Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.729
Filtrar
1.
Elife ; 132024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221915

RESUMO

Loss-of-function Parkin mutations lead to early-onset of Parkinson's disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans. Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.


Assuntos
Ligação Proteica , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Humanos , Fosforilação , Cristalografia por Raios X , Modelos Moleculares , Ubiquitina/metabolismo , Cinética
2.
Cell Death Dis ; 15(9): 660, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251572

RESUMO

The WD repeat-containing protein 4 (WDR4) has repeatedly been associated with primary microcephaly, a condition of impaired brain and skull growth. Often, faulty centrosomes cause microcephaly, yet aberrant cilia may also be involved. Here, we show using a combination of approaches in human fibroblasts, zebrafish embryos and patient-derived cells that WDR4 facilitates cilium formation. Molecularly, we associated WDR4 loss-of-function with increased protein synthesis and concomitant upregulation of proteasomal activity, while ubiquitin precursor pools are reduced. Inhibition of proteasomal activity as well as supplementation with free ubiquitin restored normal ciliogenesis. Proteasome inhibition ameliorated microcephaly phenotypes. Thus, we propose that WDR4 loss-of-function impairs head growth and neurogenesis via aberrant cilia formation, initially caused by disturbed protein and ubiquitin homeostasis.


Assuntos
Cílios , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Peixe-Zebra , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Cílios/metabolismo , Cílios/patologia , Animais , Ubiquitina/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patologia , Fibroblastos/metabolismo , Neurogênese
3.
Sci Rep ; 14(1): 21195, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261509

RESUMO

It is estimated that there are 544.9 million people suffering from chronic respiratory diseases in the world, which is the third largest chronic disease. Although there are various clinical treatment methods, there is no specific drug for chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and idiopathic pulmonary fibrosis (IPF). Therefore, it is urgent to clarify the pathological mechanism and medication development. Single-cell transcriptome data of human and mouse from GEO database were integrated by "Harmony" algorithm. The data was standardized and normalized by using "Seurat" package, and "SingleR" algorithm was used for cell grouping annotation. The "Findmarker" function is used to find differentially expressed genes (DEGs), which were enriched and analyzed by using "clusterProfiler", and a protein interaction network was constructed for DEGs, and four algorithms are used to find the hub genes. The expression of hub genes were analyzed in independent human and mouse single-cell transcriptome data. Bulk RNA data were used to integrate by the "SVA" function, verify the expression levels of hub genes and build a diagnostic model. The L1000FWD platform was used to screen potential drugs. Through exploring the similarities and differences by integrated single-cell atlas, we found that the lung parenchymal cells showed abnormal oxidative stress, cell matrix adhesion and ubiquitination in COPD, corona virus disease 2019 (COVID-19), ILD and IPF. Meanwhile, the lung resident immune cells showed abnormal Toll-like receptor signals, interferon signals and ubiquitination. However, unlike acute pneumonia (COVID-19), chronic pulmonary disease shows enhanced ubiquitination. This phenomenon was confirmed in independent external human single-cell atlas, but unfortunately, it was not confirmed in mouse single-cell atlas of bleomycin-induced pulmonary fibrosis model and influenza virus-infected mouse model, which means that the model needs to be optimized. In addition, the bulk RNA-Seq data of COVID-19, ILD and IPF was integrated, and we found that the immune infiltration of lung tissue was enhanced, consistent with the single-cell level, UBA52, UBB and UBC were low expressed in COVID-19 and high expressed in ILD, and had a strong correlation with the expression of cell matrix adhesion genes. UBA52 and UBB have good diagnostic efficacy, and salermide and SSR-69071 can be used as their candidate drugs. Our study found that the disorder of protein ubiquitination in chronic pulmonary diseases is an important cause of pathological phenotype of pulmonary fibrosis by integrating scRNA-Seq and bulk RNA-Seq, which provides a new horizons for clinicopathology, diagnosis and treatment.


Assuntos
RNA-Seq , Ubiquitina , Humanos , Animais , Camundongos , Ubiquitina/metabolismo , Ubiquitina/genética , Análise de Célula Única/métodos , Transcriptoma , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas , Doença Crônica , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , SARS-CoV-2/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Análise da Expressão Gênica de Célula Única
4.
Proc Natl Acad Sci U S A ; 121(39): e2408697121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39264755

RESUMO

An N-degron is a degradation signal whose main determinant is a "destabilizing" N-terminal residue of a protein. Specific N-degrons, discovered in 1986, were the first identified degradation signals in short-lived intracellular proteins. These N-degrons are recognized by a ubiquitin-dependent proteolytic system called the Arg/N-degron pathway. Although bacteria lack the ubiquitin system, they also have N-degron pathways. Studies after 1986 have shown that all 20 amino acids of the genetic code can act, in specific sequence contexts, as destabilizing N-terminal residues. Eukaryotic proteins are targeted for the conditional or constitutive degradation by at least five N-degron systems that differ both functionally and mechanistically: the Arg/N-degron pathway, the Ac/N-degron pathway, the Pro/N-degron pathway, the fMet/N-degron pathway, and the newly named, in this perspective, GASTC/N-degron pathway (GASTC = Gly, Ala, Ser, Thr, Cys). I discuss these systems and the expanded terminology that now encompasses the entire gamut of known N-degron pathways.


Assuntos
Proteólise , Humanos , Ubiquitina/metabolismo , Proteínas/metabolismo , Proteínas/genética , Proteínas/química , Animais , Transdução de Sinais , Degrons
5.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337505

RESUMO

Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, ß-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis.


Assuntos
Proteínas do Citoesqueleto , Dexametasona , Proteínas do Olho , Glicoproteínas , Complexo de Endopeptidases do Proteassoma , Malha Trabecular , Ubiquitinação , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/citologia , Humanos , Dexametasona/farmacologia , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Células Cultivadas , Ubiquitina/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia
6.
Nat Commun ; 15(1): 7707, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300082

RESUMO

Mutations in parkin and PINK1 cause early-onset Parkinson's disease (EOPD). The ubiquitin ligase parkin is recruited to damaged mitochondria and activated by PINK1, a kinase that phosphorylates ubiquitin and the ubiquitin-like domain of parkin. Activated phospho-parkin then ubiquitinates mitochondrial proteins to target the damaged organelle for degradation. Here, we present the mechanism of activation of a new class of small molecule allosteric modulators that enhance parkin activity. The compounds act as molecular glues to enhance the ability of phospho-ubiquitin (pUb) to activate parkin. Ubiquitination assays and isothermal titration calorimetry with the most active compound (BIO-2007817) identify the mechanism of action. We present the crystal structure of a closely related compound (BIO-1975900) bound to a complex of parkin and two pUb molecules. The compound binds next to pUb on RING0 and contacts both proteins. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments confirm that activation occurs through release of the catalytic Rcat domain. In organello and mitophagy assays demonstrate that BIO-2007817 partially rescues the activity of parkin EOPD mutants, R42P and V56E, offering a basis for the design of activators as therapeutics for Parkinson's disease.


Assuntos
Doença de Parkinson , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/química , Cristalografia por Raios X , Mutação , Fosforilação , Regulação Alostérica , Mitofagia/efeitos dos fármacos , Ubiquitina/metabolismo , Modelos Moleculares , Ligação Proteica , Células HEK293
7.
Cell Death Dis ; 15(9): 703, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349939

RESUMO

Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Macrófagos , Camundongos Knockout , Piroptose , Sepse , Animais , Sepse/metabolismo , Sepse/patologia , Macrófagos/metabolismo , Camundongos , Humanos , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteínas de Ligação a Fosfato/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitina/metabolismo , Masculino , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteólise , Células RAW 264.7 , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Gasderminas , Autoantígenos , Complexo de Endopeptidases do Proteassoma
8.
Front Immunol ; 15: 1436174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315102

RESUMO

The ubiquitin-proteasome system (UPS) plays a crucial role in modulating the proliferation, activation, and normal functioning of immune cells through the regulation of protein degradation and function. By influencing the expression of immune checkpoint-associated proteins, the UPS modulates T cell-mediated anti-tumor immune responses and can potentially facilitate the immune escape of tumor cells. Additionally, the UPS contributes to the remodeling of the tumor immunosuppressive microenvironment (TIME) by regulating B cells, dendritic cells (DCs), macrophages, and Treg cells. Targeting the UPS in conjunction with immune checkpoint-associated proteins, and combining these with other therapeutic approaches, may significantly enhance the efficacy of combination therapies and pave the way for novel cancer treatment strategies. In this review, we first summarize the composition and alterations of the TIME, with a particular emphasis on the role of the UPS in TIME and its interactions with various immune cell types. Finally, we explore the potential of combining UPS-targeted therapies with immunotherapy to substantially improve the effectiveness of immunotherapy and enhance patient survival outcomes.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Microambiente Tumoral , Ubiquitina , Humanos , Microambiente Tumoral/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Ubiquitina/metabolismo , Animais , Imunoterapia/métodos , Terapia Combinada
9.
Arthritis Res Ther ; 26(1): 171, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342401

RESUMO

OBJECTIVE: Based on the recent evidence of IL-1 inhibition in patients with rheumatoid arthritis (RA) and concomitant type 2 diabetes (T2D), we evaluated the synovial tissue expression of IL-1 related genes in relationship to the ubiquitin-proteasome system and the effects of insulin on ubiquitinated proteins in fibroblast-like synoviocytes (FLSs). METHODS: The synovial expression of IL-1 pathway genes was compared in early (< 1 year) treatment-naïve RA patients with T2D (RA/T2D n = 16) and age- and sex-matched RA patients without T2D (n = 16), enrolled in the Pathobiology of Early Arthritis Cohort (PEAC). The synovial expression of ubiquitin in macrophages and synovial lining fibroblasts was also assessed by Immunohistochemistry/immunofluorescence and correlated with synovial pathotypes. Finally, FLSs from RA patients (n = 5) were isolated and treated with human insulin (200 and 500 nM) and ubiquitinated proteins were assessed by western blot. RESULTS: Synovial tissues of RA/T2D patients were characterised by a consistent reduced expression of ubiquitin-proteasome genes. More specifically, ubiquitin genes (UBB, UBC, and UBA52) and genes codifying proteasome subunits (PSMA2, PSMA6, PSMA7, PSMB1, PSMB3, PSMB4, PSMB6, PSMB8, PSMB9, PSMB10, PSMC1, PSMD9, PSME1, and PSME2) were significantly lower in RA/T2D patients. On the contrary, genes regulating fibroblast functions (FGF7, FGF10, FRS2, FGFR3, and SOS1), and genes linked to IL-1 pathway hyper-activity (APP, IRAK2, and OSMR) were upregulated in RA/T2D. Immunohistochemistry showed a significant reduction of the percentage of ubiquitin-positive cells in synovial tissues of RA/T2D patients. Ubiquitin-positive cells were also increased in patients with a lympho-myeloid pathotype compared to diffuse myeloid or pauci-immune-fibroid. Finally, in vitro experiments showed a reduction of ubiquitinated proteins in RA-FLSs treated with a high concentration of insulin (500 nM). CONCLUSIONS: A different IL-1 pathway gene expression was observed in the synovial tissues of early treatment-naïve RA/T2D patients, linked to decreased expression of the ubiquitin-proteasome system. These findings may provide a mechanistic explanation of the observed clinical benefits of IL-1 inhibition in patients with RA and concomitant T2D.


Assuntos
Artrite Reumatoide , Diabetes Mellitus Tipo 2 , Interleucina-1 , Complexo de Endopeptidases do Proteassoma , Membrana Sinovial , Ubiquitina , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Ubiquitina/metabolismo , Interleucina-1/metabolismo , Interleucina-1/genética , Membrana Sinovial/metabolismo , Transdução de Sinais/fisiologia , Idoso , Estudos de Coortes , Sinoviócitos/metabolismo , Sinoviócitos/efeitos dos fármacos , Western Blotting , Adulto , Imuno-Histoquímica , Células Cultivadas , Insulina/metabolismo
10.
Sci Adv ; 10(38): eadj4122, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303039

RESUMO

Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.


Assuntos
Camundongos Knockout , Complexo de Endopeptidases do Proteassoma , Biossíntese de Proteínas , Sarcopenia , Selenoproteína W , Ubiquitina , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Camundongos , Sarcopenia/metabolismo , Sarcopenia/genética , Sarcopenia/patologia , Ubiquitina/metabolismo , Selenoproteína W/genética , Selenoproteína W/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Dexametasona/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Modelos Animais de Doenças , Atrofia Muscular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/induzido quimicamente , Envelhecimento/metabolismo , Masculino , Transdução de Sinais , Neuropeptídeos
11.
Mol Cell ; 84(18): 3378-3380, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303679

RESUMO

In two recent studies in Nature, Hör et al.1 and Chambers et al.2 report that ubiquitin-like conjugation in bacteria antagonizes phage replication.


Assuntos
Ubiquitinação , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiologia , Replicação Viral , Bactérias/metabolismo , Bactérias/genética , Bactérias/virologia
12.
Redox Biol ; 76: 103349, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39260061

RESUMO

Chemoresistance remains a principal culprit for the treatment failure in colorectal cancer (CRC), especially for patients with recurrent or metastatic disease. Deciphering the molecular basis of chemoresistance may lead to novel therapeutic strategies for this fatal disease. Here, UBR5, an E3 ubiquitin ligase frequently overexpressed in human CRC, is demonstrated to mediate chemoresistance principally by inhibiting ferroptosis. Paradoxically, UBR5 shields oxaliplatin-activated Smad3 from proteasome-dependent degradation via Lys 11-linked polyubiquitination. This novel chemical modification of Smad3 facilitates the transcriptional repression of ATF3, induction of SLC7A11 and inhibition of ferroptosis, contributing to chemoresistance. Consequently, targeting UBR5 in combination with a ferroptosis inducer synergistically sensitizes CRC to oxaliplatin-induced cell death and control of tumor growth. This study reveals, for the first time, a major clinically relevant chemoresistance mechanism in CRC mediated by UBR5 in sustaining TGFß-Smad3 signaling and tuning ferroptosis, unveiling its potential as a viable therapeutic target for chemosensitization.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Transdução de Sinais , Proteína Smad3 , Ubiquitina-Proteína Ligases , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Proteína Smad3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos , Animais , Linhagem Celular Tumoral , Ubiquitinação , Oxaliplatina/farmacologia , Ubiquitina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lisina/metabolismo
13.
Cell Chem Biol ; 31(9): 1627-1635, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303699

RESUMO

The dynamic process of membrane shaping and remodeling plays a vital role in cellular functions, with proteins and cellular membranes interacting intricately to adapt to various cellular needs and environmental cues. Ubiquitination-a posttranslational modification-was shown to be essential in regulating membrane structure and shape. It influences virtually all pathways relying on cellular membranes, such as endocytosis and autophagy by directing protein degradation, sorting, and oligomerization. Ubiquitin is mostly known as a protein modifier; however, it was reported that ubiquitin and ubiquitin-like proteins can associate directly with lipids, affecting membrane curvature and dynamics. In this review, we summarize some of the current knowledge on ubiquitin-mediated membrane remodeling in the context of endocytosis, autophagy, and ER-phagy.


Assuntos
Membrana Celular , Ubiquitina , Ubiquitinação , Ubiquitina/metabolismo , Humanos , Membrana Celular/metabolismo , Autofagia , Endocitose , Animais , Retículo Endoplasmático/metabolismo
14.
J Am Chem Soc ; 146(39): 26957-26964, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39288007

RESUMO

Upon infection of host cells, Legionella pneumophila releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein. We installed reactive warheads on chemically prepared ribosylated ubiquitin to generate a set of probes targeting these Legionella enzymes. In vitro tests on recombinant DupA revealed that a vinyl sulfonate warhead was most efficient in covalent complex formation. Mutagenesis and X-ray crystallography approaches were used to identify the site of covalent cross-linking to be an allosteric cysteine residue. The subsequent application of this probe highlights the potential to selectively enrich the Dup enzymes from Legionella-infected cell lysates.


Assuntos
Legionella pneumophila , Legionella pneumophila/enzimologia , Modelos Moleculares , Cristalografia por Raios X , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sondas Moleculares/química , Ubiquitina/metabolismo , Ubiquitina/química
15.
Mol Cell ; 84(16): 3003-3005, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178835

RESUMO

In this issue of Molecular Cell, Yoshida et al.1 report an unconventional sugar-dependent ubiquitination event on Nrf1 that disrupts Nrf1 transcriptional activation.


Assuntos
Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Açúcares/metabolismo , Ativação Transcricional , Animais
16.
Nat Commun ; 15(1): 7481, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214972

RESUMO

Ubiquitination is a posttranslational modification in eukaryotes that plays a significant role in the infection of intracellular microbial pathogens, such as Legionella pneumophila. While the Legionella-containing vacuole (LCV) is coated with ubiquitin (Ub), it avoids recognition by autophagy adaptors. Here, we report that the Sdc and Sde families of effectors work together to build ubiquitinated species around the LCV. The Sdc effectors catalyze canonical polyubiquitination directly on host targets or on phosphoribosyl-Ub conjugated to host targets by Sde. Remarkably, Ub moieties within poly-Ub chains are either modified with a phosphoribosyl group by PDE domain-containing effectors or covalently attached to other host substrates via Sde-mediated phosphoribosyl-ubiquitination. Furthermore, these modifications prevent the recognition by Ub adaptors and therefore exclude host autophagy adaptors from the LCV. In this work, we shed light on the nature of the poly-ubiquitinated species present at the surface of the LCV and provide a molecular mechanism for the avoidance of autophagy adaptors by the Ub-decorated LCV.


Assuntos
Autofagia , Proteínas de Bactérias , Legionella pneumophila , Poliubiquitina , Ubiquitinação , Vacúolos , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Humanos , Vacúolos/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Poliubiquitina/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Ubiquitina/metabolismo
17.
Nucleic Acids Res ; 52(16): 9978-9995, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149911

RESUMO

Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.


Assuntos
Microscopia Crioeletrônica , Histonas , Simulação de Dinâmica Molecular , Nucleossomos , Ubiquitina , Ubiquitinação , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Nucleossomos/química , Histonas/metabolismo , Histonas/química , Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/genética , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional
18.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201358

RESUMO

Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.


Assuntos
Evolução Molecular , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina , Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Animais , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Processamento de Proteína Pós-Traducional , Filogenia
19.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201486

RESUMO

Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.


Assuntos
Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Ubiquitinação , Humanos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Enzimas Ativadoras de Ubiquitina
20.
Proc Natl Acad Sci U S A ; 121(34): e2315759121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145935

RESUMO

Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ubiquitina/metabolismo , Dano ao DNA , Ligação Proteica , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...