Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.664
Filtrar
1.
Clin Chim Acta ; 559: 119722, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734224

RESUMO

BACKGROUND AND OBJECTIVE: Pericardial Fluid (PF) is a rich reservoir of biologically active factors. Due to its proximity to the heart, the biochemical structure of PF may reflect the pathological changes in the cardiac interstitial environment. This manuscript aimed to determine whether the PF level of cardiac troponins changes in patients undergoing cardiac surgery. METHODS: This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Medline, EMBASE, Cochrane, ClinicalTrials.gov, and Google Scholar databases were electronically searched for primary studies using the keywords "pericardial fluid," "troponin," and "cardiac surgery." The primary outcome of interest was changes in troponin levels within the PF preoperatively and postoperatively. Secondary outcomes of interest included comparisons between troponin level changes in the PF compared to plasma. RESULTS: A total of 2901 manuscripts were screened through a title and abstract stage by two independent blinded reviewers. Of those, 2894 studies were excluded, and the remaining seven studies underwent a full-text review. Studies were excluded if they did not provide data or failed to meet inclusion criteria. Ultimately, six articles were included that discussed cardiac troponin levels within the PF in patients who had undergone cardiac surgery. Pericardial troponin concentration increased over time after surgery, and levels were significantly higher in PF compared to serum. All studies found that the type of operation did not affect these overall observations. CONCLUSION: Our review of the literature suggest that the PF level of cardiac troponins increases in patients undergoing cardiac surgery, irrespective of the procedure type. However, these changes' exact pattern and clinical significance remain undefined.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Líquido Pericárdico , Troponina , Humanos , Líquido Pericárdico/química , Líquido Pericárdico/metabolismo , Troponina/análise , Troponina/sangue , Troponina/metabolismo
2.
J Med Chem ; 67(10): 7825-7835, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729623

RESUMO

Cardiac myosin activation has been shown to be a viable approach for the treatment of heart failure with reduced ejection fraction. Here, we report the discovery of nelutroctiv (CK-136), a selective cardiac troponin activator intended for patients with cardiovascular conditions where cardiac contractility is reduced. Discovery of nelutroctiv began with a high-throughput screen that identified compound 1R, a muscle selective cardiac sarcomere activator devoid of phosphodiesterase-3 activity. Optimization of druglike properties for 1R led to the replacement of the sulfonamide and aniline substituents which resulted in improved pharmacokinetic (PK) profiles and a reduced potential for human drug-drug interactions. In vivo echocardiography assessment of the optimized leads showed concentration dependent increases in fractional shortening and an improved pharmacodynamic window compared to myosin activator CK-138. Overall, nelutroctiv was found to possess the desired selectivity, a favorable pharmacodynamic window relative to myosin activators, and a preclinical PK profile to support clinical development.


Assuntos
Contração Miocárdica , Humanos , Animais , Contração Miocárdica/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Masculino , Descoberta de Drogas , Troponina/metabolismo , Camundongos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Sulfonamidas/farmacocinética , Sulfonamidas/química , Sulfonamidas/uso terapêutico , Sulfonamidas/síntese química
3.
BMJ Open ; 14(4): e079370, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670618

RESUMO

INTRODUCTION: Myocardial injury is a relatively common complication of traumatic brain injury (TBI). However, the incidence and clinical impact of myocardial injury characterised by elevated cardiac troponin (cTn) levels after TBI are still poorly known. The objective of our study is to assess the global incidence of myocardial injury characterised by elevated cTn in adult patients with TBI and its association with in-hospital mortality. METHODS AND ANALYSIS: The protocol of our systematic review and meta-analysis is performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols guidelines. We will search the Medline, Embase, Cochrane Library, Scopus and Web of Science databases from inception to 1 January 2024, for observational studies in any language that reported the incidence of elevated cTn and/or in-hospital mortality associated with elevated cTn among adult patients with TBI. Two reviewers will independently assess study eligibility, extract the data and assess the risk of bias. ORs and 95% CIs will be used with a random-effects or fixed-effects model according to the estimated heterogeneity among studies assessed by the I2 index. We will perform a quantitative synthesis for the incidence of elevated cTn and in-hospital mortality data. If sufficient data are available, we will perform subgroup analysis and meta-regression to address the heterogeneity. In addition, we will perform a narrative analysis if quantitative synthesis is not appropriate. ETHICS AND DISSEMINATION: Ethics approval was not required for this study. We intend to publish our findings in a high-quality, peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023454686.


Assuntos
Lesões Encefálicas Traumáticas , Mortalidade Hospitalar , Metanálise como Assunto , Revisões Sistemáticas como Assunto , Humanos , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Incidência , Troponina/sangue , Troponina/metabolismo , Projetos de Pesquisa , Adulto
4.
Sci Rep ; 14(1): 9796, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684774

RESUMO

Preclinical management of patients with acute chest pain and their identification as candidates for urgent coronary revascularization without the use of high sensitivity troponin essays remains a critical challenge in emergency medicine. We enrolled 2760 patients (average age 70 years, 58.6% male) with chest pain and suspected ACS, who were admitted to the Emergency Department of the University Hospital Tübingen, Germany, between August 2016 and October 2020. Using 26 features, eight Machine learning models (non-deep learning models) were trained with data from the preclinical rescue protocol and compared to the "TropOut" score (a modified version of the "preHEART" score which consists of history, ECG, age and cardiac risk but without troponin analysis) to predict major adverse cardiac event (MACE) and acute coronary artery occlusion (ACAO). In our study population MACE occurred in 823 (29.8%) patients and ACAO occurred in 480 patients (17.4%). Interestingly, we found that all machine learning models outperformed the "TropOut" score. The VC and the LR models showed the highest area under the receiver operating characteristic (AUROC) for predicting MACE (AUROC = 0.78) and the VC showed the highest AUROC for predicting ACAO (AUROC = 0.81). A SHapley Additive exPlanations (SHAP) analyses based on the XGB model showed that presence of ST-elevations in the electrocardiogram (ECG) were the most important features to predict both endpoints.


Assuntos
Síndrome Coronariana Aguda , Aprendizado de Máquina , Troponina , Humanos , Masculino , Feminino , Idoso , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/sangue , Troponina/sangue , Troponina/metabolismo , Pessoa de Meia-Idade , Curva ROC , Algoritmos , Eletrocardiografia , Biomarcadores/sangue , Dor no Peito/diagnóstico , Idoso de 80 Anos ou mais , Serviço Hospitalar de Emergência
5.
J Med Chem ; 67(10): 7859-7869, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38451215

RESUMO

Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 µM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.


Assuntos
Contração Miocárdica , Troponina , Animais , Masculino , Ratos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Troponina/metabolismo
6.
J Mol Biol ; 436(6): 168498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
7.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982903

RESUMO

The substitution for Arg168His (R168H) in γ-tropomyosin (TPM3 gene, Tpm3.12 isoform) is associated with congenital muscle fiber type disproportion (CFTD) and muscle weakness. It is still unclear what molecular mechanisms underlie the muscle dysfunction seen in CFTD. The aim of this work was to study the effect of the R168H mutation in Tpm3.12 on the critical conformational changes that myosin, actin, troponin, and tropomyosin undergo during the ATPase cycle. We used polarized fluorescence microscopy and ghost muscle fibers containing regulated thin filaments and myosin heads (myosin subfragment-1) modified with the 1,5-IAEDANS fluorescent probe. Analysis of the data obtained revealed that a sequential interdependent conformational-functional rearrangement of tropomyosin, actin and myosin heads takes place when modeling the ATPase cycle in the presence of wild-type tropomyosin. A multistep shift of the tropomyosin strands from the outer to the inner domain of actin occurs during the transition from weak to strong binding of myosin to actin. Each tropomyosin position determines the corresponding balance between switched-on and switched-off actin monomers and between the strongly and weakly bound myosin heads. At low Ca2+, the R168H mutation was shown to switch some extra actin monomers on and increase the persistence length of tropomyosin, demonstrating the freezing of the R168HTpm strands close to the open position and disruption of the regulatory function of troponin. Instead of reducing the formation of strong bonds between myosin heads and F-actin, troponin activated it. However, at high Ca2+, troponin decreased the amount of strongly bound myosin heads instead of promoting their formation. Abnormally high sensitivity of thin filaments to Ca2+, inhibition of muscle fiber relaxation due to the appearance of the myosin heads strongly associated with F-actin, and distinct activation of the contractile system at submaximal concentrations of Ca2+ can lead to muscle inefficiency and weakness. Modulators of troponin (tirasemtiv and epigallocatechin-3-gallate) and myosin (omecamtiv mecarbil and 2,3-butanedione monoxime) have been shown to more or less attenuate the negative effects of the tropomyosin R168H mutant. Tirasemtiv and epigallocatechin-3-gallate may be used to prevent muscle dysfunction.


Assuntos
Actinas , Miopatias Congênitas Estruturais , Humanos , Actinas/metabolismo , Tropomiosina/metabolismo , Miosinas/metabolismo , Mutação , Adenosina Trifosfatases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Troponina/genética , Troponina/metabolismo , Cálcio/metabolismo
8.
Annu Rev Biochem ; 92: 411-433, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001141

RESUMO

Muscles are essential for movement and heart function. Contraction and relaxation of muscles rely on the sliding of two types of filaments-the thin filament and the thick myosin filament. The thin filament is composed mainly of filamentous actin (F-actin), tropomyosin, and troponin. Additionally, several other proteins are involved in the contraction mechanism, and their malfunction can lead to diverse muscle diseases, such as cardiomyopathies. We review recent high-resolution structural data that explain the mechanism of action of muscle proteins at an unprecedented level of molecular detail. We focus on the molecular structures of the components of the thin and thick filaments and highlight the mechanisms underlying force generation through actin-myosin interactions, as well as Ca2+-dependent regulation via the dihydropyridine receptor, the ryanodine receptor, and troponin. We particularly emphasize the impact of cryo-electron microscopy and cryo-electron tomography in leading muscle research into a new era.


Assuntos
Actinas , Contração Muscular , Actinas/metabolismo , Microscopia Crioeletrônica , Contração Muscular/fisiologia , Troponina/química , Troponina/metabolismo , Miosinas/genética , Cálcio/metabolismo
9.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902223

RESUMO

Contraction of cardiac muscle is regulated by Ca2+ ions via regulatory proteins, troponin (Tn), and tropomyosin (Tpm) associated with the thin (actin) filaments in myocardial sarcomeres. The binding of Ca2+ to a Tn subunit causes mechanical and structural changes in the multiprotein regulatory complex. Recent cryo-electron microscopy (cryo-EM) models of the complex allow one to study the dynamic and mechanical properties of the complex using molecular dynamics (MD). Here we describe two refined models of the thin filament in the calcium-free state that include protein fragments unresolved by cryo-EM and reconstructed using structure prediction software. The parameters of the actin helix and the bending, longitudinal, and torsional stiffness of the filaments estimated from the MD simulations performed with these models were close to those found experimentally. However, problems revealed from the MD simulation suggest that the models require further refinement by improving the protein-protein interaction in some regions of the complex. The use of relatively long refined models of the regulatory complex of the thin filament allows one to perform MD simulation of the molecular mechanism of Ca2+ regulation of contraction without additional constraints and study the effects of cardiomyopathy-associated mutation of the thin filament proteins of cardiac muscle.


Assuntos
Citoesqueleto de Actina , Simulação de Dinâmica Molecular , Miocárdio , Sarcômeros , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cálcio/metabolismo , Microscopia Crioeletrônica , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Sarcômeros/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Fenômenos Mecânicos
10.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768735

RESUMO

The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.


Assuntos
Sarcopenia , Idoso , Animais , Humanos , Sarcopenia/metabolismo , Proteômica , Idoso Fragilizado , Qualidade de Vida , Músculo Esquelético/metabolismo , Troponina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares Esqueléticas/metabolismo
11.
Arch Biochem Biophys ; 735: 109521, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657606

RESUMO

Many therapeutics for cardiomyopathy treat the symptoms of the disease rather than the underlying mechanism. The mechanism of cardiomyopathy onset is believed to include two means: calcium sensitivity changes and myosin activity alteration. Trifluoperazine is a compound that binds troponin, and other components of the calcium pathway, which impacts calcium regulation of contraction. Here, the ability of TFP to shift calcium sensitivity was examined in vitro with purified proteins and the impact of TFP on heart function was assessed in vivo using embryonic zebrafish. The binding of TFP to troponin was modeled in silico and a model of zebrafish troponin was generated. TFP increased regulated cardiac actomyosin activity in vitro and elevated embryonic zebrafish heart rates at effective drug concentrations. Troponin structural changes predicted in silico suggest altered protein interactions within thin filaments that would affect the regulation of heart function.


Assuntos
Cálcio , Cardiomiopatias , Animais , Cálcio/metabolismo , Trifluoperazina/farmacologia , Peixe-Zebra/metabolismo , Tropomiosina/química , Troponina/metabolismo , Cardiomiopatias/metabolismo , Sarcômeros/metabolismo , Actinas/metabolismo
12.
Arch Physiol Biochem ; 129(6): 1219-1228, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34270371

RESUMO

CONTEXT: The effect of Eucalyptus globulus in diabetic cardiac dysfunction and the possible mechanisms involved have not been explored. OBJECTIVE: To evaluate the effect of ethanol leaf extract of E. globulus (NEE) on the cardiac function of fructose/streptozotocin-induced diabetic rats. MATERIALS AND METHODS: Type-2 diabetes was induced in rats with 10% fructose feeding for 14 days and an intraperitoneal administration of 40 mg/kg streptozotocin. Diabetic animals were treated with NEE (100-400 mg/kg) or 5 mg/kg glibenclamide orally for 21 days. Biochemical assays, histopathological examination and analyses of PCSK9, Rho kinase and Cardiac troponin expression were performed. RESULTS: The untreated diabetic group showed decreased expression of the genes, oxidative stress, dyslipidemia, increased activities of creatine kinase MB and lactate dehydrogenase, reduced nitric oxide level, and depletion of cardiomyocytes, which were reversed in NEE treated groups. CONCLUSIONS: Eucalyptus globulus ameliorated diabetic cardiac dysfunction through increased PCSK9, Rho kinase and Cardiac troponin expression.


Assuntos
Diabetes Mellitus Experimental , Eucalyptus , Cardiopatias , Ratos , Animais , Eucalyptus/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/farmacologia , Estreptozocina/toxicidade , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Regulação para Cima , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia , Estresse Oxidativo , Extratos Vegetais/farmacologia , Troponina/metabolismo , Troponina/farmacologia
13.
Curr Cardiol Rev ; 19(2): e170822207573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35980071

RESUMO

Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects. Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications. Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Aterosclerose/epidemiologia , Aterosclerose/etiologia , Material Particulado/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Estresse Oxidativo , Troponina/metabolismo , Troponina/farmacologia
14.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498844

RESUMO

Sufficient cardiac contractility is necessary to ensure the sufficient cardiac output to provide an adequate end-organ perfusion. Inadequate cardiac output and the diminished perfusion of vital organs from depressed myocardium contractility is a hallmark end-stage of heart failure. There are no available therapeutics that directly target contractile proteins to improve the myocardium contractility and reduce mortality. The purpose of this study is to present a proof of concept to aid in the development of muscle activators (myotropes) for augmenting the contractility in clinical heart failure. Here we use a combination of cardiomyocyte mechanics, the biochemical quantification of the ATP turnover, and small angle X-ray diffraction on a permeabilized porcine myocardium to study the mechanisms of EMD-57033 (EMD) for activating myosin. We show that EMD increases the contractility in a porcine myocardium at submaximal and systolic calcium concentrations. Biochemical assays show that EMD decreases the proportion of myosin heads in the energy sparing super-relaxed (SRX) state under relaxing conditions, which are less likely to interact with actin during contraction. Structural assays show that EMD moves the myosin heads in relaxed muscles from a structurally ordered state close to the thick filament backbone, to a disordered state closer to the actin filament, while simultaneously inducing structural changes in the troponin complex on the actin filament. The dual effects of EMD on activating myosin heads and the troponin complex provides a proof of concept for the use of small molecule muscle activators for augmenting the contractility in heart failure.


Assuntos
Insuficiência Cardíaca , Miosinas , Animais , Suínos , Miosinas/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Troponina/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(43): e2200215119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252004

RESUMO

Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.


Assuntos
Caquexia , Cadeias Pesadas de Miosina , Neoplasias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Actinas/metabolismo , Caquexia/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/complicações , Neoplasias/genética , Neoplasias/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Ann N Y Acad Sci ; 1515(1): 105-119, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676231

RESUMO

Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Actinina/metabolismo , Materiais Biocompatíveis , Conexina 43 , Condutividade Elétrica , Estimulação Elétrica , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais , Troponina/metabolismo
17.
Adv Physiol Educ ; 46(3): 481-490, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759528

RESUMO

In the early 1950s Setsuro Ebashi was a graduate student at Tokyo University studying the biochemical models of muscle contraction. The muscle components in these models contracted in the presence of ATP, but what caught his attention was that the components did not relax when ATP was exhausted. Ebashi decided in 1952 to attempt to elucidate the mechanism of muscle relaxation using these models. This decision started a journey that would lead him to be the first to propose the calcium concept of muscle contraction and relaxation in 1961. It was an unpopular theory with biochemists who refused to accept that anything as simple as an inorganic ion, Ca2+, could control anything as important as muscle contraction. Ebashi was convinced that he was correct. He proceeded to show that micromolar concentrations of Ca2+ activated contraction. In 1961 he discovered the particulate nature of the ATP-dependent relaxing factor (the sarcoplasmic reticulum) and determined that it acted by binding Ca2+. Most notably, in 1966 he discovered troponin, the Ca2+ receptor in muscle, which mediated Ca2+ control of contraction. Ebashi's discoveries were considered the most important in the muscle field since the 1950s. Ebashi had to overcome the doubt of the scientific community. This story is one of great scientific achievement against great odds that marked the emergence of Japanese muscle research onto the international scientific stage.NEW & NOTEWORTHY Setsuro Ebashi proposed the calcium concept of muscle contraction and relaxation in 1961. It was a very unpopular theory. He showed that Ca2+ activated contraction and that the sarcoplasmic reticulum caused relaxation by binding Ca2+ in an ATP-dependent manner. Most notably, he discovered the receptor that mediated Ca2+ control of contraction and named it "troponin." Ebashi's discoveries are considered to be the most important in the muscle field since the 1950s.


Assuntos
Sinalização do Cálcio , Cálcio , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Íons/metabolismo , Japão , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Troponina/metabolismo
18.
Cardiovasc Diabetol ; 21(1): 77, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570280

RESUMO

BACKGROUND: The inflammatory response occurring in acute myocardial infarction (AMI) has been proposed as a potential pharmacological target. Sodium-glucose co-transporter 2 inhibitors (SGLT2-I) currently receive intense clinical interest in patients with and without diabetes mellitus (DM) for their pleiotropic beneficial effects. We tested the hypothesis that SGLT2-I have anti-inflammatory effects along with glucose-lowering properties. Therefore, we investigated the link between stress hyperglycemia, inflammatory burden, and infarct size in a cohort of type 2 diabetic patients presenting with AMI treated with SGLT2-I versus other oral anti-diabetic (OAD) agents. METHODS: In this multicenter international observational registry, consecutive diabetic AMI patients undergoing percutaneous coronary intervention (PCI) between 2018 and 2021 were enrolled. Based on the presence of anti-diabetic therapy at the admission, patients were divided into those receiving SGLT2-I (SGLT-I users) versus other OAD agents (non-SGLT2-I users). The following inflammatory markers were evaluated at different time points: white-blood-cell count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), neutrophil-to-platelet ratio (NPR), and C-reactive protein. Infarct size was assessed by echocardiography and by peak troponin levels. RESULTS: The study population consisted of 583 AMI patients (with or without ST-segment elevation): 98 SGLT2-I users and 485 non-SGLT-I users. Hyperglycemia at admission was less prevalent in the SGLT2-I group. Smaller infarct size was observed in patients treated with SGLT2-I compared to non-SGLT2-I group. On admission and at 24 h, inflammatory indices were significantly higher in non-SGLT2-I users compared to SGLT2-I patients, with a significant increase in neutrophil levels at 24 h. At multivariable analysis, the use of SGLT2-I was a significant predictor of reduced inflammatory response (OR 0.457, 95% CI 0.275-0.758, p = 0.002), independently of age, admission creatinine values, and admission glycemia. Conversely, peak troponin values and NSTEMI occurrence were independent predictors of a higher inflammatory status. CONCLUSIONS: Type 2 diabetic AMI patients receiving SGLT2-I exhibited significantly reduced inflammatory response and smaller infarct size compared to those receiving other OAD agents, independently of glucose-metabolic control. Our findings are hypothesis generating and provide new insights on the cardioprotective effects of SGLT2-I in the setting of coronary artery disease. TRIAL REGISTRATION: Data are part of the ongoing observational registry: SGLT2-I AMI PROTECT. CLINICALTRIALS: gov Identifier: NCT05261867.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Infarto do Miocárdio , Intervenção Coronária Percutânea , Inibidores do Transportador 2 de Sódio-Glicose , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hiperglicemia/epidemiologia , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/epidemiologia , Intervenção Coronária Percutânea/efeitos adversos , Sistema de Registros , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Troponina/metabolismo
19.
J Gen Physiol ; 154(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179560

RESUMO

JGP study reveals that lower troponin expression in the right ventricle underlies interventricular differences in excitation-contraction coupling.


Assuntos
Acoplamento Excitação-Contração , Troponina , Ventrículos do Coração/metabolismo , Contração Miocárdica , Troponina/metabolismo
20.
J Gen Physiol ; 154(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099502

RESUMO

Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation-contraction (E-C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E-C coupling kinetics.


Assuntos
Ventrículos do Coração , Contração Miocárdica , Potenciais de Ação , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Troponina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...