Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.428
Filtrar
1.
Parasit Vectors ; 17(1): 305, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010122

RESUMO

BACKGROUND: Chagas disease (CD), a neglected parasitic disease caused by Trypanosoma cruzi, poses a significant health threat in Latin America and has emerged globally because of human migration. Trypanosoma cruzi infects humans and over 100 other mammalian species, including dogs, which are important sentinels for assessing the risk of human infection. Nonetheless, the serodiagnosis of T. cruzi in dogs is still impaired by the absence of commercial tests. In this study, we investigated the diagnostic accuracy of four chimeric recombinant T. cruzi IBMP antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi antibodies in dogs, using latent class analysis (LCA). METHODS: We examined 663 canine serum samples, employing indirect ELISA with the chimeric antigens. LCA was utilized to establish a latent variable as a gold standard for T. cruzi infection, revealing distinct response patterns for each antigen. RESULTS: The IBMP (Portuguese acronym for the Molecular Biology Institute of Paraná) antigens achieved area under the ROC curve (AUC) values ranging from 90.9% to 97.3%. The highest sensitivity was attributed to IBMP-8.2 (89.8%), while IBMP-8.1, IBMP-8.3, and IBMP-8.4 achieved 73.5%, 79.6%, and 85.7%, respectively. The highest specificity was observed for IBMP-8.4 (98.6%), followed by IBMP-8.2, IBMP-8.3, and IBMP-8.1 with specificities of 98.3%, 94.4%, and 92.7%, respectively. Predictive values varied according to prevalence, indicating higher effectiveness in endemic settings. CONCLUSIONS: Our findings underscore the remarkable diagnostic performance of IBMP-8.2 and IBMP-8.4 for the serodiagnosis of Trypanosoma cruzi in dogs, representing a promising tool for the diagnosis of CD in dogs. These chimeric recombinant antigens may not only enhance CD surveillance strategies but also hold broader implications for public health, contributing to the global fight against this neglected tropical disease.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Doença de Chagas , Doenças do Cão , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade , Testes Sorológicos , Trypanosoma cruzi , Animais , Cães , Doença de Chagas/diagnóstico , Doença de Chagas/veterinária , Doença de Chagas/parasitologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/genética , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Testes Sorológicos/métodos , Testes Sorológicos/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Anticorpos Antiprotozoários/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética
2.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824576

RESUMO

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Assuntos
Doença de Chagas , Macaca mulatta , Vacinas Protozoárias , Receptores de Antígenos de Linfócitos T , Animais , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Imunoglobulinas/imunologia
3.
Front Immunol ; 15: 1413893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915396

RESUMO

Introduction: Trypanosoma cruzi is a protozoan parasite that causes the tropical ailment known as Chagas disease, which has its origins in South America. Globally, it has a major impact on health and is transported by insect vector that serves as a parasite. Given the scarcity of vaccines and the limited treatment choices, we conducted a comprehensive investigation of core proteomics to explore a potential reverse vaccine candidate with high antigenicity. Methods: To identify the immunodominant epitopes, T. cruzi core proteomics was initially explored. Consequently, the vaccine sequence was engineered to possess characteristics of non-allergenicity, antigenicity, immunogenicity, and enhanced solubility. After modeling the tertiary structure of the human TLR4 receptor, the binding affinities were assessed employing molecular docking and molecular dynamics simulations (MDS). Results: Docking of the final vaccine design with TLR4 receptors revealed substantial hydrogen bond interactions. A server-based methodology for immunological simulation was developed to forecast the effectiveness against antibodies (IgM + IgG) and interferons (IFN-g). The MDS analysis revealed notable levels of structural compactness and binding stability with average RMSD of 5.03 Aring;, beta-factor 1.09e+5 Å, Rg is 44.7 Aring; and RMSF of 49.50 Aring;. This is followed by binding free energies calculation. The system stability was compromised by the complexes, as evidenced by their corresponding Gibbs free energies of -54.6 kcal/mol. Discussion: Subtractive proteomics approach was applied to determine the antigenic regions of the T cruzi. Our study utilized computational techniques to identify B- and T-cell epitopes in the T. cruzi core proteome. In current study the developed vaccine candidate exhibits immunodominant features. Our findings suggest that formulating a vaccine targeting the causative agent of Chagas disease should be the initial step in its development.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteoma , Vacinas Protozoárias , Receptor 4 Toll-Like , Trypanosoma cruzi , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Humanos , Proteoma/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Vacinas Protozoárias/imunologia , Animais , Epitopos Imunodominantes/imunologia , Proteômica/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/química , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química
4.
Front Immunol ; 15: 1385850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726014

RESUMO

Introduction: Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi. While most patients are asymptomatic, around 30% develop Chronic Chagasic Cardiomyopathy (CCC). Methods: Here, we employed high-dimensional flow cytometry to analyze CD4+ T and B cell compartments in patients during the chronic phase of Chagas disease, presenting the asymptomatic and mild or moderate/severe cardiac clinical forms. Results: Effector CD27-CD4+ T cells were expanded in both CCC groups, and only mild CCC patients showed higher frequencies of effector memory and T follicular helper (Tfh) cells than healthy donors (CTL) and asymptomatic patients. Unsupervised analysis confirmed these findings and further revealed the expansion of a specific subpopulation composed of Tfh, transitional, and central memory CD4+ T cells bearing a phenotype associated with strong activation, differentiation, and exhaustion in patients with mild but not moderate/severe CCC. In contrast, patients with mild and moderate/severe CCC had lower frequencies of CD4+ T cells expressing lower levels of activation markers, suggesting resting status, than CTL. Regarding the B cell compartment, no alterations were found in naïve CD21-, memory cells expressing IgM or IgD, marginal zone, and plasma cells in patients with Chagas disease. However, expansion of class-switched activated and atypical memory B cells was observed in all clinical forms, and more substantially in mild CCC patients. Discussion: Taken together, our results showed that T. cruzi infection triggers changes in CD4+ T and B cell compartments that are more pronounced in the mild CCC clinical form, suggesting an orchestrated cellular communication during Chagas disease. Conclusion: Overall, these findings reinforce the heterogeneity and complexity of the immune response in patients with chronic Chagas disease and may provide new insights into disease pathology and potential markers to guide clinical decisions.


Assuntos
Linfócitos T CD4-Positivos , Cardiomiopatia Chagásica , Humanos , Cardiomiopatia Chagásica/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , Linfócitos T CD4-Positivos/imunologia , Adulto , Linfócitos B/imunologia , Trypanosoma cruzi/imunologia , Doença Crônica , Idoso , Ativação Linfocitária/imunologia
5.
Amino Acids ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698213

RESUMO

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Assuntos
Doença de Chagas , Ensaio de Imunoadsorção Enzimática , Peptídeos , Trypanosoma cruzi , Doença de Chagas/diagnóstico , Doença de Chagas/imunologia , Doença de Chagas/sangue , Humanos , Trypanosoma cruzi/imunologia , Peptídeos/imunologia , Peptídeos/química , Ensaio de Imunoadsorção Enzimática/métodos , Testes Imunológicos/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/sangue , Testes Sorológicos/métodos
6.
Clin Microbiol Infect ; 30(8): 980-988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697392

RESUMO

BACKGROUND: The risk of Trypanosoma cruzi reactivation is poorly understood. Previous studies evaluating the risk of reactivation report imprecise findings, and recommendations for monitoring and management from clinical guidelines rely on consensus opinion. OBJECTIVES: We conducted a systematic review and meta-analysis to estimate the cumulative T. cruzi reactivation incidence in immunosuppressed adults, summarize the available evidence on prognostic factors for reactivation, and examine its prognostic effect on mortality. DATA SOURCES: MEDLINE, Embase, LILACS, Clinical Trials, and CENTRAL from inception to 4 July 2022. STUDY ELIGIBILITY CRITERIA: Studies reporting the incidence of T. cruzi reactivation. PARTICIPANTS: Immunosuppressed adults chronically infected by T. cruzi. METHODS: Two authors independently extracted data (including, but not limited to, incidence data, reactivation definition, follow-up, treatment, monitoring schedule, examined prognostic factors) and evaluated the risk of bias. We pooled cumulative incidence using a random-effects model. RESULTS: Twenty-two studies (806 participants) were included. The overall pooled incidence of T. cruzi reactivation was 27% (95% CI, 19-36), with the highest pooled proportion in the sub-group of transplant recipients (36%; 95% CI, 25-48). The highest risk period was in the first 6 months after transplant (32%; 95% CI, 17-58), decreasing drastically the number of new cases later. People living with HIV and patients with autoimmune diseases experienced significantly lower cumulative reactivation incidences (17%; 95% CI, 8-29 and 18%; 95% CI, 9-29, respectively). A single study explored the independent effect of benznidazole and found benefits for preventing reactivations. No studies evaluated the independent association between reactivation and mortality, while sensitivity analysis results using unadjusted estimates were inconclusive. The heterogeneity of diagnostic algorithms was substantial. CONCLUSIONS: Reactivation occurs in three out of ten T. cruzi-seropositive immunosuppressed adults. These findings can assist clinicians and panel guidelines in tailoring monitoring schedules. There is a great need for an accurate definition of reactivation and targeted monitoring.


Assuntos
Doença de Chagas , Hospedeiro Imunocomprometido , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/imunologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Doença de Chagas/mortalidade , Incidência , Adulto , Prognóstico , Fatores de Risco , Infecção Latente
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750768

RESUMO

The presence of memory T cell specific for Trypanosoma cruzi in subjects with discordant serology for Chagas disease supports a cleared infection in these subjects. Using high-dimensional flow cytometry, ELISPOT assays and quantitative PCR, antibody-secreting cells and memory B cells specific for T. cruzi, total B-cell phenotypes, innate immune responses and parasite DNA were evaluated in serodiscordant, seropositive and seronegative subjects for T. cruzi infection. T. cruzi-specific memory B cells but no antibody-secreting cells specific for T. cruzi, increased proportion of nonclassical monocytes and increased levels of polyfunctional NK cells were found in serodiscordant compared with seropositive subjects. None of the serodiscordant subjects evaluated showed detectable parasite DNA, most of them did not show cardiac abnormalities and a group of them had had confirmed positive serology for Chagas disease. The unique immune profiles in serodiscordant subjects support that T. cruzi infection was cleared or profoundly controlled in these subjects.


Assuntos
Doença de Chagas , Células Matadoras Naturais , Células B de Memória , Trypanosoma cruzi , Humanos , Doença de Chagas/imunologia , Doença de Chagas/sangue , Trypanosoma cruzi/imunologia , Células Matadoras Naturais/imunologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Células B de Memória/imunologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue
8.
Biomedica ; 44(1): 92-101, 2024 03 31.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38648342

RESUMO

Introduction. In 2021, the Secretaría de Salud de México and the Pan American Health Organization launched an initiative to interrupt intra-domiciliary vector transmission of Trypanosoma cruzi based on the prevalence of Chagas disease in children. The Mexican State of Veracruz was leading this initiative. Objective. To estimate the seroprevalence of T. cruzi infection among children under 15 years of age from rural areas of Veracruz, México. Materials and methods. We identified eight localities of high priority from the Municipality of Tempoal, Veracruz, for baseline serology. Blood samples were collected on filter paper from 817 individuals between June and August 2017, for screening with a third-generation enzyme immunoassay. Reactive cases were confirmed by indirect hemagglutination, enzyme-linked immunosorbent assay, and indirect immunofluorescence tests on peripheral blood serum samples. We calculated seroprevalence and 95% confidence intervals (CI). Results. We confirmed Chagas disease cases in children under 15 years of age with a seroprevalence of 1,9% (95 % CI = 1,12-3,16) in the localities of Citlaltepetl, Cornizuelo, Cruz de Palma and Rancho Nuevo. Conclusions. These results indicate recent transmission of T. cruzi in these communities and allow to establish an epidemiological baseline for the design and implementation of a model focused on geographical areas with active transmission to advance toward the elimination of intra-domiciliary vector transmission of this parasite in Mexico.


Introducción. En el 2021, la Secretaría de Salud de México y la Organización Panamericana de la Salud lanzaron una iniciativa para interrumpir la transmisión vectorial intradomiciliaria de Trypanosoma cruzi, fundamentada en la prevalencia de la enfermedad de Chagas en la población infantil. El estado mexicano de Veracruz fue el pionero de esta iniciativa. Objetivo. Estimar la seroprevalencia de infección por T. cruzi en menores de 15 años de localidades rurales de Veracruz, México. Materiales y métodos. Se identificaron ocho localidades prioritarias para la serología basal del municipio de Tempoal, Veracruz. Entre junio y agosto de 2017, se recolectaron muestras de sangre en papel filtro de 817 individuos para su tamizaje mediante un inmunoensayo enzimático de tercera generación. Los casos reactivos del tamizaje se confirmaron mediante pruebas de hemaglutinación indirecta, ensayo de inmunoabsorción ligado a enzimas e inmunofluorescencia indirecta en muestras de suero. Se calculó la seroprevalencia y su intervalo de confianza (IC) del 95 %. Resultados. En las localidades de Citlaltépetl, Cornizuelo, Cruz de Palma y Rancho Nuevo se confirmaron casos de la enfermedad de Chagas en menores de 15 años con una seroprevalencia de 1,9 % (IC 95 % = 1,12-3,16). Conclusiones. Los resultados indican que estas comunidades presentan transmisión reciente de T. cruzi y permiten establecer una línea epidemiológica de base para el diseño e implementación de un modelo dirigido a aquellas áreas geográficas con transmisión activa. Se espera que dicho modelo contribuya a la eliminación de la transmisión vectorial intradomiciliaria del tripanosomátido en México.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Estudos Soroepidemiológicos , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Doença de Chagas/sangue , México/epidemiologia , Criança , Trypanosoma cruzi/imunologia , Adolescente , Pré-Escolar , Lactente , Feminino , Masculino , Anticorpos Antiprotozoários/sangue , Animais
9.
PLoS Pathog ; 20(4): e1012191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683845

RESUMO

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.


Assuntos
Antígenos CD , Apirase , Linfócitos T CD8-Positivos , Doença de Chagas , Linfócitos T Reguladores , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Trypanosoma cruzi/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Microbes Infect ; 26(5-6): 105337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615883

RESUMO

The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.


Assuntos
Doença de Chagas , Citocinas , Camundongos Knockout , Células Th1 , Timo , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Doença de Chagas/metabolismo , Trypanosoma cruzi/imunologia , Camundongos , Timo/imunologia , Timo/patologia , Células Th1/imunologia , Citocinas/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Diferenciação Celular
11.
Cytokine ; 179: 156621, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648682

RESUMO

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.


Assuntos
Doença de Chagas , Leucócitos Mononucleares , Microalgas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Microalgas/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo
12.
Arch Cardiol Mex ; 94(3): 324-330, 2024 03 11.
Artigo em Espanhol | MEDLINE | ID: mdl-38467078

RESUMO

Background: Different pathogens can cause dilated cardiomyopathy, one of them is Trypanosoma cruzi protozoan. T.cruzi-chronic infection causes chronic Chagasic cardiomyopathy and affects the sinus node and the conduction systembelow the bundle of His; besides, it shows excellent arrhythmogenic potential because of ventricular arrhythmias. Knowingthe clinical characteristics and performing serological tests to diagnose chronic Chagasic cardiomyopathy is essential. The serological diagnosis for searching the antibodies is based on the phase, which can be a predictor for the development of dilated cardiomyopathy. Objectives: In this work, the objective was to describe the frequency of dilated cardiomyopathy in patients with T. cruzi positive serology. Method: A total of 961 patients who were medically and clinically diagnosed with dilated cardiomyopathy were studied. Of these, 128 were diagnosed with chronic Chagasic cardiomyopathy and had positive serology for T. cruzi with two serological tests. Results: The clinical findings were obtained from the results of the electrocardiograms and were taken from the patient's clinical histories. Conclusion: In conclusion, complete blockage of the right branch of the bundle of His (44.2%) is one of the primary conduction disorders in the patients studied. Regarding seroprevalence, 14% of patients diagnosed with dilated cardiomyopathy had anti-T. cruzi antibodies.


Antecedentes: La cardiomiopatía dilatada puede ser causada por diferentes patógenos y uno de ellos es el protozoario Trypanosoma cruzi. La infección crónica causa la cardiomiopatía chagásica crónica, que afecta el nódulo sinusal y el sistema de conducción a nivel del haz de His; además, muestra gran potencial arritmogénico, ya que frecuentemente se presentan arritmias ventriculares. Para diagnosticar la cardiomiopatía chagásica crónica es indispensable conocer las características clínicas y realizar los ensayos serológicos. El diagnóstico serológico para la búsqueda de anticuerpos se basa en la fase de la enfermedad en la que se encuentre el individuo, los cuales pueden ser un predictor para el desarrollo de la cardiomiopatía dilatada. Objetivo: El objetivo de nuestro trabajo fue describir la frecuencia de cardiomiopatía dilatada en pacientes con serología positiva a T. cruzi en el Instituto Nacional de Cardiología Ignacio Chávez. Método: Se estudiaron 961 pacientes que fueron diagnosticados médica y clínicamente con cardiomiopatía dilatada y, de estos, 128 fueron diagnosticados con cardiomiopatía chagásica crónica, los cuales presentaban serología positiva a T. cruzi con dos pruebas serológicas. Resultados: Los hallazgos clínicos se obtuvieron de los resultados de los electrocardiogramas y fueron tomados de las historias clínicas de los pacientes. Conclusiones: En conclusión, el bloqueo completo de la rama derecha del haz de His (44.2%) es una de las principales alteraciones de la conducción en los pacientes estudiados. Con respecto a la seroprevalencia, el 14% de los pacientes con diagnóstico de cardiomiopatía dilatada tuvieron anticuerpos anti-T. cruzi.


Assuntos
Academias e Institutos , Cardiomiopatia Chagásica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cardiomiopatia Chagásica/epidemiologia , Cardiomiopatia Chagásica/diagnóstico , Estudos Soroepidemiológicos , México/epidemiologia , Adulto , Fatores de Tempo , Idoso , Doença de Chagas/epidemiologia , Doença de Chagas/diagnóstico , Cardiomiopatia Dilatada/epidemiologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/isolamento & purificação , Adulto Jovem
13.
Clin Microbiol Rev ; 37(2): e0009923, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38546225

RESUMO

SUMMARYAs Chagas disease remains prevalent in the Americas, it is important that healthcare professionals and researchers are aware of the screening, diagnosis, monitoring, and treatment recommendations for the populations of patients they care for and study. Management of Trypanosoma cruzi infection in immunocompromised hosts is challenging, particularly because, regardless of antitrypanosomal treatment status, immunocompromised patients with Chagas disease are at risk for T. cruzi reactivation, which can be lethal. Evidence-based practices to prevent and manage T. cruzi reactivation vary depending on the type of immunocompromise. Here, we review available data describing Chagas disease epidemiology, testing, and management practices for various populations of immunocompromised individuals, including people with HIV and patients undergoing solid organ and hematopoietic stem cell transplantation.


Assuntos
Doença de Chagas , Hospedeiro Imunocomprometido , Humanos , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/imunologia , Doença de Chagas/terapia , Trypanosoma cruzi/imunologia
14.
Neuroimmunomodulation ; 31(1): 78-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527434

RESUMO

BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.


Assuntos
Encéfalo , Doença de Chagas , Timo , Humanos , Doença de Chagas/imunologia , Doença de Chagas/fisiopatologia , Animais , Encéfalo/imunologia , Timo/imunologia , Timo/fisiologia , Trypanosoma cruzi/fisiologia , Trypanosoma cruzi/imunologia , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neuroimunomodulação/fisiologia , Neuroimunomodulação/imunologia , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo
15.
Vaccine ; 40(45): 6445-6449, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36184402

RESUMO

About 6.5 million people worldwide are afflicted by Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. The development of a therapeutic vaccine to prevent the progression of Chagasic cardiomyopathy has been proposed as an alternative for antiparasitic chemotherapy. Bioinformatics tools can predict MHC class I CD8 + epitopes for inclusion in a single recombinant protein with the goal to develop a multivalent vaccine. We expressed a novel recombinant protein Tc24-C4.10E harboring ten nonameric CD8 + epitopes and using Tc24-C4 protein as scaffold to evaluate the therapeutic effect in acute T. cruzi infection. T. cruzi-infected mice were immunized with Tc24-C4.10E or Tc24-C4 in a 50-day model of acute infection. Tc24-C4.10E-treated mice showed a decreased parasitemia compared to the Tc24-C4 (non-adjuvant) immunized mice or control group. Moreover, Tc24-C4.10E induced a higher stimulation index of CD8 + T cells producing IFNγ and IL-4 cytokines. These results suggest that the addition of the MHC Class I epitopes to Tc24-C4 can synergize the antigen-specific cellular immune responses, providing proof-of-concept that this approach could lead to the development of a promising vaccine candidate for Chagas disease.


Assuntos
Doença de Chagas , Proteínas de Protozoários , Trypanosoma cruzi , Animais , Camundongos , Anticorpos Antiprotozoários , Antiparasitários/uso terapêutico , Linfócitos T CD8-Positivos , Doença de Chagas/prevenção & controle , Citocinas , Epitopos , Interleucina-4 , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Vacinas Protozoárias , Proteínas Recombinantes , Trypanosoma cruzi/imunologia , Vacinas Combinadas
16.
Front Cell Infect Microbiol ; 12: 1075717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683674

RESUMO

Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.


Assuntos
Linfócitos T CD8-Positivos , Cardiomiopatia Chagásica , Infecção Persistente , Trypanosoma cruzi , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Epitopos de Linfócito T , Infecção Persistente/imunologia , Infecção Persistente/parasitologia , Trypanosoma cruzi/imunologia
17.
Front Immunol ; 12: 761795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868005

RESUMO

CD4-CD8- (double-negative, DN) T cells are critical orchestrators of the cytokine network associated with the pathogenic inflammatory response in one of the deadliest cardiomyopathies known, Chagas heart disease, which is caused by Trypanosoma cruzi infection. Here, studying the distribution, activation status, and cytokine expression of memory DN T-cell subpopulations in Chagas disease patients without cardiac involvement (indeterminate form-IND) or with Chagas cardiomyopathy (CARD), we report that while IND patients displayed a higher frequency of central memory, CARD had a high frequency of effector memory DN T cells. In addition, central memory DN T cells from IND displayed a balanced cytokine profile, characterized by the concomitant expression of IFN-γ and IL-10, which was not observed in effector memory DN T cells from CARD. Supporting potential clinical relevance, we found that the frequency of central memory DN T cells was associated with indicators of better ventricular function, while the frequency of effector memory DN T cells was not. Importantly, decreasing CD1d-mediated activation of DN T cells led to an increase in IL-10 expression by effector memory DN T cells from CARD, restoring a balanced profile similar to that observed in the protective central memory DN T cells. Targeting the activation of effector memory DN T cells may emerge as a strategy to control inflammation in Chagas cardiomyopathy and potentially in other inflammatory diseases where these cells play a key role.


Assuntos
Antígenos CD4/imunologia , Antígenos CD8/imunologia , Cardiomiopatia Chagásica/imunologia , Doença de Chagas/imunologia , Células T de Memória/imunologia , Trypanosoma cruzi/imunologia , Adulto , Idoso , Animais , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Células Cultivadas , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Chlorocebus aethiops , Eletrocardiografia , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Masculino , Células T de Memória/metabolismo , Pessoa de Meia-Idade , Trypanosoma cruzi/fisiologia , Função Ventricular Esquerda/imunologia , Função Ventricular Esquerda/fisiologia , Células Vero
18.
Front Immunol ; 12: 780810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899745

RESUMO

Background: Trypanosomatids are protozoa responsible for a wide range of diseases, with emphasis on Chagas Disease (CD) and Leishmaniasis, which are in the list of most relevant Neglected Tropical Diseases (NTD) according to World Health Organization (WHO). During the infectious process, immune system is immediately activated, and parasites can invade nucleated cells through a broad diversity of receptors. The complement system - through classical, alternative and lectin pathways - plays a role in the first line of defense against these pathogens, acting in opsonization, phagocytosis and lysis of parasites. Genetic modifications in complement genes, such as Single Nucleotide Polymorphisms (SNPs), can influence host susceptibility to these parasites and modulate protein expression. Methods: In March and April 2021, a literature search was conducted at the PubMed and Google Scholar databases and the reference lists obtained were verified. After applying the inclusion and exclusion criteria, the selected studies were evaluated and scored according to eleven established criteria regarding their thematic approach and design, aiming at the good quality of publications. Results: Twelve papers were included in this systematic review: seven investigating CD and five focusing on Leishmaniasis. Most articles presented gene and protein approaches, careful determination of experimental groups, and adequate choice of experimental techniques, although several of them were not up-to-date. Ten studies explored the association of polymorphisms and haplotypes with disease progression, with emphasis on lectin complement pathway genes. Decreased and increased patient serum protein levels were associated with susceptibility to CD and Visceral Leishmaniasis, respectively. Conclusion: This systematic review shows the influence of genetic alterations in complement genes on the progression of several infectious diseases, with a focus on conditions caused by trypanosomatids, and contributes suggestions and evidence to improve experimental design in future research proposals.


Assuntos
Doença de Chagas/parasitologia , Ativação do Complemento/genética , Proteínas do Sistema Complemento/genética , Variação Genética , Leishmania/patogenicidade , Leishmaniose/parasitologia , Trypanosoma cruzi/patogenicidade , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Progressão da Doença , Predisposição Genética para Doença , Interações Hospedeiro-Parasita , Humanos , Leishmania/imunologia , Leishmaniose/genética , Leishmaniose/imunologia , Leishmaniose/metabolismo , Fenótipo , Medição de Risco , Fatores de Risco , Trypanosoma cruzi/imunologia
19.
Parasit Vectors ; 14(1): 543, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670602

RESUMO

BACKGROUND: Chagas disease remains a significant public health problem in Latin America. There are only two chemotherapy drugs, nifurtimox and benznidazole, and both may have severe side effects. After complete chemotherapy of acute cases, seropositive diagnosis may revert to negative. However, there are no definitive parasitological or serological biomarkers of cure. METHODS: Following a pilot study with seven Bolivian migrants to Spain, we tested 71 serum samples from chronic patients (mean age 12.6 years) inhabiting the Argentine Chaco region. Benznidazole chemotherapy (5-8 mg/kg day, twice daily for 60 days) was administered during 2011-2016. Subsequently, pre-and post-chemotherapy serum samples were analysed in pairs by IgG1 and IgG ELISA using two different antigens and Chagas Sero K-SeT rapid diagnostic tests (RDT). Molecular diagnosis by kDNA-PCR was applied to post-treatment samples. RESULTS: Pilot data demonstrated IgG1 antibody decline in three of seven patients from Bolivia 1 year post-treatment. All Argentine patients in 2017 (averaging 5 years post-treatment), except one, were positive by conventional serology. All were kDNA-PCR-negative. Most (91.5%) pre-treatment samples were positive by the Chagas Sero K-SeT RDT, confirming the predominance of TcII/V/VI. IgG1 and IgG of Argentine patients showed significant decline in antibody titres post-chemotherapy, with either lysate (IgG, P = 0.0001, IgG1, P = 0.0001) or TcII/V/VI peptide antigen (IgG, P = 0.0001, IgG1, P = 0.0001). IgG1 decline was more discriminative than IgG. Antibody decline after treatment was also detected by the RDT. Incomplete treatment was associated with high IgG1 post-treatment titres against lysate (P = 0.013), as were IgG post-treatment titres to TcII/V/VI peptide (P = 0.0001). High pre-treatment IgG1 with lysate was associated with Qom ethnicity (P = 0.045). No associations were found between gender, age, body mass index and pre- or post-treatment antibody titres. CONCLUSIONS: We show that following chemotherapy of early chronic Chagas disease, significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure. We show that following chemotherapy of early chronic Chagas disease, a significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Nifurtimox/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/imunologia , Adolescente , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/sangue , Doença Crônica/tratamento farmacológico , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Testes Imunológicos , Masculino , Técnicas de Diagnóstico Molecular , Nifurtimox/efeitos adversos , Nitroimidazóis/efeitos adversos , Projetos Piloto , Fatores de Tempo , Tripanossomicidas/efeitos adversos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética
20.
J Immunol Res ; 2021: 2939693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604391

RESUMO

All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-ß-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.


Assuntos
Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Estresse Fisiológico/imunologia , Trypanosoma cruzi/imunologia , Animais , Linhagem Celular , Células Cultivadas , Temperatura Baixa , Vesículas Extracelulares/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Concentração de Íons de Hidrogênio , Imunidade/genética , Imunidade/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...