Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Clin Pharmacokinet ; 63(5): 657-668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530588

RESUMO

BACKGROUND AND OBJECTIVE: The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS: A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS: The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS: The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.


Assuntos
Antituberculosos , Diarilquinolinas , Modelos Biológicos , Tuberculose Meníngea , Humanos , Diarilquinolinas/farmacocinética , Antituberculosos/farmacocinética , Antituberculosos/administração & dosagem , Tuberculose Meníngea/tratamento farmacológico , Adulto , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Masculino , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Feminino , Simulação por Computador , Pessoa de Meia-Idade , Encéfalo/metabolismo
2.
Braz J Biol ; 83: e272512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422258

RESUMO

This study aimed to correlate the values of liver markers with oxidative stress markers in patients with multidrug-resistant tuberculosis in the Brazilian Amazon. A total of 30 patients from the Tuberculosis clinic of a referral hospital were admitted to the study. Whole blood samples were collected for analysis of liver enzyme values and oxidative stress markers by spectrophotometry. The prevalence was male (60%) and the 18-29 age group was the most affected. Patients with multidrug-resistant tuberculosis presented catalase values with a median equal to 6.94 U/gHb and for glutathione, the median was equal to 14.76 µg∕ml. As for the values of liver enzymes (AST, ALT, Gamma-GT and Alkaline phosphatase) the patients had medians equal to 60.50 (U/L); 80 (U/L); 54 (U/L); and 100 (U/L) respectively (p<0.0001). The results suggest a hepatotoxic effect of the drug, which recommends further studies with a larger number of samples in order to investigate the predictors of liver damage in patients with multidrug-resistant tuberculosis.


Assuntos
Fígado , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Masculino , Brasil , Estresse Oxidativo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
3.
Front Immunol ; 14: 1197805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457712

RESUMO

Background: Monocyte miRNAs govern both protective and pathological responses during tuberculosis (TB) through their differential expression and emerged as potent targets for biomarker discovery and host-directed therapeutics. Thus, this study examined the miRNA profile of sorted monocytes across the TB disease spectrum [drug-resistant TB (DR-TB), drug-sensitive TB (DS-TB), and latent TB] and in healthy individuals (HC) to understand the underlying pathophysiology and their regulatory mechanism. Methods: We sorted total monocytes including three subsets (HLA-DR+CD14+, HLA-DR+CD14+CD16+, and HLA-DR+CD16+cells) from peripheral blood mononuclear cells (PBMCs) of healthy and TB-infected individuals through flow cytometry and subjected them to NanoString-based miRNA profiling. Results: The outcome was the differential expression of 107 miRNAs particularly the downregulation of miRNAs in the active TB groups (both drug-resistant and drug-sensitive). The miRNA profile revealed differential expression signatures: i) decline of miR-548m in DR-TB alone, ii) decline of miR-486-3p in active TB but significant elevation only in LTB iii) elevation of miR-132-3p only in active TB (DR-TB and DS-TB) and iv) elevation of miR-150-5p in DR-TB alone. The directionality of functions mediated by monocyte miRNAs from Gene Set Enrichment Analysis (GSEA) facilitated two phenomenal findings: i) a bidirectional response between active disease (activation profile in DR-TB and DS-TB compared to LTB and HC) and latent infection (suppression profile in LTB vs HC) and ii) hyper immune activation in the DR-TB group compared to DS-TB. Conclusion: Thus, monocyte miRNA signatures provide pathological clues for altered monocyte function, drug resistance, and disease severity. Further studies on monocyte miRNAs may shed light on the immune regulatory mechanism for tuberculosis.


Assuntos
MicroRNAs , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Monócitos , MicroRNAs/genética , MicroRNAs/metabolismo , Leucócitos Mononucleares , Regulação para Baixo , Antígenos HLA-DR , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Gravidade do Paciente
4.
Front Immunol ; 13: 892701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911760

RESUMO

The rampant increase in drug-resistant tuberculosis (TB) remains a major challenge not only for treatment management but also for diagnosis, as well as drug design and development. Drug-resistant mycobacteria affect the quality of life owing to the delayed diagnosis and require prolonged treatment with multiple and toxic drugs. The phenotypic modulations defining the immune status of an individual during tuberculosis are well established. The present study aims to explore the phenotypic changes of monocytes & dendritic cells (DC) as well as their subsets across the TB disease spectrum, from latency to drug-sensitive TB (DS-TB) and drug-resistant TB (DR-TB) using traditional immunophenotypic analysis and by uniform manifold approximation and projection (UMAP) analysis. Our results demonstrate changes in frequencies of monocytes (classical, CD14++CD16-, intermediate, CD14++CD16+ and non-classical, CD14+/-CD16++) and dendritic cells (DC) (HLA-DR+CD11c+ myeloid DCs, cross-presenting HLA-DR+CD14-CD141+ myeloid DCs and HLA-DR+CD14-CD16-CD11c-CD123+ plasmacytoid DCs) together with elevated Monocyte to Lymphocyte ratios (MLR)/Neutrophil to Lymphocyte ratios (NLR) and alteration of cytokine levels between DS-TB and DR-TB groups. UMAP analysis revealed significant differential expression of CD14+, CD16+, CD86+ and CD64+ on monocytes and CD123+ on DCs by the DR-TB group. Thus, our study reveals differential monocyte and DC subset frequencies among the various TB disease groups towards modulating the immune responses and will be helpful to understand the pathogenicity driven by Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antígenos HLA-DR , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Monócitos , Qualidade de Vida , Tuberculose/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
5.
Eur J Med Chem ; 227: 113932, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34700267

RESUMO

As an anti-tuberculosis target, DprE1 contains two flexible loops (Loop I and Loop II) which have never been exploited for developing DprE1 inhibitors. Here Leu317 in Loop II was discovered as a new functional site to combat drug-resistance in Mycobacterium strains. Based on TCA1, LZDT1 was designed to optimize the hydrophobic interaction with Leu317. A subsequent biochemical and cellular assay displayed increased potency of LZDT1 in inhibiting DprE1 and killing drug-sensitive/-resistant Mycobacterium strains. The improved activity of LZDT1 and its analogue LZDT2 against multidrug resistant tuberculosis was particularly highlighted. For LZDT1, its enhanced interaction with Leu317 also impaired the drug-insensitivity of DprE1 caused by Cys387 mutation. A new nonbenzothiazole lead (LZDT10) with reduced Cys387-dependence was further produced by optimizing interactions with Leu317, improvement directions for LZDT10 were discussed as well. Our research underscores the value of potential functional sites in disordered loops, and affords a feasible way to develop these functional sites into opportunities for drug-resistance management.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Oxirredutases do Álcool/metabolismo , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
6.
Am J Respir Crit Care Med ; 204(11): 1327-1335, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403326

RESUMO

Rationale: There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. Objectives: To characterize the association between isoniazid pharmacokinetics (standard or high dose) and early bactericidal activity against M. tuberculosis (drug sensitive and inhA mutated) and N-acetyltransferase 2 status. Methods: ACTG (AIDS Clinical Trial Group) A5312/INHindsight is a 7-day early bactericidal activity study with isoniazid at a normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary tuberculosis received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (cfu) on solid culture and time to positivity in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. Measurements and Main Results: Fifty-nine adults were included in this analysis. A decline in sputum cfu was described by a one-compartment model, whereas an exponential bacterial growth model was used to interpret time-to-positivity data. The model found that bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship (a model linking the drug concentration to the observed effect). The model predicted lower potency but similar maximum kill of isoniazid against inhA-mutated compared with drug-sensitive isolates. Based on simulations from the pharmacokinetics-pharmacodynamics model, to achieve a drop in bacterial load comparable to 5 mg/kg against drug-sensitive tuberculosis, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. Conclusions: Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Assuntos
Antituberculosos/administração & dosagem , Isoniazida/administração & dosagem , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase , Proteínas de Bactérias , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Feminino , Humanos , Isoniazida/farmacocinética , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Oxirredutases , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Adulto Jovem
7.
Mol Med ; 27(1): 76, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261449

RESUMO

BACKGROUND: Tuberculosis (TB) is an infectious disease. During TB, regulatory T cells (Treg) are related to poor prognosis. However, information about conventional and unconventional Treg (cTreg and uTreg, respectively) is limited. The tumour necrosis factor (TNF) and its receptors (TNFR1 and TNFR2) are necessary for mycobacterial infection, and TNFR2 signalling is required to maintain Treg. METHODS: A blood sample of drug-susceptible (DS-TB) and drug-resistant tuberculosis (DR-TB) patients was obtained before (basal) and after 2 and 6 months of anti-TB therapy. Expression of TNF, TNFR1, and TNFR2 (transmembrane form, tm) on cTreg, uTreg, activated CD4+ (actCD4+), and CD4+ CD25- (CD4+) T cell subpopulations were evaluated. The main objective was to identify immunological changes associated with sensitive/resistant Mtb strains and with the use of anti-TB therapy. RESULTS: We found that after 6 months of anti-TB therapy, both DS- and DR-TB patients have decreased the frequency of cTreg tmTNF+, CD4+ tmTNFR1+ and CD4+ tmTNFR2+. Nevertheless, after 6 months of therapy, only DR-TB patients decreased the frequency of actCD4+ tmTNF+ and actCD4+ tmTNFR2+, exhibited a systemic inflammatory status (high levels of TNF, IFN-γ and IL-12), and their purified CD4+ T cells showed that TNF and TNFR2 are up-regulated at the transcriptional level. Moreover, DS- and DR-TB down-regulated TNFR1 and other proteins associated with Treg (FOXP3 and TGFß1) in response to the anti-TB therapy. CONCLUSION: These results partially explain the differences in the immune response of DS-TB vs DR-TB. The frequency of actCD4+ tmTNFR2+ cells and inflammatory status should be considered in the follow-up of therapy in DR-TB patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Tuberculose/etiologia , Tuberculose/metabolismo , Adulto , Idoso , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Biomarcadores , Contagem de Linfócito CD4 , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fatores de Tempo , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/etiologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
8.
Appl Biochem Biotechnol ; 193(6): 1757-1779, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33826064

RESUMO

Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is one of the principal causes of death in the world despite the existence of a significant number of antibiotics aimed against it. This is mainly due to the drug resistance mechanisms present in the bacterium, which leads to multidrug-resistant tuberculosis (MDR-TB). Additionally, the development of new antibiotics has become limited over the years. Although there are various drug resistance mechanisms present, efflux pumps are of utmost importance because they extrude out several dissimilar antitubercular drugs out of the cell. There are many efflux pump proteins present in Mycobacterium tuberculosis. Therefore, blocking these efflux pumps by inhibitors can raise the efficacy of the existing antibiotics and may also pave the path for the discovery and synthesis of new drugs. Plant compounds can act as a resource for the development of efflux pump inhibitors (EPIs), which may eventually replace or augment the current therapeutic options. This is mainly because plants have been traditionally used for ages for food or treatment and are considered safe with little or no side effects. Various computational tools are available which are used for the virtual screening of a large number of phytocompounds within a short span of time. This review aims to highlight the mechanism and appearance of drug resistance in Mycobacterium tuberculosis with emphasis on efflux pumps along with the significance of phytochemicals as inhibitors of these pumps and their screening strategy by computational approaches.


Assuntos
Antituberculosos , Proteínas de Bactérias , Simulação por Computador , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Compostos Fitoquímicos , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Antituberculosos/química , Antituberculosos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
9.
Clin Pharmacol Ther ; 110(6): 1455-1466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33837535

RESUMO

Tuberculosis (TB) remains a leading cause of infectious death worldwide, and poverty is a major driver. Clinically, TB presents as "latent" TB and active TB disease, and the treatment for each is different. TB drugs can display "early bactericidal activity (EBA)" and / or "sterilizing activity" (clearing persisters). Isoniazid is excellent at the former, and rifampin is excellent at the latter. Pyrazinamide and ethambutol complete the first-line regimen for drug-susceptible TB, each playing a specific role. Drug-resistant TB is an increasing concern, being met, in part, with repurposed drugs (including moxifloxacin, levofloxacin, linezolid, clofazimine, and beta-lactams) and new drugs (including bedaquiline, pretomanid, and delamanid). One challenge is to select drugs without overlapping adverse drug reaction profiles. QTc interval prolongation is one such concern, but to date, it has been manageable. Drug penetration into organism sanctuaries, such as the central nervous system, bone, and pulmonary TB cavities remain important challenges. The pharmacodynamics of most TB drugs can be described by the area under the curve (AUC) divided by the minimal inhibitory concentration (MIC). The hollow fiber infection model (HFIM) and various animal models (especially mouse and macaque) allow for sophisticated pharmacokinetic/pharmacodynamic experiments. These experiments may hasten the selection of the most potent, shortest possible regimens to treat even extremely drug resistant TB. These findings can be translated to humans by optimizing drug exposure in each patient, using therapeutic drug monitoring and dose individualization.


Assuntos
Antituberculosos/administração & dosagem , Antituberculosos/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/metabolismo , Animais , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada , Humanos , Isoniazida/administração & dosagem , Isoniazida/metabolismo , Levofloxacino/administração & dosagem , Levofloxacino/metabolismo , Rifampina/administração & dosagem , Rifampina/metabolismo , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
10.
Sci Rep ; 11(1): 1523, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452380

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a major health threat listed among the top 10 causes of death worldwide. Treatment of multidrug-resistant Mtb requires use of additional second-line drugs that prolong the treatment process and result in higher death rates. Our team previously identified a 2-pyridone molecule (C10) that blocks tolerance to the first-line drug isoniazid at C10 concentrations that do not inhibit bacterial growth. Here, we discovered that the genes rv3160c and rv3161c are highly induced by C10, which led us to investigate them as potential targets. We show that Rv3160c acts as a TetR-like transcriptional repressor binding to a palindromic sequence located in the rv3161c promoter. We also demonstrate that C10 interacts with Rv3160c, inhibiting its binding to DNA. We deleted the rv3161c gene, coding for a putative oxygenase, to investigate its role in drug and stress sensitivity as well as C10 activity. This Δrv3161c strain was more tolerant to isoniazid and lysozyme than wild type Mtb. However, this tolerance could still be blocked by C10, suggesting that C10 functions independently of Rv3161c to influence isoniazid and lysozyme sensitivity.


Assuntos
Resistência Microbiana a Medicamentos/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Isoniazida/farmacologia , Oxigenases/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Tetraciclina/farmacologia , Fatores de Transcrição/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
11.
Eur J Drug Metab Pharmacokinet ; 46(1): 1-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33206364

RESUMO

The objectives of this qualitative review were to critically evaluate and summarize the currently available data on the use of anti-tuberculosis (TB) drugs during pregnancy, with a focus on treatment outcomes, safety, and pharmacokinetics. This qualitative, narrative review was based on literature searches in Medline, Pubmed, Embase, and Google Scholar (from their inception to 13 August 2020). Our search identified 22 papers related to treatment outcomes and 14 papers related to pharmacokinetic exposures and fetal distributions. While it is challenging to study this patient population, current evidence supports treatment of drug-susceptible TB, multidrug-resistant TB and latent TB infections. However, decisions regarding initiating, continuing, or discontinuing anti-tubercular medications while pregnant should be individualized and discussed with a specialist. Similarly, the pharmacokinetic data of anti-TB agents were mainly derived from small scale, observational studies many of which lacked high quality controls. Based on these data, it does not appear that pregnancy has an extensive impact on the pharmacokinetics of the majority of first-line and second-line agents, although caution (discussed in the review) should be exercised in data interpretation. Fetal drug exposure can also be significant and should be considered when selecting an anti-TB agent for longer term treatment. Overall, it is generally difficult to predict pregnancy-associated pharmacokinetic changes based only on drug's physiochemical characteristics.


Assuntos
Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Feminino , Humanos , Gravidez , Estudos Prospectivos , Estudos Retrospectivos
12.
Bioorg Med Chem ; 28(22): 115744, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007556

RESUMO

Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. 'Direct inhibitors' of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Triclosan/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Relação Estrutura-Atividade , Triclosan/síntese química , Triclosan/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
13.
Assay Drug Dev Technol ; 18(7): 298-307, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33054379

RESUMO

Tuberculosis (TB) remains a major global health problem. Conventional treatments fail either because of poor patient compliance with the drug regimen or due to the emergence of multidrug-resistant TB. Thus, not only has the discovery of new compounds and new therapeutic strategies been the focus of many types of research but also new routes of administration. Pulmonary drug delivery possesses many advantages, including the noninvasive route of administration, low metabolic activity, and control environment for systemic absorption, and avoids first-pass metabolism. The use of lipid nanocarriers provides several advantages such as protection of the compound's degradation, increased bioavailability, and controlled drug release. In this study, we review some points related to how the use of lipid nanocarriers can improve TB treatment with inhaled nanomedicines. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems with nanocarriers targeting alveolar macrophages.


Assuntos
Antituberculosos/uso terapêutico , Lipídeos/química , Nanopartículas/química , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Administração por Inalação , Antituberculosos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
14.
Curr Top Med Chem ; 20(29): 2662-2680, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885754

RESUMO

Tuberculosis (TB) is a devastating disease responsible for millions of humans' deaths worldwide. It is caused by a mycobacterial organism, the tubercle bacillus or Mycobacterium tuberculosis. Although TB can be treated, cured and can be prevented if patients take prescribed medicines, scientists have never come close to wiping it out due to a sharp rise in the incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) mycobacterium strains. Due to long regimen treatment and emergence of MDR and XDR-TB, it is urgent to re-engineer and reposition old drugs for developing new antimycobacterial entities with novel mechanisms of action to achieve effective TB control even against the resistant forms of TB. To combat the dreadful MDR and XDR-TB, potential targets are being extensively searched for the last couple of years for the design and discovery of active potential antitubercular chemotherapeutics. To explore the disease virulence, potential new tubercular target enzymes such as InhA, MmpL3, ATP synthase, DprE1, QcrB and MenA have been taken into consideration in the present study and the structure-based design of the corresponding target inhibitors which are under clinical investigation has been attempted to identify structural features for the discovery of new chemical entities (NCEs) having specificity towards MDR and XDR Mycobacterium tuberculosis (M. tuberculosis).


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/química , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
15.
Thorax ; 75(7): 584-591, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546574

RESUMO

BACKGROUND: Understanding how pathogen genetic factors contribute to pathology in TB could enable tailored treatments to the most pathogenic and infectious strains. New strategies are needed to control drug-resistant TB, which requires longer and costlier treatment. We hypothesised that the severity of radiological pathology on the chest radiograph in TB disease was associated with variants arising independently, multiple times (homoplasies) in the Mycobacterium tuberculosis genome. METHODS: We performed whole genome sequencing (Illumina HiSeq2000 platform) on M. tuberculosis isolates from 103 patients with drug-resistant TB in Lima between 2010 and 2013. Variables including age, sex, HIV status, previous TB disease and the percentage of lung involvement on the pretreatment chest radiograph were collected from health posts of the national TB programme. Genomic variants were identified using standard pipelines. RESULTS: Two mutations were significantly associated with more widespread radiological pathology in a multivariable regression model controlling for confounding variables (Rv2828c.141, RR 1.3, 95% CI 1.21 to 1.39, p<0.01; rpoC.1040 95% CI 1.77 to 2.16, RR 1.9, p<0.01). The rpoB.450 mutation was associated with less extensive radiological pathology (RR 0.81, 95% CI 0.69 to 0.94, p=0.03), suggestive of a bacterial fitness cost for this mutation in vivo. Patients with a previous episode of TB disease and those between 10 and 30 years of age also had significantly increased radiological pathology. CONCLUSIONS: This study is the first to compare the M. tuberculosis genome to radiological pathology on the chest radiograph. We identified two variants significantly positively associated with more widespread radiological pathology and one with reduced pathology. Prospective studies are warranted to determine whether mutations associated with increased pathology also predict the spread of drug-resistant TB.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Adolescente , Adulto , Idoso , Proteínas de Bactérias/metabolismo , Criança , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
16.
Eur J Med Chem ; 196: 112317, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32311606

RESUMO

The emergence of antibiotic-resistant Mycobacterium Tuberculosis (Mtb) infections compels new treatment strategies, of which targeting trans-translation is promising. During the trans-translation process, the ribosomal protein S1 (RpsA) plays a key role, and the Ala438 mutant is related to pyrazinamide (PZA) resistance, which shows its effects after being hydrolysed to pyrazinoic acid (POA). In this study, based on the structure of the RpsA C-terminal domain (RpsA-CTD) and POA complex, new compounds were designed. After being synthesized, the compounds were tested in vitro with saturation transfer difference (STD), fluorescence quenching titration (FQT) and chemical shift perturbation (CSP) experiments. Finally, six of the 17 new compounds have high affinity for both RpsA-CTD and its Ala438 deletion mutant. The active compounds provide new choices for targeting trans-translation in Mtb, and the analysis of the structure-activity relationships will be helpful for further structural modifications based on derivatives of 2-((hypoxanthine-2-yl)thio)acetic acid and 2-((5-hydroxylflavone-7-yl)oxy)acetamide.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Hipoxantina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Ribossômicas/antagonistas & inibidores , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Acetamidas/síntese química , Acetamidas/química , Antibacterianos/síntese química , Antibacterianos/química , Descoberta de Drogas , Hipoxantina/síntese química , Hipoxantina/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Ribossômicas/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
17.
Iran J Immunol ; 17(1): 1-13, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32224537

RESUMO

BACKGROUND: Patient immune status might be indicative of the variance in bacterial genetics in drug-resistant tuberculous pleuritis and could be used for predicting the risk of multi-drug resistant tuberculous pleuritis (MDR-TB). OBJECTIVE: To determine the significance of Th2/Th1 ratio and concentration of PD-L1 in the pleural effusions for prediction of MDR-TB. METHODS: We measured the ratio of Th2 to Th1 T cells from pleural effusions in 373 tuberculous pleuritis patients. We also measured the concentration of programmed death ligand-1 (PD-L1) in the pleural effusions of these patients. Afterwards, we determined the optimal cut-off value for predicting the occurrence of multi-drug resistant tuberculous based on the Youden index, diagnostic evaluation test, and receiver operation curve. Multiple logistic analysis was employed to identify the independent risk factors for MDR-TB occurrence. RESULTS: The area under the curve (AUC) of the Th2 to Th1 ratio was 0.66 and the concentration of PD-L1 was 0.71. Based on the combined detection of PD-L1 concentration in pleural effusion and the Th2 to Th1 ratio, our AUC was 0.81 and had a specificity of 0.92. Only a combined detection was able to identify patients developing multidrug-resistant tuberculosis. Multiple logistic analysis showed that a high concentration of PD-L1 and a high Th2 to Th1 ratio in pleural effusions were indicative of an immunocompromised status. Therefore, these measurements might be independent risk factors for the occurrence of multidrug-resistant tuberculous. CONCLUSION: Evaluation of immune status based on PD-L1 pleural concentration and Th2 to Th1 ratio might predict the risk of MDR-TB occurrence.


Assuntos
Antígeno B7-H1/metabolismo , Derrame Pleural , Células Th1/imunologia , Células Th2/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Pleural/diagnóstico , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Derrame Pleural/imunologia , Derrame Pleural/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Tuberculose Pleural/imunologia , Tuberculose Pleural/metabolismo
18.
J Agric Food Chem ; 68(5): 1257-1265, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927919

RESUMO

Bedaquiline (TMC-207) is a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB). Moreover, there is a present and growing concern for natural-product-mediated drug interaction, as these are inadvertently taken by patients as a dietary supplement, food additive, and medicine. In the present study, we investigated the impact of 20 plant-based natural products, typically phenolics, on in vivo oral bedaquiline pharmacokinetics, as previous studies are lacking. Three natural phenolics were identified that can significantly enhance the oral exposure of bedaquiline upon coadministration. We further investigated the possible role of all of the phytochemicals on in vitro P-glycoprotein (P-gp) induction and inhibition and CYP3A4 inhibition in a single platform as bedaquiline is the substrate for both P-gp and CYP3A4. In conclusion, curcumin, CC-I (3',5-dihydroxyflavone-7-O-ß-d-galacturonide-4'-O-ß-d-glucopyranoside), and 6-gingerol should not be coadministered with bedaquiline to avoid untoward drug interactions and, subsequently, its dose-dependent adverse effects.


Assuntos
Antituberculosos/farmacocinética , Diarilquinolinas/farmacocinética , Suplementos Nutricionais/efeitos adversos , Interações Alimento-Droga , Fenóis/efeitos adversos , Extratos Vegetais/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antituberculosos/administração & dosagem , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Diarilquinolinas/administração & dosagem , Suplementos Nutricionais/análise , Feminino , Humanos , Fenóis/administração & dosagem , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
19.
Comput Biol Chem ; 85: 107205, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981965

RESUMO

Tuberculosis (TB) continues to be a serious global health threat with the emergence of multidrug-resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB). There is an urgent need to discover new drugs to deal with the advent of drug-resistant TB variants. This study aims to find new M. tuberculosis CYP121 inhibitors by the screening of Indonesian natural products using the principle of structure-based drug design and discovery. In this work, eight natural compounds isolated from Rhoeo spathacea and Pluchea indica were selected based on their antimycobacterial activity. Derivatives compound were virtually designed from these natural molecules to improve the interaction of ligands with CYP121. Virtual screening of ligands was carried out using AutoDock Vina followed by 50 ns molecular dynamics simulation using YASARA to study the inhibition mechanism of the ligands. Two ligands, i.e., kaempferol (KAE) and its benzyl derivative (KAE3), are identified as the best CYP121 inhibitors based on their binding affinities and adherence to the Lipinski's rule. Results of molecular dynamics simulation indicate that KAE and KAE3 possess a unique inhibitory mechanism against CYP121 that is different from GGJ (control ligand). The control ligand alters the overall dynamics of the receptor, which is indicated by changes in residue flexibility away from CYP121 binding site. Meanwhile, the dynamic changes caused by the binding of KAE and KAE3 are isolated around the binding site of CYP121. These ligands can be developed for further potential biological activities.


Assuntos
Antituberculosos/farmacologia , Compostos de Benzil/farmacologia , Produtos Biológicos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Quempferóis/farmacologia , Antituberculosos/química , Antituberculosos/isolamento & purificação , Compostos de Benzil/química , Compostos de Benzil/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Biologia Computacional , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Indonésia , Quempferóis/química , Quempferóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
20.
Comput Biol Chem ; 85: 107204, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981966

RESUMO

Bedaquiline (BDQ) has demonstrated formidable bactericidal activity towards Mycobacterium tuberculosis (Mtb) in the treatment of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis (TB). BDQ elicits its therapeutic function by halting the ionic shuttle of Mtb via mycobacterial F1F0 ATP-synthase blockade. However, triple mutations (L59 V, E61D and I66 M) at the ligand-binding cavity characterize emerging BDQ-resistant strains thereby restraining the potentials embedded in this anti-microbial compound, particularly in MDR/XDR-TB therapy. In this report, the effects of these triple mutations on BDQ-Mtb F1F0 ATP-synthase binding were investigated using molecular dynamics, free energy binding and residue interaction network (RIN) analyses. The highlight of our findings is the drastic reduction in BDQ binding affinity (ΔG) in the triple mutant protein, which was caused by a systemic loss in high-affinity interactions primarily mediated by L59, E61 and I66. While wildtype L59 and I66 formed pi-alkyl interactions with BDQ at the F1F0 ATP-synthase binding site, E61 elicited conventional (O--HO) bond. Upon transition, V59 and I66 were devoid of interactions with BDQ while D61 existed in a weaker non-conventional (C--HO) bond. Likewise, these mutations distorted the binding site and overall structural architecture of F1F0 ATP-synthase in the presence of BDQ as revealed by the RIN and conformational analyses. Insights from this study could serve as a starting point for the structure-based design of novel inhibitors that could overcome mutational setbacks posed by BDQ-resistant strains in MDR/XDR-TB treatment.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Antituberculosos/química , Sítios de Ligação/efeitos dos fármacos , Biologia Computacional , Diarilquinolinas/química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...