Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125779

RESUMO

IgE-mediated wheat allergy can take on various forms, including childhood food allergy to wheat, wheat-dependent exercise-induced anaphylaxis in young adults, baker's respiratory allergy/asthma in workers exposed to wheat flour inhalation, and contact urticaria that is caused by hydrolyzed wheat proteins in some cosmetics, and that is sometimes associated with a food allergy. Singleplex and multiplex immunoassays detect specific IgE antibodies to wheat allergenic molecular biomarkers such as omega-5 gliadin Tri a 19, lipid transfer protein Tri a 14, and alpha-amylase inhibitors. The fluorescence enzyme immunoassay with capsulated cellulose polymer solid-phase coupled allergens is a commonly used singleplex assay. Multiplex methods include the ELISA-based macroarray immunoassay using nano-bead technology and a microarray immunoassay on polymer-coated slides. Another promising diagnostic tool is the basophil activation test performed with omega-5 gliadin and other wheat protein types. Detailed comprehension of the structural and immunological features of the numerous wheat allergens significant in clinical settings is imperative for advancing diagnostic biomarkers for IgE-mediated wheat allergies.


Assuntos
Alérgenos , Biomarcadores , Gliadina , Imunoglobulina E , Hipersensibilidade a Trigo , Hipersensibilidade a Trigo/diagnóstico , Hipersensibilidade a Trigo/imunologia , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Alérgenos/imunologia , Gliadina/imunologia , Triticum/imunologia , Antígenos de Plantas/imunologia , Imunoensaio/métodos
2.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095719

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Estômatos de Plantas , Triticum , Ascomicetos/fisiologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas , Interações Hospedeiro-Patógeno
3.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000431

RESUMO

Wheat allergy is a major type of food allergy with the potential for life-threatening anaphylactic reactions. Common wheat, Triticum aestivum (hexaploid, AABBDD genome), was developed using tetraploid wheat (AABB genome) and the ancient diploid wheat progenitor (DD genome)-Aegilops tauschii. The potential allergenicity of gluten from ancient diploid wheat is unknown. In this study, using a novel adjuvant-free gluten allergy mouse model, we tested the hypothesis that the glutenin extract from this ancient wheat progenitor will be intrinsically allergenic in this model. The ancient wheat was grown, and wheat berries were used to extract the glutenin for testing. A plant protein-free colony of Balb/c mice was established and used in this study. The intrinsic allergic sensitization potential of the glutenin was determined by measuring IgE response upon transdermal exposure without the use of an adjuvant. Clinical sensitization for eliciting systemic anaphylaxis (SA) was determined by quantifying the hypothermic shock response (HSR) and the mucosal mast cell response (MMCR) upon intraperitoneal injection. Glutenin extract elicited a robust and specific IgE response. Life-threatening SA associated and a significant MMCR were induced by the glutenin challenge. Furthermore, proteomic analysis of the spleen tissue revealed evidence of in vivo Th2 pathway activation. In addition, using a recently published fold-change analysis method, several immune markers positively and negatively associated with SA were identified. These results demonstrate for the first time that the glutenin from the ancient wheat progenitor is intrinsically allergenic, as it has the capacity to elicit clinical sensitization for anaphylaxis via activation of the Th2 pathway in vivo in mice.


Assuntos
Alérgenos , Anafilaxia , Glutens , Camundongos Endogâmicos BALB C , Células Th2 , Triticum , Hipersensibilidade a Trigo , Animais , Anafilaxia/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Camundongos , Triticum/imunologia , Triticum/química , Glutens/imunologia , Hipersensibilidade a Trigo/imunologia , Alérgenos/imunologia , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Modelos Animais de Doenças , Feminino , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/efeitos dos fármacos , Proteômica/métodos
4.
PeerJ ; 12: e17633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948208

RESUMO

Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.


Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/patogenicidade , Variação Genética/genética , Caules de Planta/microbiologia , Caules de Planta/imunologia , Caules de Planta/genética , Genes de Plantas , Basidiomycota/patogenicidade
5.
Mol Plant Pathol ; 25(7): e13490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952297

RESUMO

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.


Assuntos
Resistência à Doença , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes de Plantas , Virulência/genética , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Basidiomycota/patogenicidade , Basidiomycota/genética , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Morte Celular , Deleção de Sequência/genética
6.
J Agric Food Chem ; 72(26): 15040-15052, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906536

RESUMO

Wheat species with various ploidy levels may be different regarding their immunoreactive potential in celiac disease (CD), but a comprehensive comparison of peptide sequences with known epitopes is missing. Thus, we used an untargeted liquid chromatography tandem mass spectrometry method to analyze the content of peptides with CD-active epitope in the five wheat species common wheat, spelt, durum wheat, emmer, and einkorn. In total, 494 peptides with CD-active epitope were identified. Considering the average of the eight cultivars of each species, spelt contained the highest number of different peptides with CD-active epitope (193 ± 12, mean ± SD). Einkorn showed the smallest variability of peptides (63 ± 4) but higher amounts of certain peptides compared to the other species. The wheat species differ in the presence and distribution of CD-active epitopes; hence, the entirety of peptides with CD-active epitope is crucial for the assessment of their immunoreactive potential.


Assuntos
Doença Celíaca , Epitopos , Proteínas de Plantas , Proteômica , Triticum , Doença Celíaca/imunologia , Triticum/química , Triticum/imunologia , Epitopos/imunologia , Epitopos/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Humanos , Espectrometria de Massas em Tandem , Peptídeos/imunologia , Peptídeos/química
7.
Nat Plants ; 10(6): 971-983, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38898164

RESUMO

Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Genes de Plantas , Evolução Molecular , Aegilops/genética , Aegilops/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
8.
Nat Plants ; 10(6): 984-993, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38898165

RESUMO

Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Genes de Plantas , Alelos , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Microbiol Spectr ; 12(8): e0377423, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916358

RESUMO

Stripe rust of wheat is caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Breeding durably resistant wheat varieties by disrupting the susceptibility (S) gene has an important impact on the control of wheat stripe rust. Mingxian169 (MX169) showed strong stripe rust susceptibility to all the races of Pst. However, molecular mechanisms and responsive genes underlying susceptibility of the wheat variety MX169 to Pst have not been elucidated. Here, we utilized next-generation sequencing technology to analyze transcriptomics data of "MX169" and high-resistance wheat "Zhong4" at 24, 48, and 120 h post-inoculation (hpi) with Pst. Comparative transcriptome analysis revealed 3,494, 2,831, and 2,700 differentially expressed genes (DEGs) at different time points. We observed an upregulation of DEGs involved in photosynthesis, flavonoid biosynthesis, pyruvate metabolism, thiamine metabolism, and other biological processes, suggesting their involvement in MX169's response to Pst. DEGs encoding transcription factors were also identified. Our study suggested the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst. IMPORTANCE: Our study suggests the potential susceptibility gene resources in MX169 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust susceptibility and for improving wheat resistance to Pst.


Assuntos
Resistência à Doença , Doenças das Plantas , Puccinia , Transcriptoma , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Basidiomycota/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Phytopathology ; 114(8): 1869-1877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829930

RESUMO

Leaf rust is a widespread foliar wheat disease causing substantial yield losses worldwide. Slow rusting is "adult plant" resistance that significantly slows epidemic development and thereby reduces yield loss. Wheat accession CI 13227 was previously characterized as having slow-rusting resistance. To validate the quantitative trait loci (QTLs) and develop diagnostic markers for slow rusting resistance in CI 13227, a new population of recombinant inbred lines of CI 13227 × Everest was evaluated for latent period, final severity, area under the disease progress curve, and infection type in greenhouses and genotyped using genotyping-by-sequencing. Four QTLs were identified on chromosome arms 2BL, 2DS, 3BS, and 7BL, explaining 6.82 to 28.45% of the phenotypic variance for these traits. Seven kompetitive allele-specific polymorphism markers previously reported to be linked to the QTLs in two other CI 13227 populations were validated. In addition, the previously reported QLr.hwwg-7AL was remapped to 2BL (renamed QLr.hwwg-2BL) after adding new markers in this study. Phenotypic data showed that the recombinant inbred lines harboring two or three of the QTLs had a significantly longer latent period. QLr.hwwg-2DS on 2DS showed a major effect on all rust resistance traits and was finely mapped to a 2.7-Mb interval by two newly developed flanking markers from exome capture. Three disease-resistance genes and two transporter genes were identified as the putative candidates for QLr.hwwg-2DS. The validated QTLs can be used as slow-rusting resistance resources, and the markers developed in this study will be useful for marker-assisted selection.


Assuntos
Basidiomycota , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Locos de Características Quantitativas/genética , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Basidiomycota/fisiologia , Fenótipo , Mapeamento Cromossômico , Puccinia , Marcadores Genéticos/genética , Genótipo , Cromossomos de Plantas/genética , Alelos
11.
J Allergy Clin Immunol Pract ; 12(8): 2017-2025.e5, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768897

RESUMO

BACKGROUND: Assessment of IgE-mediated sensitization to flour allergens is widely used to investigate flour-induced occupational asthma. The diagnostic efficiency of detecting specific IgE antibodies (sIgEs) against wheat and rye flour, however, has not been thoroughly compared with other diagnostic procedures. OBJECTIVE: We sought to evaluate the diagnostic accuracy of sIgE against wheat and rye compared with specific inhalation challenge (SIC) with flour as the reference standard. METHODS: This retrospective multicenter study included 264 subjects who completed an SIC with flour in eight tertiary centers, of whom 205 subjects showed a positive SIC result. RESULTS: Compared with SIC, sIgE levels of 0.35 kUA/L or greater against wheat and rye provided similar sensitivities (84% to 85%, respectively), specificities (71% to 78%), positive predictive values (91% to 93%), and negative predictive values (56% to 61%). Increasing the threshold sIgE value to 5.10 kUA/L for wheat and to 6.20 kUA/L for rye provided a specificity of 95% or greater and further enhanced the positive predictive value to 98%. Among subjects with a positive SIC, those who failed to demonstrate sIgE against wheat and rye (n = 26) had significantly lower total serum IgE level and blood and sputum eosinophil counts and a lesser increase in postchallenge FeNO compared with subjects with a detectable sIgE. CONCLUSION: High levels of sIgE against wheat and/or rye flour strongly support a diagnosis of flour-induced occupational asthma without the need to perform an SIC. The absence of detectable sIgE against wheat and rye in subjects with a positive SIC seems to be associated with lower levels of TH2 biomarkers.


Assuntos
Asma Ocupacional , Farinha , Imunoglobulina E , Secale , Triticum , Humanos , Secale/imunologia , Secale/efeitos adversos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Asma Ocupacional/diagnóstico , Asma Ocupacional/imunologia , Feminino , Farinha/efeitos adversos , Adulto , Estudos Retrospectivos , Triticum/imunologia , Triticum/efeitos adversos , Pessoa de Meia-Idade , Alérgenos/imunologia , Testes de Provocação Brônquica , Sensibilidade e Especificidade , Hipersensibilidade a Trigo/imunologia , Hipersensibilidade a Trigo/diagnóstico
12.
Phytopathology ; 114(8): 1878-1883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723149

RESUMO

Wheat blast caused by Pyricularia oryzae pathotype Triticum has spread to Asia (Bangladesh) and Africa (Zambia) from the endemic region of South America. Wheat varieties with durable resistance are needed, but very limited resistance resources are currently available. After screening tetraploid wheat accessions, we found an exceptional accession St19 (Triticum dicoccum, KU-114). Primary leaves of St19 were resistant not only to Brazilian isolate Br48 (a carrier of Type eI of AVR-Rmg8) but also to Br48ΔA8, an AVR-Rmg8 disruptant of Br48, even at 30°C, suggesting that the resistance of St19 is tolerant to high temperature and controlled by a gene or genes other than Rmg8. When an F2 population derived from a cross between St19 and St30 (a susceptible accession of T. paleocolchicum, KU-191) was inoculated with Br48, resistant and susceptible seedlings segregated in a 3:1 ratio, indicating that resistance of St19 is conferred by a single gene. We designated this gene Rmg11. Molecular mapping revealed that the RMG11 locus is located on the short arm of chromosome 7A. Rmg11 is effective not only against other two Brazilian isolates (Br5 and Br116.5) but also against Bangladeshi isolates (T-108 and T-109) at the seedling stage. At the heading stage, lines containing Rmg11 were highly susceptible to the Bangladeshi isolates but moderately resistant to the Brazilian isolates. Stacking of Rmg11 with Rmg8 and the 2NS segment is highly recommended to achieve durable wheat blast resistance.


Assuntos
Resistência à Doença , Doenças das Plantas , Tetraploidia , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Genes de Plantas/genética , Temperatura Alta , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Proteínas de Plantas/genética
13.
Phytopathology ; 114(8): 1884-1892, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723196

RESUMO

Stripe rust and powdery mildew are serious diseases that severely decrease the yield of wheat. Planting wheat cultivars with powdery mildew and stripe rust resistance genes is the most effective way to control these two diseases. Introducing disease resistance genes from related species into the wheat genome via chromosome translocation is an important way to improve wheat disease resistance. In this study, nine novel T1RS.1AL translocation lines were developed from the cross of wheat cultivar Chuannong25 (CN25) and a Chinese rye Qinling. The results of non-denaturing fluorescence in situ hybridization and PCR showed that all new lines were homozygous for the T1RS.1AL translocation. These new T1RS.1AL translocation lines exhibited strong resistance to stripe rust and powdery mildew. The cytogenetics results indicated that the resistance of the new lines was conferred by the 1RS chromosome arms, which came from Qinling rye. The genetic analysis indicated that there were new dominant resistance genes on the 1RS chromosome arm resistant to stripe rust and powdery mildew, and their resistance patterns were different from those of Yr9, Pm8, and Pm17 genes. In addition, the T1RS.1AL translocation lines generally exhibited better agronomic traits in the field relative to CN25. These T1RS.1AL translocations have great potential in wheat-breeding programs in the future.


Assuntos
Ascomicetos , Basidiomycota , Cromossomos de Plantas , Resistência à Doença , Doenças das Plantas , Secale , Translocação Genética , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Secale/genética , Secale/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Basidiomycota/fisiologia , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , População do Leste Asiático
14.
New Phytol ; 243(1): 314-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38730532

RESUMO

Effector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f. sp. tritici (Pgt) effector AvrSr27, which was not accurately predicted using AlphaFold2. We characterised the role of the conserved cysteine residues in AvrSr27 using in vitro biochemical assays and examined Sr27-mediated recognition using transient expression in Nicotiana spp. and wheat protoplasts. The AvrSr27 structure contains a novel ß-strand rich modular fold consisting of two structurally similar domains that bind to Zn2+ ions. The N-terminal domain of AvrSr27 is sufficient for interaction with Sr27 and triggering cell death. We identified two Pgt proteins structurally related to AvrSr27 but with low sequence identity that can also associate with Sr27, albeit more weakly. Though only the full-length proteins, trigger Sr27-dependent cell death in transient expression systems. Collectively, our findings have important implications for utilising protein prediction platforms for effector proteins, and those embarking on bespoke engineering of immunity receptors as solutions to plant disease.


Assuntos
Proteínas Fúngicas , Nicotiana , Triticum , Zinco , Zinco/metabolismo , Triticum/imunologia , Triticum/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Puccinia , Imunidade Vegetal , Ligação Proteica , Sequência de Aminoácidos , Morte Celular , Domínios Proteicos , Modelos Moleculares , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
15.
BMC Pediatr ; 24(1): 367, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807087

RESUMO

INTRODUCTION AND AIM: Celiac disease is one of the most common autoimmune disorders. This study aimed to evaluate the relationship between celiac disease and wheat sensitization. SUBJECTS AND METHODS: In the current study, children aged < 18 years with confirmed celiac disease were included. Data were analyzed using SPSS. RESULTS: Gastrointestinal problems were the most common indication for evaluation in terms of celiac disease. Prick and patch tests were positive in 43.4% and 34% respectively. CONCLUSION: Prick test and patch test for wheat sensitization were positive in about 30-45% of the children for celiac disease.


Assuntos
Doença Celíaca , Imunoglobulina E , Testes do Emplastro , Testes Cutâneos , Triticum , Hipersensibilidade a Trigo , Humanos , Doença Celíaca/diagnóstico , Doença Celíaca/imunologia , Doença Celíaca/sangue , Doença Celíaca/complicações , Criança , Masculino , Feminino , Pré-Escolar , Hipersensibilidade a Trigo/imunologia , Hipersensibilidade a Trigo/diagnóstico , Hipersensibilidade a Trigo/sangue , Imunoglobulina E/sangue , Adolescente , Testes Cutâneos/métodos , Triticum/imunologia , Lactente
16.
Front Immunol ; 15: 1381130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711499

RESUMO

Background: Wheat allergy (WA), characterized by immunological responses to wheat proteins, is a gluten-related disorder that has become increasingly recognized in recent years. Bibliometrics involves the quantitative assessment of publications within a specific academic domain. Objectives: We aimed to execute an extensive bibliometric study, focusing on the past 30 years of literature related to wheat allergy. Methods: We searched the Web of Science database on 5th Dec 2023. We used the keywords "wheat allergy or wheat anaphylaxis or wheat hypersensitivity," "gliadin allergy or gliadin anaphylaxis or gliadin hypersensitivity," "wheat-dependent exercise-induced anaphylaxis," and "baker's asthma" for our search. All items published between 1993 and 2023 were included. The top 100 most cited articles were identified and analyzed. Results: Our study conducted an in-depth bibliometric analysis of the 100 most-cited articles in the field of wheat allergy, published between 2002 and 2019. These articles originated from 20 different countries, predominantly Japan and Germany. The majority of these articles were centered on the pathogenesis and treatment of wheat allergy (WA). The Journal of Allergy and Clinical Immunology (JACI) was the most prolific contributor to this list, publishing 14 articles. The article with the highest citation count was published by Biomed Central (BMC) and garnered 748 citations. The peak citation year was 2015, with a total of 774 citations, while the years 1998, 2001, and 2005 saw the highest publication frequency, each with 7 articles. Conclusion: Our study aims to provide physicians and researchers with a historical perspective for the scientific progress of wheat allergy, and help clinicians effectively obtain useful articles that have a significant impact on the field of wheat allergy.


Assuntos
Bibliometria , Hipersensibilidade a Trigo , Hipersensibilidade a Trigo/imunologia , Hipersensibilidade a Trigo/epidemiologia , Humanos , Triticum/imunologia , Triticum/efeitos adversos , Gliadina/imunologia , Publicações Periódicas como Assunto/tendências , Alérgenos/imunologia
17.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
18.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802731

RESUMO

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Imunidade Vegetal/genética , Estudo de Associação Genômica Ampla , Genes de Plantas , Genoma de Planta , Filogenia
19.
J Allergy Clin Immunol Pract ; 12(8): 2111-2117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38670261

RESUMO

BACKGROUND: Egg allergy is common and caused by sensitization to ovomucoid and/or ovalbumin. Many egg-allergic patients are able to tolerate eggs baked into other foods, such as muffins. Although heating egg extensively reduces allergens, the effect of other food ingredients on allergenicity of eggs, or the "matrix effect," is less well studied. OBJECTIVE: We aimed to define how food matrices impact the matrix effect in egg allergenicity. METHODS: Enzyme-linked immunosorbent assay was used to quantify ovalbumin and ovomucoid in extracts from various baked egg products: plain baked egg without a matrix, and muffins baked using either wheat flour, rice flour, or a wheat flour/banana puree mix. Allergen-specific immunoglobulin E (IgE)-blocking enzyme-linked immunosorbent assays were performed using the egg product extracts on egg-allergic patient sera to determine whether the amount of extracted egg protein in each extract correlated with how well the extracts could bind patients' egg IgE. RESULTS: Baking eggs in any muffin matrix led to an increase in the amount of extractable ovalbumin and a decrease in the amount of extractable ovomucoid compared with plain baked egg. Compared with wheat muffins, rice muffins had more extractable ovalbumin and wheat/banana muffins had more extractable ovalbumin and ovomucoid. The egg allergens in the extracts were able to block egg-allergic patients' egg IgE. CONCLUSIONS: Food matrices affect egg allergen availability. Patients and families should be advised that substitutions in baked egg muffin recipes can affect the amount of egg allergens in foods and potentially affect the risk of food allergic reaction.


Assuntos
Alérgenos , Culinária , Hipersensibilidade a Ovo , Ovos , Imunoglobulina E , Ovalbumina , Ovomucina , Humanos , Hipersensibilidade a Ovo/imunologia , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Alérgenos/imunologia , Ovalbumina/imunologia , Ovomucina/imunologia , Ovomucina/efeitos adversos , Ovos/efeitos adversos , Triticum/imunologia , Triticum/efeitos adversos , Oryza/imunologia , Ensaio de Imunoadsorção Enzimática , Farinha/efeitos adversos
20.
Phytopathology ; 114(7): 1646-1656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648033

RESUMO

Actin filaments and their associated actin-binding proteins play key roles in plant innate immune signaling. CAP1, or cyclase-associated protein 1, is an important regulatory factor of the actin cytoskeleton-associated signaling network and was hypothesized here to be involved in resistance against wheat stripe rust because TaCAP1 expression was upregulated in response to Puccinia striiformis f. sp. tritici (Pst). Downregulation of TaCAP1 expression led to decreased resistance against Pst, in contrast to increased resistance upon TaCAP1 overexpressing, as demonstrated by the changes of phenotypes and hyphal growth. We found increased expression of pathogenesis-responsive or relative related genes and disease grade changed in TaCAP1 overexpressing plants. Our results also showed TaCAP1-regulated host resistance to Pst by inducing the production and accumulation of reactive oxygen species and mediating the salicylic acid signaling pathway. Additionally, TaCAP1 interacted with chlorophyll a/b-binding proteins TaLHCB1.3 and TaLHCB1.4, also known as the light-harvesting chlorophyll-protein complex II subunit B, which belong to the light-harvesting complex II protein family. Silencing of two TaLHCB1 genes showed higher susceptibility to Pst, which reduced wheat resistance against Pst. Therefore, the data presented herein further illuminate our understanding that TaCAP1 interacts with TaLHCB1s and functions as a positive regulator of wheat resistance against stripe rust.


Assuntos
Basidiomycota , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Puccinia/fisiologia , Basidiomycota/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...