenase 2 (TDO2) is significantly increased, suggesting tryptophan is mainly metabolized through the kynurenine pathway. Kynurenine significantly stimulates IGFBP1 expression. Furthermore, Trp and kynurenine significantly increase the expression of aryl hydrocarbon receptor (AHR). CH223191, an AHR inhibitor, abrogates the induction of Trp and kynurenine on IGFBP1. PGE2 significantly induces the expression of TDO2, AHR, and IGFBP1. CONCLUSIONS: The regulation between Trp / kynurenine and PGE2 may be crucial for the receptivity of the bovine uterus.


Assuntos
Endométrio , Células Epiteliais , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Cinurenina , Receptores de Hidrocarboneto Arílico , Triptofano Oxigenase , Triptofano , Animais , Bovinos , Feminino , Triptofano/farmacologia , Triptofano/metabolismo , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/genética , Dinoprostona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética
2.
J Med Chem ; 67(16): 14543-14552, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39106326

RESUMO

Human tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) are two important targets in cancer immunotherapy. Extensive research has led to a large number of potent IDO inhibitors; in addition, 52 structures of IDO in complex with inhibitors with a wide array of chemical scaffolds have been documented. In contrast, progress in the development of TDO inhibitors has been limited. Only four structures of TDO in complex with competitive inhibitors that compete with the substrate L-tryptophan for binding to the active site have been reported to date. Here we systematically evaluated the structures of TDO in complex with competitive inhibitors with three types of pharmacophores, imidazo-isoindole, indole-tetrazole, and indole-benzotriazole. The comparative assessment of the protein-inhibitor interactions sheds new light into the structure-based design of enzyme-selective inhibitors.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano Oxigenase , Humanos , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Relação Estrutura-Atividade , Indóis/química , Indóis/farmacologia , Indóis/metabolismo , Modelos Moleculares , Tetrazóis/química , Tetrazóis/farmacologia , Tetrazóis/metabolismo , Triptofano/química , Triptofano/metabolismo , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/metabolismo , Ligação Proteica
3.
Comput Biol Med ; 180: 108954, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094327

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are attractive drug targets for cancer immunotherapy. After disappointing results of the epacadostat as a selective IDO inhibitor in phase III clinical trials, there is much interest in the development of the TDO selective inhibitors. In the current study, several data analysis methods and machine learning approaches including logistic regression, Random Forest, XGBoost and Support Vector Machines were used to model a data set of compounds retrieved from ChEMBL. Models based on the Morgan fingerprints revealed notable fragments for the selective inhibition of the IDO, TDO or both. Multiple fragment docking was performed to find the best set of bound fragments and their orientation in the space for efficient linking. Linking the fragments and optimization of the final molecules were accomplished by means of an artificial intelligence generative framework. Finally, selectivity of the optimized molecules was assessed and the top 4 lead molecules were filtered through PAINS, Brenk and NIH filters. Results indicated that phenyloxalamide, fluoroquinoline, and 3-bromo-4-fluroaniline confer selectivity towards the IDO inhibition. Correspondingly, 1-benzyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione was found to be an integral fragment for the selective inhibition of the TDO by constituting a coordination bond with the Fe atom of heme. In addition, furo[2,3-c]pyridine-2,3-diamine was found as a common fragment for inhibition of the both targets and can be used in the design of the dual target inhibitors of the IDO and TDO. The new fragments introduced here can be a useful building blocks for incorporation into the selective TDO or dual IDO/TDO inhibitors.


Assuntos
Quimioinformática , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Aprendizado de Máquina , Triptofano Oxigenase , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/química , Humanos , Quimioinformática/métodos , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular
4.
Front Immunol ; 15: 1440269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211039

RESUMO

Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.


Assuntos
Aminoácidos , Arginase , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Imunoterapia/métodos , Animais , Aminoácidos/metabolismo , Arginase/metabolismo , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Evasão Tumoral , Óxido Nítrico Sintase Tipo II/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Terapia de Alvo Molecular , Microambiente Tumoral/imunologia , L-Aminoácido Oxidase
6.
BMC Cancer ; 24(1): 889, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048947

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12-15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. METHODS: In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. RESULTS: Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. CONCLUSION: AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.


Assuntos
Sinergismo Farmacológico , Glioblastoma , Indolamina-Pirrol 2,3,-Dioxigenase , Temozolomida , Triptofano Oxigenase , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
7.
Sci Rep ; 14(1): 14975, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951170

RESUMO

Glioblastoma (GBM) continues to exhibit a discouraging survival rate despite extensive research into new treatments. One factor contributing to its poor prognosis is the tumor's immunosuppressive microenvironment, in which the kynurenine pathway (KP) plays a significant role. This study aimed to explore how KP impacts the survival of newly diagnosed GBM patients. We examined tissue samples from 108 GBM patients to assess the expression levels of key KP markers-tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO1/2), and the aryl hydrocarbon receptor (AhR). Using immunohistochemistry and QuPath software, three tumor cores were analyzed per patient to evaluate KP marker expression. Kaplan-Meier survival analysis and stepwise multivariate Cox regression were used to determine the effect of these markers on patient survival. Results showed that patients with high expression of TDO2, IDO1/2, and AhR had significantly shorter survival times. This finding held true even when controlling for other known prognostic variables, with a hazard ratio of 3.393 for IDO1, 2.775 for IDO2, 1.891 for TDO2, and 1.902 for AhR. We suggest that KP markers could serve as useful tools for patient stratification, potentially guiding future immunomodulating trials and personalized treatment approaches for GBM patients.


Assuntos
Biomarcadores Tumorais , Glioblastoma , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Receptores de Hidrocarboneto Arílico , Triptofano Oxigenase , Humanos , Cinurenina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Biomarcadores Tumorais/metabolismo , Triptofano Oxigenase/metabolismo , Idoso , Adulto , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Estimativa de Kaplan-Meier , Microambiente Tumoral , Idoso de 80 Anos ou mais , Fatores de Transcrição Hélice-Alça-Hélice Básicos
8.
Phys Chem Chem Phys ; 26(23): 16747-16764, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818624

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO) is a tryptophan (Trp) metabolic enzyme along the kynurenine (NFK) pathway. Under pathological conditions, IDO overexpressed by tumor cells causes depletion of tryptophan and the accumulation of metabolic products, which inhibit the local immune response and form immune escape. Therefore, the suppression of IDO activity is one of the strategies for tumor immunotherapy, and drug design for this target has been the focus of research for more than two decades. Apart from IDO, tryptophan dioxygenase (TDO) of the same family can also catalyze the same biochemical reaction in the human body, but it has different tissue distribution and substrate selectivity from IDO. Based on the principle of drug design with high potency and low cross-reactivity to specific targets, in this subject, the activity and selectivity of IDO and TDO toward small molecular inhibitors were studied from the perspective of thermodynamics and kinetics. The aim was to elucidate the structural requirements for achieving favorable biological activity and selectivity of IDO and TDO inhibitors. Specifically, the interactions of inhibitors from eight families with IDO and TDO were initially investigated through molecular docking and molecular dynamics simulations, and the thermodynamic data for binding of inhibitors were predicted by the molecular mechanics/generalized Born surface area (MM/GBSA) method. Secondly, we explored the free energy landscape of JKloops, the kinetic control element of IDO/TDO, using temperature replica exchange molecular dynamics (T-REMD) simulations and elucidated the connection between the rules of IDO/TDO conformational changes and the inhibitor selectivity mechanism. Furthermore, the binding and dissociation processes of the C1 inhibitor (NLG919) were simulated by the adaptive steering molecular dynamics (ASMD) method, which not only addressed the possible stable, metastable, and transition states for C1 inhibitor-IDO/TDO interactions, but also accurately predicted kinetic data for C1 inhibitor binding and dissociation. In conclusion, we have constructed a complete process from enzyme (IDO/TDO) conformational activation to inhibitor binding/dissociation and used the thermodynamic and kinetic data of each link as clues to verify the control mechanism of IDO/TDO on inhibitor selectivity. This is of great significance for us to understand the design principles of tumor immunotherapy drugs and to avoid drug resistance of immunotherapy drugs.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Termodinâmica , Triptofano Oxigenase , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Cinética
9.
Biochem Soc Trans ; 52(3): 1149-1158, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38813870

RESUMO

The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano-tRNA Ligase , Triptofano , Humanos , Triptofano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano-tRNA Ligase/metabolismo , Transporte Biológico , Triptofano Oxigenase/metabolismo , Interferon gama/metabolismo
10.
Sci Rep ; 14(1): 9386, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653790

RESUMO

Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Farmacóforo
11.
FEBS J ; 291(10): 2172-2190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431776

RESUMO

Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.


Assuntos
Cinurenina , Neuroblastoma , Receptores de Hidrocarboneto Arílico , Humanos , Cinurenina/metabolismo , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Linhagem Celular Tumoral , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/antagonistas & inibidores , Tretinoína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
12.
J Proteome Res ; 23(4): 1341-1350, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38421152

RESUMO

Tryptophan catabolism plays an important role in the metabolic reconnection in cancer cells to support special demands of tumor initiation and progression. The catabolic product of the tryptophan pathway, kynurenine, has the capability of suppressing the immune reactions of tumor cells. In this study, we conducted internal and external cohort studies to reveal the importance of tryptophan 2,3-dioxygenase (TDO) for lung adenocarcinoma (LUAD). Our study further demonstrated that the TDO2 expression was associated with the proliferation, survival, and invasion of LUAD cells, and targeting TDO2 for LUAD tumors could be a potential therapeutic strategy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Cinurenina/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética
13.
J Immunol ; 212(6): 941-950, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294261

RESUMO

Tolerogenic dendritic cells are promising for restoring immune homeostasis and may be an alternative therapy for autoimmune diseases such as rheumatoid arthritis. The kynurenine pathway is a vital mechanism that induces tolerance in dendritic cells (DCs). Tryptophan 2,3-dioxygenase (TDO2) is an important rate-limiting enzyme in the kynurenine pathway and participates in immune regulation. However, the role of TDO2 in shaping the tolerogenic phenotypes of DCs remains unclear. In this study, we investigated the effects and mechanisms of TDO2-overexpressed DCs in regulating the T cell balance both in vivo and in vitro. TDO2-overexpressed DC2.4 and TDO2-/- mouse bone marrow-derived DCs (BMDCs) were generated to verify the role of TDO2 in DC maturation and functionality. TDO2 overexpression in BMDCs via PGE2 treatment exhibited an immature phenotype and tolerogenic state, whereas TDO2-/- BMDCs exhibited a mature phenotype and a proinflammatory state. Furthermore, transplant of TDO2-overexpressed BMDCs alleviated collagen-induced arthritis severity in mice, which was correlated with a reduction in Th17 populations and an increase in regulatory T cells. Collectively, these results indicate that TDO2 plays an important role in the tolerogenic phenotype and may be a promising target for the generation tolerogenic DCs for rheumatoid arthritis treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Linfócitos T Reguladores , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Células Dendríticas , Tolerância Imunológica , Artrite Reumatoide/metabolismo
14.
Fitoterapia ; 172: 105716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926399

RESUMO

Four previously undescribed angucyclinones umezawaones A-D (1-4) were isolated from the liquid cultures of Umezawaea beigongshangensis. Their structures were determined by spectroscopic analyses, single crystal X-ray diffraction, quantum chemical 13C NMR and electronic circular dichroism calculations. All compounds displayed strong inhibitory activities against indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in enzymatic assay, especially compound 2.


Assuntos
Actinobacteria , Triptofano Oxigenase , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo , Anguciclinas e Anguciclinonas , Actinomyces/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Estrutura Molecular
15.
Fertil Steril ; 121(4): 669-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072367

RESUMO

OBJECTIVE: Fibroids are characterized by marked overexpression of tryptophan 2,3 dioxygenase (TDO2). The objective of this study was to determine the effectiveness of in vivo administration of an inhibitor of TDO2 (680C91) on fibroid size and gene expression. DESIGN: Animal and ex vivo human study. SETTING: Academic Research Institution. SUBJECTS: Severe combined immunodeficiency mice bearing human fibroid xenografts treated with vehicle and TDO2 inhibitor. INTERVENTION: Daily intraperitoneal administration of 680C91 or vehicle for 2 months and in vitro studies with fibroid explants. MAIN OUTCOME MEASURES: Tumor weight and gene expression profile of xenografts and in vitro mechanistic experiments using fibroid explants. RESULTS: Compound 680C91 was well-tolerated with no effects on blood chemistry and body weight. Treatment of mice with 680C91 resulted in 30% reduction in the weight of fibroid xenografts after 2 months of treatment and as expected lower levels of kynurenine, the byproduct of tryptophan degradation and an endogenous ligand of aryl hydrocarbon receptor (AhR) in the xenografts. The expression of cytochrome P450 family 1 subfamily B member 1 (CYP1B1), transforming growth factor ß3 (TGF-ß3), fibronectin (FN1), cyclin-dependent kinase 2 (CDK2), E2F transcription factor 1 (E2F1), interleukin 8 (IL-8) and secreted protein acidic and cysteine rich (SPARC) mRNA were lower in the xenografts of mice treated with 680C91 compared with vehicle controls. Similarly, the protein abundance of collagen, FN1, CYP1B1, and SPARC were lower in the xenografts of 680C9- treated mice compared with vehicle controls. Immunohistochemical analysis of xenografts indicated decreased expression of collagen, Ki67 and E2F1 but no significant changes in cleaved caspase 3 expression in mice treated with 680C91. The levels of kynurenine in the xenografts showed a direct correlation with the tumor weight and FN1 levels. In vitro studies with fibroid explants showed a significant induction of CYP1B1, TGF-ß3, FN1, CDK2, E2F1, IL8, and SPARC mRNA by tryptophan, which could be blocked by cotreatment with 680C91 and the AhR antagonist CH-223191. CONCLUSION: The results indicate that correction of aberrant tryptophan catabolism in fibroids could be an effective treatment through its effect to reduce cell proliferation and extracellular matrix accumulation.


Assuntos
Dioxigenases , Indóis , Leiomioma , Humanos , Camundongos , Animais , Triptofano/farmacologia , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Cinurenina/metabolismo , Fator de Crescimento Transformador beta3 , Colágeno , RNA Mensageiro , Leiomioma/tratamento farmacológico , Leiomioma/genética
16.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607000

RESUMO

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Triptofano , Cinurenina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patologia , Mutação , Complexo Mediador/genética , Complexo Mediador/metabolismo
17.
Behav Pharmacol ; 34(6): 307-317, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462143

RESUMO

Deletion of the tryptophan 2,3-dioxygenase ( TDO2 ) gene induces an anxiolytic-like behaviour in mice and TDO inhibition by allopurinol elicits an antidepressant-like effect in rats exposed to restraint stress. Chronic nicotine administration inhibits TDO activity, enhances brain serotonin synthesis and exerts anxiolytic- and antidepressant-like effects in rodent models. There is a strong association between anxiety, depression and tobacco use, which is stronger in women than in men. The present study aimed to examine the relationship between behavioural measures of anxiety and depression with liver TDO activity, brain tryptophan concentration and serotonin synthesis in rats treated chronically with nicotine. Behavioural measures included the elevated plus maze (EPM), open field (OFT) and forced swim (FST) tests. Biochemical measures included TDO activity, serum corticosterone and brain Trp, 5-HT and 5-HIAA concentrations. Anxiolytic-like and antidepressant-like effects of chronic nicotine were confirmed in association with TDO inhibition and elevation of brain Trp and 5-HT. Sex differences in behaviour were independent of the biochemical changes. At baseline, female rats performed better than males in OFT and FST. Nicotine was less anxiolytic in females in the open arm test. Nicotine treatment did not elicit different responses between sexes in the FST. Our findings support the notion that liver TDO activity exhibits a strong association with behavioural measures of anxiety and depression in experimental models, but provide little evidence for sex differences in behavioural response to nicotine. The TDO-anxiety link may be underpinned by kynurenine metabolites as well as serotonin.


Assuntos
Ansiolíticos , Dioxigenases , Ratos , Feminino , Camundongos , Masculino , Animais , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano Oxigenase/farmacologia , Serotonina/metabolismo , Nicotina/farmacologia , Dioxigenases/farmacologia , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade , Fígado/metabolismo , Depressão/tratamento farmacológico
18.
J Ethnopharmacol ; 317: 116714, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315645

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The radix of Paeonia lactiflora Pall. (PaeR) is a traditional Chinese medicine (TCM) clinically used for treating depression. Although it has been established that PaeR can protect the liver and alleviate depressive-like behaviors, its bioactive chemicals and antidepressant mechanism remain unclear. Our pilot study showed that PaeR reduced the expression of the L-tryptophan- catabolizing enzyme tryptophan 2,3-dioxygenase (TDO) in the livers of stress-induced depression-like mice. AIM OF THE STUDY: This study aimed to screen potential TDO inhibitors from PaeR and investigate the potential therapeutic use of TDO inhibition for treating depression. MATERIALS AND METHODS: Molecular docking, magnetic ligand fishing, and secrete-pair dual luminescence assay were conducted for in vitro ligand discovery and high-throughput screening of TDO inhibitors. Stable TDO overexpression was achieved in HepG2 cell lines to evaluate the TDO inhibitory activities of drugs in vitro by RT-PCR and Western blot analyses of TDO at mRNA and protein levels. In vivo validation of TDO inhibitory potency and evaluation of TDO inhibition as a potential therapeutic strategy for major depressive disorder (MDD) were performed using mice subjected to "3 + 1″ combined stresses for at least 30 days to induce depression-like behaviors. A well-known TDO inhibitor, LM10, was evaluated in parallel. RESULTS: The PaeR extract significantly ameliorated depressive-like behaviors of stressed mice, attributed to inhibition of TDO expression and tryptophan modulation metabolism. After a comprehensive analysis of molecular docking, ligand fishing, and luciferase assay, paeoniflorin was screened as a TDO inhibitor from the PaeR extract. This compound, structurally different from LM10, potently inhibited human and mouse TDO in cell- and animal-based assays. The effects of TDO inhibitors on MDD symptoms were evaluated in a stress-induced depression-like mouse model. In mice, both inhibitors had beneficial effects on stress-induced depressive-like behavioral despair and unhealthy physical status. Moreover, both inhibitors increased the liver serotonin/tryptophan ratio and decreased the kynurenine/tryptophan ratio after oral administration, demonstrating in vivo inhibition of TDO activity. Our data substantiated the potential of TDO inhibition as a therapeutic strategy to improve behavioral activity and decrease despair symptoms in major depressive disorder. CONCLUSIONS: This study introduced a hitherto undocumented comprehensive screening strategy to identify TDO inhibitors in PaeR extract. Our findings also highlighted the potential of PaeR as a source of antidepressant constituents and pinpointed the inhibition of TDO as a promising therapeutic approach for managing major depressive disorder.


Assuntos
Transtorno Depressivo Maior , Dioxigenases , Paeonia , Camundongos , Humanos , Animais , Triptofano/metabolismo , Triptofano Oxigenase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Projetos Piloto , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
19.
J Biol Chem ; 299(6): 104753, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116709

RESUMO

Indoleamine-2, 3-dioxygenase (IDO1) and Tryptophan-2, 3-dioxygenase (TDO) catalyze the conversion of L-tryptophan to N-formyl-kynurenine and thus play primary roles in metabolism, inflammation, and tumor immune surveillance. Because their activities depend on their heme contents, which vary in biological settings and go up or down in a dynamic manner, we studied how their heme levels may be impacted by nitric oxide (NO) in mammalian cells. We utilized cells expressing TDO or IDO1 either naturally or via transfection and determined their activities, heme contents, and expression levels as a function of NO exposure. We found NO has a bimodal effect: a narrow range of low NO exposure promoted cells to allocate heme into the heme-free TDO and IDO1 populations and consequently boosted their heme contents and activities 4- to 6-fold, while beyond this range the NO exposure transitioned to have a negative impact on their heme contents and activities. NO did not alter dioxygenase protein expression levels, and its bimodal impact was observed when NO was released by a chemical donor or was generated naturally by immune-stimulated macrophage cells. NO-driven heme allocations to IDO1 and TDO required participation of a GAPDH-heme complex and for IDO1 required chaperone Hsp90 activity. Thus, cells can up- or downregulate their IDO1 and TDO activities through a bimodal control of heme allocation by NO. This mechanism has important biomedical implications and helps explain why the IDO1 and TDO activities in animals go up and down in response to immune stimulation.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Óxido Nítrico , Triptofano Oxigenase , Animais , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mamíferos/metabolismo , Triptofano/metabolismo , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo
20.
J Enzyme Inhib Med Chem ; 38(1): 192-202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36345785

RESUMO

Molecular docking of a large set of thiosemicarbazide-based ligands resulted in obtaining compounds that inhibited both human DNA topoisomerase IIα and indoleamine-2,3-dioxygenase-1 (IDO1). To the best of our knowledge, these compounds are the first dual inhibitors targeting these two enzymes. As both of them participate in the anticancer response, the effect of the compounds on a panel of cancer cell lines was examined. Among the cell lines tested, lung cancer (A549) and melanoma (A375) cells were the most sensitive to compounds 1 (IC50=0.23 µg/ml), 2 (IC50=0.83 µg/ml) and 3 (IC50=0.25 µg/ml). The observed activity was even 90-fold higher than that of etoposide, with selectivity index values reaching 125. In-silico simulations showed that contact between 1-3 and human DNA topoisomerase II was maintained through aromatic moieties located at limiting edges of ligand molecules and intensive interactions of the thiosemicarbazide core with the DNA fragments present in the catalytic site of the enzyme.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , DNA Topoisomerases Tipo II/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano Oxigenase/metabolismo , Neoplasias/tratamento farmacológico , Ligantes , Inibidores da Topoisomerase II/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...