Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107692

RESUMO

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Assuntos
Irrigação Agrícola , Folhas de Planta , Ácido Salicílico , Solanum tuberosum , Águas Residuárias , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Folhas de Planta/efeitos dos fármacos , Irrigação Agrícola/métodos , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/anatomia & histologia , Antioxidantes/metabolismo
2.
Methods Mol Biol ; 2827: 189-196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985271

RESUMO

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Assuntos
Tubérculos , Técnicas de Cultura de Tecidos , Tubérculos/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Sementes/crescimento & desenvolvimento , Aclimatação
3.
Plant Physiol Biochem ; 214: 108927, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067104

RESUMO

Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.


Assuntos
Tubérculos , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética
4.
PLoS One ; 19(7): e0307260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046970

RESUMO

BACKGROUND: Bletilla striata (Thunb.) Reichb.f. (B. striata) is a traditional Chinese medicinal herb. B. striata polysaccharides (BSP), stilbenes and 2-isobutyl malic acid glucosoxy-benzyl ester compounds are the main active ingredients in B. striata. However, there is limited report on the changes of medicinal components and their biosynthesis regulation mechanisms in the tubers of B. striata at different stages. METHOD: The tubers of B. striata were collected during the flowering period, fruiting period, and harvest period to determine the total polysaccharide content using the phenol sulfuric acid method. The changes in secondary metabolites in the tubers at these stages were analyzed by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and transcriptomics was conducted for further exploration of their biosynthetic pathways. RESULT: The BSP content gradually increases from the flowering period to the fruiting period as the tubers develop, reaching its peak, but subsequently decreases at harvest time, which may be associated with the germination of B. striata buds in later stage. A total of 294 compounds were identified in this study. Among them, a majority of the compounds, such as 2-isobutyl malate gluconoxy-benzyl ester, exhibited high content during the fruit stage, while stilbenes like coelonin, 3'-O-methylbatatasin III, and blestriarene A accumulated during the harvesting period. The transcriptome data also revealed a substantial number of differentially expressed genes at various stages, providing a partial explanation for the complex changes in metabolites. We observed a correspondence between the expression pattern of GDP-Man biosynthesis-related enzyme genes and cumulative changes in BSP. And identified a positive correlation between 9 transcription factors and genes associated with polysaccharide biosynthesis, while 5 transcription factors were positively correlated with accumulation of 2-isobutyl malate gluconoxy-benzyl ester compounds and 5 transcription factors exhibited negative correlated with stilbene accumulation. CONCLUSION: It is imperative to determine the appropriate harvesting period based on the specific requirements of different active ingredients and the accumulation patterns of their metabolites. Considering the involvement of multiple transcription factors in the biosynthesis and accumulation of its active ingredients, a comprehensive investigation into the specific regulatory mechanisms that facilitate high-quality cultivation of B. striata is imperative.


Assuntos
Metabolômica , Orchidaceae , Orchidaceae/metabolismo , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma , Polissacarídeos/metabolismo , Perfilação da Expressão Gênica , Metabolismo Secundário/genética , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/genética
5.
Physiol Plant ; 176(3): e14322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818614

RESUMO

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield. MRI was used to monitor the growth kinetics and spatialization of individual tubers in situ and the evolution of internal defects throughout the development period. The intermittent drought applied to plants reduced tuber yield by reducing tuber growth and increasing the number of aborted tubers. The reduction in the size of tubers depended on the vertical position of the tubers in the soil, indicating water exchanges between tubers and the mother plant during leaf dehydration events. The final size of tubers was linked with the growth rate at specific developmental periods. For plants experiencing stress, this corresponded to the days following rewatering, suggesting tuber growth plasticity. All internal defects occurred in large tubers and within a short time span immediately following a period of rapid growth of perimedullary tissues, probably due to high nutrient requirements. To conclude, the non-destructive 3D imaging by MRI allowed us to quantify and better understand the kinetics and spatialization of tuber growth and the appearance of internal defects under different soil water conditions.


Assuntos
Imageamento por Ressonância Magnética , Tubérculos , Solanum tuberosum , Água , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Imageamento por Ressonância Magnética/métodos , Água/metabolismo , Desidratação , Secas , Cinética , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento
6.
Curr Opin Plant Biol ; 80: 102544, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759482

RESUMO

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.


Assuntos
Tubérculos , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/genética , Tubérculos/anatomia & histologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/anatomia & histologia
7.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791120

RESUMO

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Assuntos
Dormência de Plantas , Reguladores de Crescimento de Plantas , Tubérculos , Solanum tuberosum , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Solanum tuberosum/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo dos Carboidratos
8.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791140

RESUMO

The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.


Assuntos
Cyperus , Regulação da Expressão Gênica de Plantas , Tubérculos , RNA-Seq , Cyperus/genética , Cyperus/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento , Transcriptoma , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791426

RESUMO

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Assuntos
Apoptose , Helianthus , Tubérculos , Poliaminas , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Poliaminas/metabolismo , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento
11.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38488068

RESUMO

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tubérculos , Solanum tuberosum , Fatores de Transcrição , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
12.
J Sci Food Agric ; 104(9): 5207-5218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38314862

RESUMO

BACKGROUND: Seasonal late-season water deficits negatively affect the yield and quality of sweet potatoes in northern China. However, the amount of late-season irrigation to achieve high yield and consistent quality storage root remains undetermined. We assessed the yield and some qualitative traits of sweet potatoes such as size, shape, skin/flesh colour and nutritional content, as influenced by five irrigation levels (T0: unirrigated control; T1: 33% ETc; T2: 75% ETc; T3: 100% ETc; and T4: 125% ETc). RESULTS: Late-season irrigation significantly increased yield and marketable yield. Yields for T2 and T3 were significantly higher than other treatments, whereas T2 had the highest Grade A rating in a 2-year test. The vertical length of storage roots gradually increased with an increase in irrigation level, whereas the maximum width remained unchanged. The proportion of long elliptic and elliptic storage roots also increased, whereas the proportion of ovate, obovate and round storage roots gradually decreased. The skin and flesh colours became more vivid as the level of irrigation increased, with the skin colour becoming redder and the flesh colour becoming more orange-yellow. The levels of carotenoids, vitamin C and soluble sugar were significantly higher in irrigated crops, with the highest vitamin C and soluble sugar levels in T2 and the highest carotenoid levels in T3 treatment. CONCLUSION: Taken together, these results demonstrate the potential of moderate irrigation in the late-season to improve both yield production and quality potential. The results are of great importance for improving the market value of sweet potatoes and increasing grower profits. © 2024 Society of Chemical Industry.


Assuntos
Irrigação Agrícola , Ipomoea batatas , Estações do Ano , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Irrigação Agrícola/métodos , China , Tubérculos/química , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Água/análise , Água/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Valor Nutritivo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Produção Agrícola/métodos , Cor
13.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197194

RESUMO

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Senescência Vegetal , Solanum tuberosum , Fatores de Transcrição , Transporte Biológico , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Senescência Vegetal/genética , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/fisiologia , Plantas Geneticamente Modificadas , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Açúcares/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
14.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164131

RESUMO

Starch is a natural polysaccharide for which the technological quality depends on the genetic basis of the plant and the environmental conditions of the cultivation. Growing plants under cover without soil has many advantages for controlling the above-mentioned conditions. The present research focuses on determining the effect of under cover hydroponic potato cultivation on the physicochemical properties of accumulated potato starch (PS). The plants were grown in the hydroponic system, with (greenhouse, GH) and without recirculation nutrient solution (foil tunnel, FT). The reference sample was PS isolated from plants grown in a tunnel in containers filled with mineral soil (SO). The influence of the cultivation method on the elemental composition of the starch molecules was noted. The cultivation method also influenced the protein and amylose content of the PS. Considering the chromatic parameters, PS-GH and PS-FT were brighter and whiter, with a tinge of blue, than PS-SO. PS-SO was also characterized by the largest average diameters of granules, while PS-GH had the lowest crystallinity. PS-SO showed a better resistance to the combined action of elevated temperature and shear force. There was a slight variation in the gelatinization temperature values. Additionally, significant differences for enthalpy and the retrogradation ratio were observed. The cultivation method did not influence the glass transition and melting.


Assuntos
Amilose , Hidroponia , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Amilose/química , Amilose/isolamento & purificação , Amilose/metabolismo
15.
Microb Genom ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040428

RESUMO

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Celobiose/farmacologia , Celulose/farmacologia , Tubérculos/microbiologia , Streptomyces/crescimento & desenvolvimento , Trioses/farmacologia , Fatores de Virulência/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Macrolídeos/metabolismo , Metabolômica , Família Multigênica/efeitos dos fármacos , Piperazinas/metabolismo , Tubérculos/crescimento & desenvolvimento , RNA-Seq , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade
16.
PLoS One ; 17(1): e0259403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085256

RESUMO

Boron (B) deficiency is a widespread problem in alkaline soils which affects yield and quality of potato but is often ignored by the growers. That's why, we compared the impact of different methods of boron application (foliar spray, fertigation and soil dressing) along with control on boron use efficiency (BUE), quality and yield of potato in alkaline soils. Boron (0.5 kg ha-1) applied as a foliar spray had significantly increased plant height, tuber per plant, tuber volume and enhanced the quality in terms of vitamin C, starch and B content of potato compared to other methods. Moreover, foliar applied B significantly improved B uptake and it use efficiency over other application methods. B concentration in tubers were strongly correlated with vitamin C and starch contents. The application methods were ranked as foliar spray>fertigation>soil dressing in term of their effectiveness towards potato yield and quality improvement. Thus, for optimum production of good quality potato, B should be applied as foliar spray at the rate of 0.5 kg B ha-1 in existing agro-climatic conditions.


Assuntos
Boro/farmacologia , Solanum tuberosum/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Solo/química , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo
17.
J Sci Food Agric ; 102(3): 1233-1244, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34355399

RESUMO

BACKGROUND: Improving potato productivity and quality plays an important role in enhancing global food security and human health. However, inappropriate fertilizer management negatively affects potato growth and tuber development, especially in developing countries where there are large numbers of smallholders without modern soil testing equipment. Nutrient Expert (NE), a new and convenient fertilization decision system, was evaluated in the present study by conducting four site-years field experiments in Northeast China, aiming to determine its effectiveness and applicability for potato production relative to local farmers' practice (FP) and fertilizer recommendation based on soil testing (ST). RESULTS: The excessive fertilization at planting promoted seedling growth for potato plants in FP. Nevertheless, superior plant growth and tuber development were observed in NE at the middle and later growing stages, by optimizing fertilizer input and implementing split fertilization. Overall, compared to FP, the NE system increased total and marketable tuber yields by 12-15% and 16-26%, respectively, at the same time as obtaining 19-31% higher net returns and enhanced fertilizer use efficiencies. Moreover, NE improved tuber quality by increasing the contents of starch, soluble protein and vitamin C and decreasing reducing sugar content relative to FP, as well as increasing starch yields by 23-52%. The ST method also showed comprehensive improvements in potato performances compared to FP, although it did not show any advantages compared to NE system. CONCLUSION: The NE system improved potato productivity and tuber quality by optimizing fertilization management, which is an effective and promising alternative to the ST method for potato production in China and other developing countries. © 2021 Society of Chemical Industry.


Assuntos
Fertilizantes/análise , Nutrientes/metabolismo , Tubérculos/química , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Agricultura , China , Sistemas Inteligentes , Qualidade dos Alimentos , Nitrogênio/metabolismo , Tubérculos/metabolismo , Solo/química , Solanum tuberosum/química , Solanum tuberosum/crescimento & desenvolvimento , Amido/metabolismo
18.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769506

RESUMO

Plants serve as a niche for the growth and proliferation of a diversity of microorganisms. Soil microorganisms, which closely interact with plants, are increasingly being recognized as factors important to plant health. In this study, we explored the use of high-throughput DNA sequencing of the fungal ITS and bacterial 16S for characterization of the fungal and bacterial microbiomes following biocontrol treatment (DT) with Bacillus subtilis strain Bv17 relative to treatments without biocontrol (DC) during the potato growth cycle at three time points. A total of 5631 operational taxonomic units (OTUs) were identified from the 16S data, and 2236 OTUs were identified from the ITS data. The number of bacterial and fungal OTU in DT was higher than in DC and gradually increased during potato growth. In addition, indices such as Ace, Chao, Shannon, and Simpson were higher in DT than in DC, indicating greater richness and community diversity in soil following the biocontrol treatment. Additionally, the potato tuber yields improved without a measurable change in the bacterial communities following the B. subtilis strain Bv17 treatment. These results suggest that soil microbial communities in the rhizosphere are differentially affected by the biocontrol treatment while improving potato yield, providing a strong basis for biocontrol utilization in crop production.


Assuntos
Bacillus subtilis/fisiologia , Fungos/fisiologia , Tubérculos/crescimento & desenvolvimento , Microbiologia do Solo/normas , Solanum tuberosum/crescimento & desenvolvimento , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota , Tubérculos/genética , Tubérculos/microbiologia , Rizosfera , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
19.
BMC Plant Biol ; 21(1): 552, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809560

RESUMO

BACKGROUND: Improvement of tuber yield and tolerance to viruses are priority objectives in white Guinea yam breeding programs. However, phenotypic selection for these traits is quite challenging due to phenotypic plasticity and cumbersome screening of phenotypic-induced variations. This study assessed quantitative trait nucleotides (QTNs) and the underlying candidate genes related to tuber yield per plant (TYP) and yam mosaic virus (YMV) tolerance in a panel of 406 white Guinea yam (Dioscorea rotundata) breeding lines using a genome-wide association study (GWAS). RESULTS: Population structure analysis using 5,581 SNPs differentiated the 406 genotypes into seven distinct sub-groups based delta K. Marker-trait association (MTA) analysis using the multi-locus linear model (mrMLM) identified seventeen QTN regions significant for TYP and five for YMV with various effects. The seveteen QTNs were detected on nine chromosomes, while the five QTNs were identified on five chromosomes. We identified variants responsible for predicting higher yield and low virus severity scores in the breeding panel through the marker-effect prediction. Gene annotation for the significant SNP loci identified several essential putative genes associated with the growth and development of tuber yield and those that code for tolerance to mosaic virus. CONCLUSION: Application of different multi-locus models of GWAS identified 22 QTNs. Our results provide valuable insight for marker validation and deployment for tuber yield and mosaic virus tolerance in white yam breeding. The information on SNP variants and genes from the present study would fast-track the application of genomics-informed selection decisions in breeding white Guinea yam for rapid introgression of the targeted traits through markers validation.


Assuntos
Dioscorea/genética , Dioscorea/virologia , Resistência à Doença/genética , Vírus do Mosaico/patogenicidade , Melhoramento Vegetal/métodos , Tubérculos/crescimento & desenvolvimento , Locos de Características Quantitativas , Genes de Plantas , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Tubérculos/genética
20.
Plant Physiol ; 187(3): 1071-1086, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734280

RESUMO

Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism. Interestingly, microRNA156 overexpression in potato provided the first evidence for induction of profuse aerial stolons and tubers from axillary meristems under short-day (SD) photoperiod. A similar phenotype was noticed for overexpression of epigenetic modifiers-MUTICOPY SUPRESSOR OF IRA1 (StMSI1) or ENAHNCER OF ZESTE 2 (StE[z]2), and knockdown of B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1 (StBMI1). This striking phenotype represents a classic example of modulation of plant architecture and developmental plasticity. Differentiation of a stolon to a tuber or a shoot under in vitro or in vivo conditions symbolizes another example of organ-level plasticity and dual fate acquisition in potato. Stolon-to-tuber transition is governed by SD photoperiod, mobile RNAs/proteins, phytohormones, a plethora of small RNAs and their targets. Recent studies show that polycomb group proteins control microRNA156, phytohormone metabolism/transport/signaling and key tuberization genes through histone modifications to govern tuber development. Our comparative analysis of differentially expressed genes between the overexpression lines of StMSI1, StBEL5 (BEL1-LIKE transcription factor [TF]), and POTATO HOMEOBOX 15 TF revealed more than 1,000 common genes, indicative of a mutual gene regulatory network potentially involved in the formation of aerial and belowground tubers. In this review, in addition to key tuberization factors, we highlight the role of photoperiod and epigenetic mechanism that regulates the development of aerial and belowground tubers in potato.


Assuntos
Plasticidade Celular , Epigênese Genética , Fotoperíodo , Solanum tuberosum/genética , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/efeitos da radiação , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...