Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.889
Filtrar
1.
Chemosphere ; 364: 143212, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39222697

RESUMO

Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.


Assuntos
Biomassa , Nanoestruturas , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/fisiologia , Nanoestruturas/química , Nanoestruturas/toxicidade , Metais/toxicidade , Agricultura/métodos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos
2.
PeerJ ; 12: e17907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308802

RESUMO

Background: In the realm of wheat seed germination, abiotic stresses such as salinity and high temperature have been shown to hinder the process. These stresses can lead to the production of reactive oxygen species, which, within a certain concentration range, may actually facilitate seed germination. γ-aminobutyric acid (GABA), a non-protein amino acid, serves as a crucial signaling molecule in the promotion of seed germination. Nevertheless, the potential of GABA to regulate seed germination under the simultaneous stress of heat and salinity remains unexplored in current literature. Methods: This study employed observational methods to assess seed germination rate (GR), physiological methods to measure H2O2 content, and the activities of glutamate decarboxylase (GAD), NADPH oxidase (NOX), superoxide dismutase (SOD), and catalase (CAT). The levels of ABA and GABA were quantified using high-performance liquid chromatography technology. Furthermore, quantitative real-time PCR technology was utilized to analyze the expression levels of two genes encoding antioxidant enzymes, MnSOD and CAT. Results: The findings indicated that combined stress (30 °C + 50 mM NaCl) decreased the GR of wheat seeds to about 21%, while treatment with 2 mM GABA increased the GR to about 48%. However, the stimulatory effect of GABA was mitigated by the presence of ABA, dimethylthiourea, and NOX inhibitor, but was strengthened by H2O2, antioxidant enzyme inhibitor, fluridone, and gibberellin. In comparison to the control group (20 °C + 0 mM NaCl), this combined stress led to elevated levels of ABA, reduced GAD and NOX activity, and a decrease in H2O2 and GABA content. Further investigation revealed that this combined stress significantly suppressed the activity of superoxide dismutase (SOD) and catalase (CAT), as well as downregulated the gene expression levels of MnSOD and CAT. However, the study demonstrates that exogenous GABA effectively reversed the inhibitory effects of combined stress on wheat seed germination. These findings suggest that GABA-induced NOX-mediated H2O2 signalling plays a crucial role in mitigating the adverse impact of combined stress on wheat seed germination. This research holds significant theoretical and practical implications for the regulation of crop seed germination by GABA under conditions of combined stress.


Assuntos
Germinação , Peróxido de Hidrogênio , Sementes , Triticum , Ácido gama-Aminobutírico , Peróxido de Hidrogênio/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/genética , Germinação/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Catalase/metabolismo , Catalase/genética , Estresse Salino/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
3.
Molecules ; 29(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339296

RESUMO

Ampicillin (AMP) and amoxicillin (AMX) are popular antibiotics, which are penicillin derivatives, and are used in both human and veterinary medicine. In the conducted study, AMP, AMX and their mixtures did not cause major changes in the total bacterial counts in soil samples, and even an increase in the bacterial counts from 3,700,000 to 6,260,000 colony-forming units (cfu) per gram of soil dry weight (g of soil DW) was observed for minimal amounts of these drugs in the soil. The total abundance of fungi, on the other hand, increased from values ranging from 17,000 to 148,000 cfu∙g-1 of soil DW to a level of 32,000 to 131,000 cfu∙g-1 of soil DW. The tested antibiotics and their mixtures had no significant effect on the mortality and growth of H. incongruens. AMX and the AMP + AMX mixture also showed no effect on the plant fresh weight yield, plant aboveground part length and dry weight content of wheat seedlings. In contrast, AMP caused an increase in the plant fresh weight yield and wheat seedling length compared to the control. The drug also caused a slight decrease in the seedling dry weight content. Both AMP and AMX showed inhibitory effects on the plant root length at the highest concentrations of the compounds.


Assuntos
Amoxicilina , Ampicilina , Antibacterianos , Fungos , Microbiologia do Solo , Ampicilina/farmacologia , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Plantas
4.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1573-1582, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235015

RESUMO

Low temperature (LT) in spring usually occurs at the booting of winter wheat, resulting in reduction of wheat yield. In this study, we used the LT-sensitive wheat cultivar 'Wanmai 52' and the LT-insensitive wheat cultivar 'Yannong 19' as experimental materials to conduct LT treatment (-2 ℃ and 0 ℃) at booting stage. After the LT treatment, we sprayed 6-benzylaminoadenine (6-BA) solutions with concentrations of 10, 20, and 30 mg·L-1 respectively, with equal mass distilled water as control to investigate the effects of spraying 6-BA on the physiological characteristics, yield and quality of wheat flag leaves after LT stress at booting stage. The results showed that compared with the control, young ear of wheat treated with exogenous spraying 6-BA was fuller, the floret morphology was improved, and the number of vascular bundles under the spike was increased. 6-BA application promoted the accumulation of soluble sugar, soluble protein, and proline in flag leaves. The activities of peroxidase and superoxide dismutase were increased, and the content of malondialdehyde was decreased. Exogenous 6-BA application decreased the number of degenerated spikes of wheat, increased the number of grains per spike and 1000-grain weight, as well as the contents of grain protein, wet gluten, and sedimentation value. In summary, exogenous 6-BA application could effectively alleviate the effects of LT stress on flag leaf and yield of wheat. Under the conditions of this experiment, the mitigation effect of spraying 6-BA solution on Yannong 19 was higher than that of Wanmai 52, and the mitigation effect of spraying 20 mg·L-1 6-BA solution on low temperature stress was the best.


Assuntos
Temperatura Baixa , Folhas de Planta , Purinas , Estresse Fisiológico , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Purinas/farmacologia , Biomassa , Reguladores de Crescimento de Plantas/farmacologia , Controle de Qualidade , Compostos de Benzil
5.
Sci Rep ; 14(1): 20411, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223242

RESUMO

Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.


Assuntos
Ácido Abscísico , Secas , Triticum , Ácido Abscísico/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/fisiologia , Clorofila/metabolismo , Estresse Fisiológico , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
6.
Planta ; 260(4): 94, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269658

RESUMO

MAIN CONCLUSION: Seed-application of the natural products protects sugar beet and wheat plants against infection with plasmodiophorid-transmitted viruses and thus may represent an efficient, environmentally friendly, easy and cost effective biocontrol strategy. In times of intensive agriculture, resource shortening and climate change, alternative, more sustainable and eco-friendly plant protection strategies are required. Here, we tested the potential of the natural plant substances Glycyrrhiza glabra leaf extract (GE) and the rhamnolipid Rhapynal (Rha) applied to seeds to protect against infection of sugar beet and wheat with soil-borne plant viruses. The soil-borne Polymyxa betae- and Polymyxa graminis-transmitted viruses cause extensive crop losses in agriculture and efficient control strategies are missing. We show that GE and Rha both efficiently protect plants against infection with soil-borne viruses in sugar beet and wheat when applied to seeds. Moreover, the antiviral protection effect is independent of the cultivar used. No protection against Polymyxa sp. was observed after seed treatment with the bio-substances at our analysis time points. However, when we applied the bio-substances directly to soil a significant anti-Polymyxa graminis effect was obtained in roots of barley plants grown in the soil as well as in the treated soil. Despite germination can be affected by high concentrations of the substances, a range of antiviral protection conditions with no effect on germination were identified. Seed-treatment with the bio-substances did not negatively affect plant growth and development in virus-containing soil, but was rather beneficial for plant growth. We conclude that seed treatment with GE and Rha may represent an efficient, ecologically friendly, non-toxic, easy to apply and cost efficient biocontrol measure against soil-borne virus infection in plants.


Assuntos
Beta vulgaris , Glycyrrhiza , Doenças das Plantas , Extratos Vegetais , Sementes , Sementes/virologia , Sementes/efeitos dos fármacos , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Beta vulgaris/virologia , Beta vulgaris/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triticum/virologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Glicolipídeos/farmacologia , Vírus de Plantas/fisiologia , Vírus de Plantas/efeitos dos fármacos , Raízes de Plantas/virologia , Raízes de Plantas/efeitos dos fármacos , Solo/química , Microbiologia do Solo , Hordeum/virologia , Hordeum/efeitos dos fármacos , Plasmodioforídeos/fisiologia , Plasmodioforídeos/efeitos dos fármacos
7.
Sci Rep ; 14(1): 21375, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271951

RESUMO

Plant growth regulators are cost-effective and efficient methods for enhancing plant defenses under stress conditions. This study investigates the ability of two plant growth-regulating substances, thiourea (TU) and arginine (Arg), to mitigate salinity stress in wheat. The results show that both TU and Arg, particularly when used together, modify plant growth under salinity stress. Their application significantly increases the activities of antioxidant enzymes while decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and relative electrolyte leakage (REL) in wheat seedlings. Additionally, these treatments significantly reduce the concentrations of Na+ and Ca2+ and the Na+/K+ ratio, while significantly increasing K+ levels, thereby preserving ionic osmotic balance. Importantly, TU and Arg markedly enhance the chlorophyll content, net photosynthetic rate, and gas exchange rate in wheat seedlings under salinity stress. The use of TU and Arg, either individually or in combination, results in a 9.03-47.45% increase in dry matter accumulation, with the maximum increase observed when both are used together. Overall, this study highlights that maintaining redox homeostasis and ionic balance are crucial for enhancing plant tolerance to salinity stress. Furthermore, TU and Arg are recommended as potential plant growth regulators to boost wheat productivity under such conditions, especially when applied together.


Assuntos
Arginina , Homeostase , Oxirredução , Estresse Salino , Plântula , Tioureia , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Tioureia/farmacologia , Tioureia/análogos & derivados , Arginina/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273328

RESUMO

The mitigation mechanisms of a kind of controlled-release nitrogen fertilizer (sulfur-coated controlled-release nitrogen fertilizer, SCNF) in response to O3 stress on a winter wheat (Triticum aestivum L.) variety (Nongmai-88) were studied in crop physiology and soil biology through the ozone-free-air controlled enrichment (O3-FACE) simulation platform and soil microbial metagenomics. The results showed that SCNF could not delay the O3-induced leaf senescence of winter wheat but could enhance the leaf size and photosynthetic function of flag leaves, increase the accumulation of nutrient elements, and lay the foundation for yield by regulating the release rate of nitrogen (N). By regulating the soil environment, SCNF could maintain the diversity and stability of soil bacterial and archaeal communities, but there was no obvious interaction with the soil fungal community. By alleviating the inhibition effects of O3 on N-cycling-related genes (ko00910) of soil microorganisms, SCNF improved the activities of related enzymes and might have great potential in improving soil N retention. The results demonstrated the ability of SCNF to improve leaf photosynthetic function and increase crop yield under O3-polluted conditions in the farmland ecosystem, which may become an effective nitrogen fertilizer management measure to cope with the elevated ambient O3 and achieve sustainable production.


Assuntos
Fertilizantes , Nitrogênio , Ozônio , Fotossíntese , Folhas de Planta , Microbiologia do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/microbiologia , Triticum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Ozônio/farmacologia , Estresse Fisiológico , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética
9.
Environ Sci Pollut Res Int ; 31(43): 55535-55548, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39235755

RESUMO

Heavy metal stress poses a significant threat to the productivity of agricultural systems and human health. Silicon (Si) is widely reported to be very effective against the different heavy metal stresses in crops. According to reports, it can help plants that are under cadmium (Cd) and nickel (Ni) stress. The presented work investigated how silicon interacted in Cd- and Ni-stressed wheat and mitigated metal toxicity. A pot experiment was carried out in which wheat crop was irrigated with Cd- and Ni-contaminated water. Application of Cd and Ni-contaminated water to wheat significantly reduced the root and shoot growth parameters and physiological and biochemical factors while increasing the antioxidant enzymatic activity and bioaccumulation of Cd and Ni metal in shoot and root as compared to the control. Application of Si led to an improvement in physiological parameters, i.e., greenness of leaves, i.e., SPAD values (17% and 26%), membrane stability (26% and 25%), and growth parameters i.e., root surface area (42% and 23%), root length (81% and 79%), root dry weight (456% and 190%), root volume (64% and 32%), shoot length (41% and 35%), shoot dry weight of shoot (111% and 117%), and overall grain weight (62% and 72%) under Cd and Ni stress, respectively. It increased the activity of antioxidant activity (max. up to 20%) whereas decreased the metal bioaccumulation of Cd and Ni in the roots and shoot (max. up to 62%) of wheat. It was concluded that the application of Si potentially increases antioxidant activity and metal chelation resulting in decreased oxidative damage and reducing the effect of Cd and Ni stress on wheat which improves growth and physiological parameters as well as inhibits Cd and Ni inclusion in food chain under Cd and Ni toxicity reducing health risks associated with these metals.


Assuntos
Cádmio , Níquel , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Medição de Risco
10.
Chemosphere ; 364: 143113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39151580

RESUMO

Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.


Assuntos
Cádmio , Poluentes do Solo , Triticum , Óxido de Zinco , Triticum/microbiologia , Triticum/efeitos dos fármacos , Óxido de Zinco/toxicidade , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Nanopartículas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Catalase/metabolismo
11.
Physiol Plant ; 176(4): e14477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134461

RESUMO

In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 µM). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO2 assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.


Assuntos
Melatonina , Fotossíntese , Triticum , Triticum/fisiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Biomassa , Folhas de Planta/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Clorofila/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Região do Mediterrâneo , Estresse Fisiológico
12.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125784

RESUMO

Salt stress is a serious problem, because it reduces the plant growth and seed yield of wheat. To investigate the salt-tolerant mechanism of wheat caused by plant-derived smoke (PDS) solution, metabolomic and proteomic techniques were used. PDS solution, which repairs the growth inhibition of wheat under salt stress, contains metabolites related to flavonoid biosynthesis. Wheat was treated with PDS solution under salt stress and proteins were analyzed using a gel-free/label-free proteomic technique. Oppositely changed proteins were associated with protein metabolism and signal transduction in biological processes, as well as mitochondrion, endoplasmic reticulum/Golgi, and plasma membrane in cellular components with PDS solution under salt stress compared to control. Using immuno-blot analysis, proteomic results confirmed that ascorbate peroxidase increased with salt stress and decreased with additional PDS solution; however, H+-ATPase displayed opposite effects. Ubiquitin increased with salt stress and decreased with additional PDS solution; nevertheless, genomic DNA did not change. As part of mitochondrion-related events, the contents of ATP increased with salt stress and recovered with additional PDS solution. These results suggest that PDS solution enhances wheat growth suppressed by salt stress through the regulation of energy metabolism and the ubiquitin-proteasome system related to flavonoid metabolism.


Assuntos
Proteínas de Plantas , Proteômica , Estresse Salino , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Proteômica/métodos , Proteínas de Plantas/metabolismo , Metabolômica/métodos , Fumaça/efeitos adversos , Proteoma/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
13.
Physiol Plant ; 176(4): e14503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39191702

RESUMO

Worldwide, where the demand for novel and greener solutions for sustainable agricultural production is increasing, the use of eco-friendly products such as seaweed-derived biostimulants as pre-sowing treatment represent a promising and important approach for the future. Cystoseira barbata, a brown seaweed species abundant in the Mediterranean Region, was collected from the Marmara Sea and subjected to water, alkali, and acidic extractions, and the biostimulant activity of these extracts was tested on wheat (Triticum durum cv. Saricanak-98) using different rates through application to the seeds or germination medium (substrate) applications. The different extracts were characterized by mineral, total phenolic, free amino acid, mannitol, polysaccharide, antioxidant concentrations and hormone-like activity. The effects of the extracts on growth parameters, root morphology, esterase activity, and mineral nutrient concentrations of wheat seedlings were investigated. Our results suggest that the substrate application was more effective in enhancing the seedling performance compared to the seed treatment. High rates of seaweed extracts applied to substrates increased the shoot length and fresh weight of wheat seedlings by up to 20 and 25%, respectively. The substrate applications enhanced the root fresh weights of wheat seedlings by up to 25% when compared to control plants. Among the biostimulant extract applications, the water extract at the highest rate yielded the most promising results in terms of the measured parameters. Cystoseira barbata extracts with different compositions can be used as effective biostimulants to boost seedling growth. The local seaweed biomass affected by mucilage problems, has great potential as a bioeconomy resource and can contribute to sustainable practices for agriculture.


Assuntos
Alga Marinha , Plântula , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Phaeophyceae/crescimento & desenvolvimento , Phaeophyceae/fisiologia , Phaeophyceae/efeitos dos fármacos , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Extratos Vegetais/farmacologia
14.
Sci Rep ; 14(1): 20024, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198538

RESUMO

Globally from abiotic stresses, salt stress is the major stress that limits crop production. One of them is wheat that has been utilized by more than 1/3 of the world population as staple food due to its nutritive value. Biochar is an activated carbon that can ameliorate the negative impacts on plants under saline conditions. The present study was conducted to examine the ameliorative impact of "Biochar application" to Triticum aestivum L. plant grown under salinity stress and evaluated on the basis of various growth, yield, physiological, biochemical attributes. Preliminary experiment was done to select the Triticum aestivum L. varieties with 90% germination rate for further experiment. The selected varieties, FSD08 and PUNJAB-11 of wheat were treated with two levels of sodium chloride (0 mM and 120 mM). Two varieties of wheat included FSD08 and PUNJAB-11 were treated with two levels of sodium chloride (0 mM and 120 mM). To address the impact of salt stress two levels of biochar 0% and 5% was used as exogenous application. A three way completely randomized experimentation was done in 24 pots of two wheat varieties with three replicates. The results demonstrated that salt stress affected growth, physiological attributes, yield and inorganic mineral ions (Ca2+ and K+) in roots and shoots parameters of wheat negatively while biochar overall improved the performance of plant. SOD, CAT, APX and POD activities enhanced during salt stress as the plant self-defense mechanism against salinity to minimize the damaging effect. Salt stress also significantly increased the membrane permeability, and levels of H2O2, MDA, Cl and Na ions. Biochar treatment nullified negative impacts of NaCl and improved the plant growth and yield significantly. Hence, biochar amendment can be suggested as suitable supplement for sustainable crop production under salinization.


Assuntos
Carvão Vegetal , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Carvão Vegetal/farmacologia , Germinação/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade
15.
J Agric Food Chem ; 72(35): 19333-19341, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39183467

RESUMO

The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.


Assuntos
Herbicidas , Ácidos Nicotínicos , Proteínas de Plantas , ATPases Translocadoras de Prótons , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/enzimologia , Herbicidas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Nicotínicos/toxicidade , Ácidos Nicotínicos/farmacologia , Ácidos Indolacéticos/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia
16.
Sci Total Environ ; 950: 175270, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111436

RESUMO

Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.


Assuntos
Carvão Vegetal , Cromo , Nanopartículas , Silício , Poluentes do Solo , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Carvão Vegetal/química , Poluentes do Solo/toxicidade , Cromo/toxicidade , Nanopartículas/toxicidade , Solo/química
17.
Ecotoxicol Environ Saf ; 283: 116826, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39106570

RESUMO

The utilisation of coated controlled-release fertilizers (CRFs) leads to the persistence of residual plastic films in agricultural soils, posing a potential threat to crop health. This study investigates the impacts of four residual films (0.39 %, w/w) derived from CRFs in soil, including petrochemical polyether, bio-based polyether, castor oil polyester, and wheat straw polyester polyurethane on wheat growth. This study found that PecPEUR significantly reduced wheat plant height, stem diameter, leaf area, and aboveground fresh weight by 24.8 %, 20.2 %, and 25.7 %. Through an in-depth exploration of transcriptomics and metabolomics, it has been discovered that all residual films disrupted glycolysis-related metabolic pathways in wheat roots, affecting seedling growth. Among them, PecPEUR significantly reduced the fresh weight of aboveground parts by 20.5 %. In contrast, polyester polyurethane residue had no discernible impact on aboveground wheat growth. This was attributed to the enrichment of wheat root genes in jasmonic acid and γ-aminobutyric acid metabolic pathways, thus mitigating oxidative stress, enhancing stress resistance, and ensuring normal plant growth. This study, for the first time, provides comprehensive insights into the effects of polyurethane film residue on wheat seedling growth, underscoring its potential as a promising alternative to conventional plastics in soil.


Assuntos
Metabolômica , Microplásticos , Poliuretanos , Poluentes do Solo , Triticum , Poliuretanos/química , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/genética , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Transcriptoma/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Fertilizantes , Solo/química
18.
Plant Physiol Biochem ; 215: 108973, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133980

RESUMO

Exopolysaccharide (EPS)-producing beneficial bacteria play a multifaceted role in improving plant growth and adaptive responses against different stressors. In this study, we isolated 25 bacterial strains from pea nodules and were further studied for their sodium chloride (NaCl) and cadmium (Cd) stress tolerance. Based on our results, Rhizobium fabae SR-22 (NCBI Accession number: MG063739.1) showed better tolerance toward salinity and Cd stress and produced a wide range of plant growth-promoting compounds. However, the amount of EPS varies during NaCl and Cd stress. It was important to note that NaCl and Cd beyond the tolerant level, affected the morphology and cellular viability of R. fabae. Interestingly, plant growth-promoting (PGP) substances (indole-3-acetic acid, ammonia, siderophore, and ACC deaminase) released by R. fabae were increased with increasing NaCl concentrations. In contrast, PGP substances were greatly decreased by increasing Cd dosages. Further, the beneficial effect of EPS-producing R. fabae in Triticum aestivum grown in soil treated with different levels of NaCl and Cd was assessed. Inoculation of R. fabae in wheat seedlings grown under higher NaCl and Cd concentrations showed improved growth compared to non-inoculated plants. R. fabae exhibited maximum effect in wheat plants grown under 2% NaCl and increased seed germination (8%), root length (13%), vigor indices (19%), root biomass (20%), chlorophyll-a (31%), total chlorophyll (27%) and carotenoid content. Additionally, R. fabae increased Cd and NaCl tolerance in wheat seedlings and improved their antioxidative responses. Conclusively, this work demonstrated that EPS-producing R. fabae showed a promising role in mitigating salinity and Cd-stress in wheat possibly by reducing salt and HM stress-induced abrasions and growth promotion via inorganic phosphate solubilization, and increased nutrient absorption. In the future, R. fabae equipped with these distinguishing characteristics may be used as effective bio-inoculants/bio-formulations in agriculture to address salinity and HM stress issues.


Assuntos
Cádmio , Polissacarídeos Bacterianos , Cloreto de Sódio , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Cloreto de Sódio/farmacologia , Polissacarídeos Bacterianos/metabolismo , Estresse Fisiológico
19.
Chemosphere ; 364: 143046, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117087

RESUMO

Consento (CON) poses a significant environmental hazard as a systemic fungicide, adversely affecting the health of non-target organisms. Nitric oxide (NO), a signaling molecule, is known to play a crucial role in plant physiology and abiotic stress tolerance. However, whether NO plays any role to enhance fungicide CON tolerance in wheat seedlings is yet unclear. Therefore, we conducted a hydroponic experiment i) to investigate the morpho-physio-biochemical changes of wheat seedlings to fungicide CON stress, and ii) to examine the effects of NO and fungicide CON treatments on oxidative damage, antioxidant system, secondary metabolism and detoxification of systemic fungicide in wheat seedlings. The results showed that CON fungicide at the highest (4X) concentration significantly decreased wheat seedlings fresh weight (46.89%), shoot length (40.26%), root length (56.11%) and total chlorophyll contents (67.44%) in a dose response relationship. Moreover, CON significantly increased hydrogen peroxide, malondialdehyde, catalase, ascorbate peroxidase, glutathione-S-transferase, and peroxidase activities while decreased reduced glutathione (GSH) content. This ultimately impaired the redox homeostasis of cells, leading to oxidative damage in cell membrane. Under fungicide treatment, the addition of NO reduced the fungicide phytotoxicity, with an increase of over 60% in seedling growth. The NO application mitigated CON phytotoxicity as reflected by significantly increased chlorophyll pigments (69.88%) and decreased oxidative damage in wheat leaves. Indeed, the NO alleviatory effect was able to increase the tolerance of seedlings to fungicide, which resulted increments in antioxidant and detoxification enzymes activity, with the enhanced GSH level (78.54%). Interestingly, NO alleviated CON phytotoxicity through the phenylpropanoid pathway by enhancing the activity of secondary metabolism enzymes such as phenylalanine ammonia-lyase (47.28%), polyphenol oxidase (9%), and associated metabolites such as phenolic acids (77.62%), flavonoids (34.33%) in wheat leaves. Our study has provided evidence that NO plays a key role in the metabolism and detoxification of systemic fungicide in wheat through enhanced activity of antioxidants, detoxifications and secondary metabolic enzymes.


Assuntos
Antioxidantes , Fungicidas Industriais , Óxido Nítrico , Estresse Oxidativo , Plântula , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Fungicidas Industriais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Peróxido de Hidrogênio/metabolismo , Catalase/metabolismo
20.
Sci Total Environ ; 948: 174936, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047830

RESUMO

Cadmium (Cd) contamination in soils threatens food security, while cultivating low-Cd-accumulative varieties, coupled with agro-nanotechnology, offers a potential solution to reduce Cd accumulation in crops. Herein, foliar application of selenium nanoparticles (SeNPs) was performed on seedlings of two low-Cd-accumulative wheat (Triticum aestivum L.) varieties grown in soil spiked with Cd at 3 mg/kg. Results showed that foliar application of SeNPs at 0.16 mg/plant (SeNPs-M) significantly decreased the Cd content in leaves of XN-979 and JM-22 by 46.4 and 40.8 %, and alleviated oxidative damage. The wheat leaves treated with SeNPs-M underwent significant metabolic and transcriptional reprogramming. On one hand, four specialized antioxidant metabolites such as L-Tyrosine, beta-N-acetylglucosamine, D-arabitol, and monolaurin in response to SeNPs in JM-22 and XN-979 is the one reason for the decrease of Cd in wheat leaves. Moreover, alleviation of stress-related kinases, hormones, and transcription factors through oxidative post-translational modification, subsequently regulates the expression of defense genes via Se-enhanced glutathione peroxidase. These findings indicate that combining low-Cd-accumulative cultivars with SeNPs spraying is an effective strategy to reduce Cd content in wheat and promote sustainable agricultural development.


Assuntos
Cádmio , Selênio , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/genética , Triticum/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Folhas de Planta/metabolismo , Nanopartículas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...