Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
Vaccine ; 42(17): 3710-3720, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38755066

RESUMO

One of the main causes of human brucellosis is Brucella melitensis infecting small ruminants. To date, Rev1 is the only vaccine successfully used to control ovine and caprine brucellosis. However, it is pathogenic for pregnant animals, resulting in abortions and vaginal and milk shedding, as well as being infectious for humans. Therefore, there is an urgent need to develop an effective vaccine that is safer than Rev1. In efforts to further attenuate Rev1, we recently used wzm inactivation to generate a rough mutant (Rev1Δwzm) that retains a complete antigenic O-polysaccharide in the bacterial cytoplasm. The aim of the present study was to evaluate the placental pathogenicity of Rev1Δwzm in trophoblastic cells, throughout pregnancy in mice, and in ewes inoculated in different trimesters of pregnancy. This mutant was evaluated in comparison with the homologous 16MΔwzm derived from a virulent strain of B. melitensis and the naturally rough sheep pathogen B. ovis. Our results show that both wzm mutants triggered reduced cytotoxic, pro-apoptotic, and pro-inflammatory signaling in Bewo trophoblasts, as well as reduced relative expression of apoptosis genes. In mice, both wzm mutants produced infection but were rapidly cleared from the placenta, in which only Rev1Δwzm induced a low relative expression of pro-apoptotic and pro-inflammatory genes. In the 66 inoculated ewes, Rev1Δwzm was safe and immunogenic, displaying a transient serological interference in standard RBT but not CFT S-LPS tests; this serological response was minimized by conjunctival administration. In conclusion, these results support that B. melitensis Rev1Δwzm is a promising vaccine candidate for use in pregnant ewes and its efficacy against B. melitensis and B. ovis infections in sheep warrants further study.


Assuntos
Brucella melitensis , Brucelose , Placenta , Animais , Brucella melitensis/patogenicidade , Brucella melitensis/imunologia , Brucella melitensis/genética , Feminino , Ovinos , Brucelose/prevenção & controle , Brucelose/imunologia , Brucelose/veterinária , Gravidez , Placenta/microbiologia , Camundongos , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Trofoblastos/imunologia , Trofoblastos/microbiologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem
2.
Am J Reprod Immunol ; 91(5): e13861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716765

RESUMO

BACKGROUND: Maternal-fetal immunology is intricate, and the effects of mRNA-S maternal vaccination on immune regulation at the maternal-fetal interface require further investigation. Our study endeavors to elucidate these immunological changes, enhancing our comprehension of maternal and fetal health outcomes. By analyzing immune profiles and cytokine responses, we aim to provide valuable insights into the impact of mRNA-S vaccination on the delicate balance of immune regulation during pregnancy, addressing critical questions in the field of reproductive pharmacology. OBJECTIVES: This investigation sought to examine the prospective influence of mRNA-S-based vaccines and extracellular vesicles (EVs) containing the Spike (S) protein at the maternal-fetal interface. Our primary emphasis was on evaluating their effects on maternal decidua cells and fetal chorion trophoblast cells (hFM-CTCs). METHODS: We validated the generation of EVs containing the S protein from small human airway epithelial cell lines (HSAECs) following mRNA-S vaccine exposure. We assessed the expression of angiotensin-converting enzyme 2 (ACE2) gene and protein in fetal membranes and the placenta, with specific attention to decidual cells and fetal membrane chorion cells. To assess cellular functionality, these cells were exposed to both recombinant S protein and EVs loaded with S proteins (eSPs). RESULTS: Our findings revealed that cells and EVs subjected to mRNA-S-based vaccination exhibited altered protein expression levels of S proteins. At the feto-maternal interface, both placental and fetal membrane tissues demonstrated similar ACE-2 expression levels. Among individual cellular layers, syncytiotrophoblast cells in the placenta and chorion cells in the fetal membrane exhibited elevated ACE-2 expression. Notably, EVs derived from HSAECs activated the MAPK pathway in decidual cells. Additionally, decidual cells displayed a substantial increase in gene expression of chemokines like CXCL-10 and CXCL-11, as well as proinflammatory cytokines such as IL-6 in response to eSPs. However, the levels of Ccl-2 and IL-1ß remained unchanged in decidual cells under the same conditions. Conversely, hFM-CTCs demonstrated significant alterations in the proinflammatory cytokines and chemokines with respect to eSPs. CONCLUSION: In conclusion, our study indicates that mRNA-S-based maternal vaccination during pregnancy may influence the maternal-fetal interface's COVID-19 interaction and immune regulation. Further investigation is warranted to assess safety and implications.


Assuntos
Vesículas Extracelulares , Trofoblastos , Humanos , Feminino , Gravidez , Trofoblastos/imunologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Decídua/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Citocinas/metabolismo , Vacinação , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Troca Materno-Fetal , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Linhagem Celular , Vacinas contra COVID-19/imunologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
3.
Chin Med J (Engl) ; 137(12): 1399-1406, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38724467

RESUMO

ABSTRACT: Normal pregnancy is a contradictory and complicated physiological process. Although the fetus carries the human leukocyte antigen (HLA) inherited from the paternal line, it does not cause maternal immune rejection. As the only exception to immunological principles, maternal-fetal immune tolerance has been a reproductive immunology focus. In early pregnancy, fetal extravillous trophoblast cells (EVTs) invade decidual tissues and come into direct contact with maternal decidual immune cells (DICs) and decidual stromal cells (DSCs) to establish a sophisticated maternal-fetal crosstalk. This study reviews previous research results and focuses on the establishment and maintenance mechanism of maternal-fetal tolerance based on maternal-fetal crosstalk. Insights into maternal-fetal tolerance will not only improve understanding of normal pregnancy but will also contribute to novel therapeutic strategies for recurrent spontaneous abortion, pre-eclampsia, and premature birth.


Assuntos
Tolerância Imunológica , Humanos , Gravidez , Feminino , Tolerância Imunológica/imunologia , Troca Materno-Fetal/imunologia , Decídua/imunologia , Trofoblastos/imunologia , Feto/imunologia
4.
J Reprod Immunol ; 163: 104249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678819

RESUMO

Recurrent spontaneous abortion (RSA) affects approximately 1 % of women striving for conception, posing a significant clinical challenge. This study aimed to identify a prognostic signature in RSA and elucidate its molecular mechanisms. Prognostic gene impacts were further assessed in HTR-8/SVneo and human primary extravillous trophoblast (EVT) cells in vitro experiments. A total of 6168 differentially expressed genes (DEGs) were identified, including 3035 upregulated and 3133 downregulated genes. WGCNA pinpointed 8 significant modules and 31 ferroptosis-related DEGs in RSA. Optimal clustering classified RSA patients into three distinct subgroups, showing notable differences in immune cell composition. Six feature genes (AEBP2, CISD2, PML, RGS4, SRSF9, STK11) were identified. The diagnostic model showed high predictive capabilities (AUC: 0.966). Mendelian randomization indicated a significant association between CISD2 levels and RSA (OR: 1.069, P-value: 0.049). Furthermore, the downregulation of CISD2 promotes ferroptosis in HTR-8/SVneo and human primary EVT cells. CISD2 emerged as a pivotal gene in RSA, serving as a ferroptosis-related therapeutic target. The diagnostic model based on gene expression and Mendelian randomization provides novel insights into the pathogenesis of RSA.


Assuntos
Aborto Habitual , Ferroptose , Análise da Randomização Mendeliana , Adulto , Feminino , Humanos , Gravidez , Aborto Habitual/imunologia , Aborto Habitual/genética , Linhagem Celular , Ferroptose/genética , Ferroptose/imunologia , Prognóstico , Trofoblastos/imunologia , Trofoblastos/metabolismo , Trofoblastos/patologia
5.
J Reprod Immunol ; 163: 104236, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555746

RESUMO

Pre-eclampsia (PE) is a hypertension condition that occurs exclusively during pregnancy and has the potential to impact nearly all organ systems. It is estimated to complicate approximately 2-8% of pregnancies worldwide. PE is a prominent medical disorder that poses a significant risk to pregnant mothers and their infants. This review commences by giving the most up-to- date concepts about the pathophysiology of PE. The condition involves atypical infiltration of trophoblast cells into the spiral arteries of the decidua and myometrium, resulting in an insufficient establishment of proper blood flow between the uterus and placenta. The aberrant activation of natural killer (NK) cells in both the peripheral blood and the decidua has been identified as one of the contributing factors to the development of PE. The strong evidence for the genetic etiology of PE is provided by the association between maternal killer cell immunoglobulin-like receptor (KIR) and Human Leukocyte Antigen (HLA-C) in trophoblast cells. Recent observations provide evidence that changes in the expression of anti-angiogenic factors in the placenta are the underlying cause of the clinical symptoms associated with the condition. This review also provides a comprehensive overview of the latest advancements in understanding the underlying causes of PE. It specifically highlights the emergence of new diagnostic biomarkers and their potential implications for therapeutic interventions in managing this medical condition.


Assuntos
Biomarcadores , Células Matadoras Naturais , Pré-Eclâmpsia , Trofoblastos , Humanos , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/terapia , Gravidez , Feminino , Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Receptores KIR/imunologia , Receptores KIR/metabolismo , Receptores KIR/genética , Placenta/imunologia , Placenta/patologia , Antígenos HLA-C/imunologia , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Animais , Decídua/imunologia
6.
J Reprod Immunol ; 163: 104240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492532

RESUMO

OBJECTIVES: Gestational diabetes mellitus (GDM) is a growing health concern. Since members of the galectin-family are identified to play a role in the pathogenesis of GDM, we determined galectin-12 as an essential protein due to its influence in lipolysis and inflammation processes. This study investigates the expression of galectin-12 in the placentas of women with GDM. STUDY DESIGN: The study population includes 40 expectant women suffering from GDM and 40 healthy controls. The expression of galectin-12 in the syncytiotrophoblast (SCT) and the extra villous trophoblast (EVT) of the placenta was analyzed by immunohistological staining and double immunofluorescence. Immunoreactivity Score (IRS) was used for evaluation. RESULTS: The results demonstrate a significant overexpression of galectin-12 in the nucleus of the SCT and the EVT of placentas with GDM compared to the healthy control group. Additionally, double immunofluorescence visualizes corresponding results with an overexpression of galectin-12 in the extra villous trophoblast of GDM placentas representing maternal cells. CONCLUSION: This study identifies galectin-12 to be associated with the process of gestational diabetes mellitus. These findings are in correspondence with the involvement of galectin-12 in inflammatory processes. Maternal BMI and male sex seem to be confounder for the expression of galectin-12 in the nuclear syncytiotrophoblast, but not in other parts of the investigated placental areas. Further investigations are necessary to verify the correlation between gestational diabetes mellitus and the expression of galectin-12 in the placenta and to further elucidate its distinct role.


Assuntos
Diabetes Gestacional , Galectinas , Placenta , Trofoblastos , Adulto , Feminino , Humanos , Masculino , Gravidez , Diabetes Gestacional/imunologia , Diabetes Gestacional/metabolismo , Galectinas/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Placenta/metabolismo , Placenta/imunologia , Placenta/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Trofoblastos/imunologia
7.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555747

RESUMO

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Assuntos
Proteínas de Membrana , Progesterona , Receptores de Progesterona , Trofoblastos , Humanos , Receptores de Progesterona/metabolismo , Feminino , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Trofoblastos/metabolismo , Trofoblastos/imunologia , Placenta/imunologia , Placenta/metabolismo , Transdução de Sinais/imunologia , Troca Materno-Fetal/imunologia , Implantação do Embrião/imunologia
8.
Protein Cell ; 15(6): 460-473, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38441496

RESUMO

The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) remains a threat to pregnant women. However, the impact of early pregnancy SARS-CoV-2 infection on the maternal-fetal interface remains poorly understood. Here, we present a comprehensive analysis of single-cell transcriptomics and metabolomics in placental samples infected with SARS-CoV-2 during early pregnancy. Compared to control placentas, SARS-CoV-2 infection elicited immune responses at the maternal-fetal interface and induced metabolic alterations in amino acid and phospholipid profiles during the initial weeks post-infection. However, subsequent immune cell activation and heightened immune tolerance in trophoblast cells established a novel dynamic equilibrium that mitigated the impact on the maternal-fetal interface. Notably, the immune response and metabolic alterations at the maternal-fetal interface exhibited a gradual decline during the second trimester. Our study underscores the adaptive immune tolerance mechanisms and establishment of immunological balance during the first two trimesters following maternal SARS-CoV-2 infection.


Assuntos
COVID-19 , Placenta , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Feminino , Gravidez , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Placenta/imunologia , Placenta/virologia , Placenta/metabolismo , Tolerância Imunológica , Trofoblastos/imunologia , Trofoblastos/metabolismo , Trofoblastos/virologia , Adulto , Primeiro Trimestre da Gravidez/imunologia , Transcriptoma
9.
Nature ; 619(7970): 595-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468587

RESUMO

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Assuntos
Troca Materno-Fetal , Trofoblastos , Útero , Feminino , Humanos , Gravidez , Artérias/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Útero/citologia , Útero/imunologia , Útero/fisiologia , Troca Materno-Fetal/genética , Troca Materno-Fetal/imunologia , Troca Materno-Fetal/fisiologia , Fatores de Tempo , Proteômica , Perfilação da Expressão Gênica , Conjuntos de Dados como Assunto , Idade Gestacional
10.
Am J Reprod Immunol ; 90(2): e13752, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491922

RESUMO

PROBLEM: In the cell column of anchoring villi, the cytotrophoblast differentiates into extravillous trophoblast (EVT) and invades the endometrium in contact with maternal immune cells. Recently, chemokines were proposed to regulate the decidual immune response. To investigate the roles of chemokines around the anchoring villi, we examined the expression profiles of chemokines in the first-trimester trophoblast-derived Swan71 cells using a three-dimensional culture model. METHOD OF STUDY: The gene expressions in the spheroid-formed Swan71 cells were examined by microarray and qPCR analyses. The protein expressions were examined by immunochemical staining. The chemoattractant effects of spheroid-formed Swan71 cells were examined by migration assay using monocyte-derived THP-1 cells. RESULTS: The expressions of an EVT marker, laeverin, and matrix metalloproteases, MMP2 and MMP9, were increased in the spheroid-cultured Swan71 cells. Microarray and qPCR analysis revealed that mRNA expressions of various chemokines, CCL2, CCL7, CCL20, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, and CXCL10, in the spheroid-cultured Swan71 cells were up-regulated as compared with those in the monolayer-cultured Swan71 cells. These expressions were significantly suppressed by hypoxia. Migration assay showed that culture media derived from the spheroid-formed Swan71 cells promoted THP-1 cell migration. CONCLUSION: This study indicated that chemokine expressions in Swan71 cells increase under a spheroid-forming culture and the culture media have chemoattractant effects. Since three-dimensional cell assembling in the spheroid resembles the structure of the cell column, this study also suggests that chemokines play important roles in the interaction between EVT and immune cells in their early differentiation stage.


Assuntos
Trofoblastos , Humanos , Linhagem Celular , Quimiocinas/biossíntese , Trofoblastos/citologia , Trofoblastos/imunologia , Diferenciação Celular , Regulação da Expressão Gênica , RNA Mensageiro/genética , Movimento Celular , Oxigênio/metabolismo
11.
Biomolecules ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35053216

RESUMO

A high number of leucocytes reside in the human endometrium and are distributed differentially during the menstrual cycle and pregnancy. During early pregnancy, decidual natural killer (dNK) cells are the most common type of natural killer (NK) cells in the uterus. The increase in the number of uterine NK (uNK) cells during the mid-secretory phase of the menstrual cycle, followed by further increase of dNK cells in early pregnancy, has heightened interest in their involvement during pregnancy. Extensive research has revealed various roles of dNK cells during pregnancy including the formation of new blood vessels, migration of trophoblasts, and immunological tolerance. The present review article is focused on the significance of NK cells during pregnancy and their role in pregnancy-related diseases. The article will provide an in-depth review of cellular and molecular interactions during pregnancy and related disorders, with NK cells playing a pivotal role. Moreover, this study will help researchers to understand the physiology of normal pregnancy and related complications with respect to NK cells, so that future research work can be designed to alleviate the complications.


Assuntos
Decídua/imunologia , Tolerância Imunológica , Células Matadoras Naturais/imunologia , Complicações na Gravidez/imunologia , Trofoblastos/imunologia , Feminino , Humanos , Gravidez
12.
Front Immunol ; 12: 743700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858401

RESUMO

Pathological maternal inflammation and abnormal placentation contribute to several pregnancy-related disorders, including preterm birth, intrauterine growth restriction, and preeclampsia. TANK-binding kinase 1 (TBK1), a serine/threonine kinase, has been implicated in the regulation of various physiological processes, including innate immune response, autophagy, and cell growth. However, the relevance of TBK1 in the placental pro-inflammatory environment has not been investigated. In this study, we assessed the effect of TBK1 inhibition on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human trophoblast cell lines and mouse placenta. TBK1 phosphorylation was upregulated in the trophoblasts and placenta in response to LPS. Pharmacological and genetic inhibition of TBK1 in trophoblasts ameliorated LPS-induced NLRP3 inflammasome activation, placental inflammation, and subsequent interleukin (IL)-1 production. Moreover, maternal administration of amlexanox, a TBK1 inhibitor, reversed LPS-induced adverse pregnancy outcomes. Notably, TBK1 inhibition prevented LPS-induced NLRP3 inflammasome activation by targeting the mammalian target of rapamycin complex 1 (mTORC1). Thus, this study provides evidence for the biological significance of TBK1 in placental inflammation, suggesting that amlexanox may be a potential therapeutic candidate for treating inflammation-associated pregnancy-related complications.


Assuntos
Inflamassomos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Complicações na Gravidez/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Trofoblastos/imunologia , Animais , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Placenta/imunologia , Placenta/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Trofoblastos/metabolismo
13.
Front Immunol ; 12: 758281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745133

RESUMO

The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.


Assuntos
Feto/imunologia , Tolerância Imunológica/imunologia , Macrófagos/fisiologia , Gravidez/imunologia , Trofoblastos/fisiologia , Animais , Comunicação Celular , Movimento Celular , Microambiente Celular , Citocinas/fisiologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Trofoblastos/classificação , Trofoblastos/citologia , Trofoblastos/imunologia
14.
Front Immunol ; 12: 737401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790194

RESUMO

Successful implantation requires the coordinated migration and invasion of trophoblast cells from out of the blastocyst and into the endometrium. This process relies on signals produced by cells in the maternal endometrium. However, the relative contribution of stroma cells remains unclear. The study of human implantation has major technical limitations, therefore the need of in vitro models to elucidate the molecular mechanisms. Using a recently described 3D in vitro models we evaluated the interaction between trophoblasts and human endometrial stroma cells (hESC), we assessed the process of trophoblast migration and invasion in the presence of stroma derived factors. We demonstrate that hESC promotes trophoblast invasion through the generation of an inflammatory environment modulated by TNF-α. We also show the role of stromal derived IL-17 as a promoter of trophoblast migration through the induction of essential genes that confer invasive capacity to cells of the trophectoderm. In conclusion, we describe the characterization of a cellular inflammatory network that may be important for blastocyst implantation. Our findings provide a new insight into the complexity of the implantation process and reveal the importance of inflammation for embryo implantation.


Assuntos
Movimento Celular , Implantação do Embrião , Endométrio/efeitos dos fármacos , Interleucina-17/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Trofoblastos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Endométrio/imunologia , Endométrio/metabolismo , Feminino , Humanos , Interleucina-17/genética , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Via Secretória , Transdução de Sinais , Células Estromais/imunologia , Células Estromais/metabolismo , Trofoblastos/imunologia
15.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785597

RESUMO

Zika virus (ZIKV) during pregnancy infects fetal trophoblasts and causes placental damage and birth defects including microcephaly. Little is known about the anti-ZIKV cellular immune response at the maternal-fetal interface. Decidual natural killer cells (dNK), which directly contact fetal trophoblasts, are the dominant maternal immune cells in the first-trimester placenta, when ZIKV infection is most hazardous. Although dNK express all the cytolytic molecules needed to kill, they usually do not kill infected fetal cells but promote placentation. Here, we show that dNK degranulate and kill ZIKV-infected placental trophoblasts. ZIKV infection of trophoblasts causes endoplasmic reticulum (ER) stress, which makes them dNK targets by down-regulating HLA-C/G, natural killer (NK) inhibitory receptor ligands that help maintain tolerance of the semiallogeneic fetus. ER stress also activates the NK activating receptor NKp46. ZIKV infection of Ifnar1 -/- pregnant mice results in high viral titers and severe intrauterine growth restriction, which are exacerbated by depletion of NK or CD8 T cells, indicating that killer lymphocytes, on balance, protect the fetus from ZIKV by eliminating infected cells and reducing the spread of infection.


Assuntos
Células Matadoras Naturais/imunologia , Trofoblastos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Feto/imunologia , Antígenos HLA-C , Tolerância Imunológica , Camundongos , Placenta/imunologia , Placentação , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Receptores KIR
16.
Viruses ; 13(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835071

RESUMO

The mosquito-borne Rift Valley fever (RVF) is a prioritised disease that has been listed by the World Health Organization for urgent research and development of counteraction. Rift Valley fever virus (RVFV) can cause a cytopathogenic effect in the infected cell and induce hyperimmune responses that contribute to pathogenesis. In livestock, the consequences of RVFV infection vary from mild symptoms to abortion. In humans, 1-3% of patients with RVFV infection develop severe disease, manifested as, for example, haemorrhagic fever, encephalitis or blindness. RVFV infection has also been associated with miscarriage in humans. During pregnancy, there should be a balance between pro-inflammatory and anti-inflammatory mediators to create a protective environment for the placenta and foetus. Many viruses are capable of penetrating that protective environment and infecting the foetal-maternal unit, possibly via the trophoblasts in the placenta, with potentially severe consequences. Whether it is the viral infection per se, the immune response, or both that contribute to the pathogenesis of miscarriage remains unknown. To investigate how RVFV could contribute to pathogenesis during pregnancy, we infected two human trophoblast cell lines, A3 and Jar, representing normal and transformed human villous trophoblasts, respectively. They were infected with two RVFV variants (wild-type RVFV and RVFV with a deleted NSs protein), and the infection kinetics and 15 different cytokines were analysed. The trophoblast cell lines were infected by both RVFV variants and infection caused upregulation of messenger RNA (mRNA) expression for interferon (IFN) types I-III and inflammatory cytokines, combined with cell line-specific mRNA expression of transforming growth factor (TGF)-ß1 and interleukin (IL)-10. When comparing the two RVFV variants, we found that infection with RVFV lacking NSs function caused a hyper-IFN response and inflammatory response, while the wild-type RVFV suppressed the IFN I and inflammatory response. The induction of certain cytokines by RVFV infection could potentially lead to teratogenic effects that disrupt foetal and placental developmental pathways, leading to birth defects and other pregnancy complications, such as miscarriage.


Assuntos
Aborto Espontâneo/imunologia , Citocinas/imunologia , Vírus da Febre do Vale do Rift/patogenicidade , Trofoblastos/imunologia , Aborto Espontâneo/virologia , Morte Celular/genética , Linhagem Celular , Sobrevivência Celular/genética , Citocinas/genética , Feminino , Humanos , Inflamação , Mutação , Gravidez , RNA Mensageiro/genética , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/crescimento & desenvolvimento , Trofoblastos/virologia , Proteínas não Estruturais Virais/genética , Replicação Viral
17.
J Immunol ; 207(10): 2433-2444, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34663619

RESUMO

Throughout gestation, the maternal immune system is tightly modulated to allow growth of a semiallogeneic fetus. During the third trimester, the maternal immune system shifts to a proinflammatory phenotype in preparation for labor. What induces this shift remains unclear. Cell-free fetal DNA (cffDNA) is shed by the placenta and enters maternal circulation throughout pregnancy. Levels of cffDNA are increased as gestation progresses and peak before labor, coinciding with a shift to proinflammatory maternal immunity. Furthermore, cffDNA is abnormally elevated in plasma from women with complications of pregnancy, including preterm labor. Given the changes in maternal immunity at the end of pregnancy and the role of sterile inflammation in the pathophysiology of spontaneous preterm birth, we hypothesized that cffDNA can act as a damage-associated molecular pattern inducing an inflammatory cytokine response that promotes hallmarks of parturition. To test this hypothesis, we stimulated human maternal leukocytes with cffDNA from primary term cytotrophoblasts or maternal plasma and observed significant IL-1ß and CXCL10 secretion, which coincides with phosphorylation of IFN regulatory factor 3 and caspase-1 cleavage. We then show that human maternal monocytes are crucial for the immune response to cffDNA and can activate bystander T cells to secrete proinflammatory IFN-γ and granzyme B. Lastly, we find that the monocyte response to cffDNA leads to vascular endothelium activation, induction of myometrial contractility, and PGE2 release in vitro. Our results suggest that the immune response to cffDNA can promote key features of the parturition cascade, which has physiologic consequences relevant to the timing of labor.


Assuntos
Ácidos Nucleicos Livres/imunologia , Feto/imunologia , Monócitos/imunologia , Parto/imunologia , Trofoblastos/imunologia , Feminino , Humanos , Gravidez
19.
Reprod Biol Endocrinol ; 19(1): 150, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600537

RESUMO

The critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal-fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third-trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.


Assuntos
Decídua/imunologia , Células Matadoras Naturais/metabolismo , MicroRNAs/fisiologia , Gravidez , Aborto Habitual/genética , Aborto Habitual/imunologia , Aborto Habitual/patologia , Decídua/metabolismo , Decídua/patologia , Feminino , Humanos , MicroRNAs/metabolismo , Gravidez/genética , Gravidez/imunologia , Trofoblastos/imunologia , Trofoblastos/metabolismo
20.
Front Immunol ; 12: 717884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381459

RESUMO

The syncytiotrophoblast (STB) of human placenta constitutively and throughout pregnancy produces and secretes exosomes - nanometer-sized membrane-bound extracellular vesicles from the endosomal compartment that convey cell-cell contact 'by proxy' transporting information between donor and recipient cells locally and at a distance. Released in the maternal blood, STB-derived exosomes build an exosomal gradient around the feto-placental unit acting as a shield that protects the fetus from maternal immune attack. They carry signal molecules and ligands that comprise distinct immunosuppressive protein signatures which interfere with maternal immune mechanisms, potentially dangerous for the ongoing pregnancy. We discuss three immunosuppressive signatures carried by STB exosomes and their role in three important immune mechanisms 1) NKG2D receptor-mediated cytotoxicity, 2) apoptosis of activated immune cells and 3) PD-1-mediated immunosuppression and priming of T regulatory cells. A schematic presentation is given on how these immunosuppressive protein signatures, delivered by STB exosomes, modulate the maternal immune system and contribute to the development of maternal-fetal tolerance.


Assuntos
Biomarcadores , Exossomos/metabolismo , Imunomodulação , Trofoblastos/imunologia , Trofoblastos/metabolismo , Apoptose/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Exossomos/imunologia , Proteína Ligante Fas/metabolismo , Feminino , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Tolerância Imunológica , Ligantes , Troca Materno-Fetal/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Gravidez , Proteoma , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA