RESUMO
Olfactory bulb (OB) microglia activation and inflammation can lead to olfactory dysfunction, which often occurs after an ischemic stroke. Inhibition of soluble epoxide hydrolase (sEH) attenuates neuroinflammation in brain injuries by reducing the degradation of anti-inflammatory epoxyeicosatrienoic acids. However, whether sEH inhibitors can ameliorate olfactory dysfunction after an ischemic stroke remains unknown. Ischemic brain injury and olfactory dysfunction were induced by middle cerebral artery occlusion (MCAO) in Wistar Kyoto rats. The rats were administered 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a selective sEH inhibitor. Olfactory function, cerebral infarct volume, and the degree of degeneration, microglial polarization and neuroinflammation in OB were evaluated. Following treatment with AUDA, rats subjected to MCAO displayed mild cerebral infarction and OB degeneration, as well as better olfactory performance. In OB, AUDA triggered a modulation of microglial polarization toward the M2 anti-inflammatory type, reduction in proinflammatory mediators, and enhancement of the antioxidant process. The effectiveness of AUDA in terms of anti-inflammatory, neuroprotection and anti-oxidative properties suggests that it may have clinical therapeutic implication for ischemic stroke related olfactory dysfunction.
Assuntos
Epóxido Hidrolases , Ácidos Láuricos , Microglia , Doenças Neuroinflamatórias , Ratos Endogâmicos WKY , Animais , Epóxido Hidrolases/antagonistas & inibidores , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Ácidos Láuricos/farmacologia , Ácidos Láuricos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Bulbo Olfatório , Ureia/análogos & derivados , Ureia/farmacologia , Adamantano/análogos & derivadosRESUMO
BACKGROUND: Non-enveloped viruses, which lack a lipid envelope, display higher resistance to disinfectants, soaps and sanitizers compared to enveloped viruses. The capsids of these viruses are highly stable and symmetric protein shells that resist inactivation by commonly employed virucidal agents. This group of viruses include highly transmissible human pathogens such as Rotavirus, Poliovirus, Foot and Mouth Disease Virus, Norovirus and Adenovirus; thus, devising appropriate strategies for chemical disinfection is essential. RESULTS: In this study, we tested a mild, hypoallergenic combination of a denaturant, alcohol, and organic acid (3.2% citric acid, 1% urea and 70% ethanol, pH4) on two representative non-enveloped viruses - Human Adenovirus 5 (HAdV5) and Feline Calicivirus (FCV)- and evaluated the pathways of capsid neutralization using biophysical methods. The conformational shifts in the capsid upon chemical treatment were studied using Differential Scanning Calorimetry (DSC), while the morphological alterations were visualized concurrently using Transmission Electron Microscopy (TEM). We found that while treatment of purified HAdV5 particles with a formulation resulted in thermal instability and, large scale aggregation; similar treatment of FCV particles resulted in complete collapse of the capsids. Further, while individual components of the formulation caused significant damage to the capsids, a synergistic action of the whole formulation was evident against both non-enveloped viruses tested. CONCLUSIONS: The distinct effects of the chemical treatment on the morphology of HAdV5 and FCV suggests that non-enveloped viruses with icosahedral geometry can follow different morphological pathways to inactivation. Synergistic effect of whole formulation is more effective compared to individual components. Molecular level understanding of inactivation pathways may result in the design and development of effective mass-market formulations for rapid neutralization of non-enveloped viruses.
Assuntos
Adenovírus Humanos , Calicivirus Felino , Capsídeo , Inativação de Vírus , Inativação de Vírus/efeitos dos fármacos , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/fisiologia , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/fisiologia , Adenovírus Humanos/química , Adenovírus Humanos/ultraestrutura , Capsídeo/efeitos dos fármacos , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Desinfetantes/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Ureia/farmacologia , Ureia/química , Ureia/análogos & derivados , Ácido Cítrico/farmacologia , Ácido Cítrico/química , Etanol/farmacologia , Animais , Varredura Diferencial de CalorimetriaRESUMO
The binding of small molecules to sarcomeric myosin can elicit powerful effects on the chemomechanical cycle, making them effective therapeutics in the clinic and research tools at the benchtop. However, these myotropes can have complex effects that act on different phases of the crossbridge cycle and which depend on structural, dynamic, and environmental variables. While small molecule binding sites have been identified crystallographically and their effects on contraction studied extensively, small molecule-induced dynamic changes that link structure-function are less studied. Here, we use molecular dynamics simulations to explore how omecamtiv mecarbil (OM), a cardiac myosin-specific myotrope, alters the coordinated dynamics of the lever arm and the motor domain in the pre-powerstroke state. We show that the lever arm adopts a range of orientations and find that different lever arm orientations are accompanied by changes in the hydrogen bonding patterns near the converter. We find that the binding of OM to myosin reduces the conformational heterogeneity of the lever arm orientation and also adjusts the average lever arm orientation. Finally, we map out the distinct conformations and ligand-protein interactions adopted by OM. These results uncover some structural factors that govern the motor domain-tail orientations and the mechanisms by which OM primes the pre-powerstroke myosin heads.
Assuntos
Simulação de Dinâmica Molecular , Ureia , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ligação Proteica , Miosinas/química , Miosinas/metabolismo , Miosinas Cardíacas/química , Miosinas Cardíacas/metabolismo , Sítios de Ligação , Animais , Conformação Proteica , Ligação de HidrogênioRESUMO
N-Hydroxyurea has been known since the 1960s as an antiproliferative drug and is used both in oncology and for treatment of hematological disorders such as sickle cell anemia where very high daily doses are administered. It is assumed that the cellular effect of N-hydroxyurea is caused by inhibition of ribonucleotide reductase, while alternative mechanisms, e.g., generation of nitric oxide, have also been proposed. Despite its many therapeutic applications, the metabolism of hydroxyurea is largely unexplored. The major elimination pathway of N-hydroxyurea is the reduction to urea. Since the mitochondrial amidoxime reducing component (mARC) is known for its N-reductive activity, we investigated the reduction of NHU by this enzyme system. This study presents in vitro and in vivo evidence that this reductive biotransformation is specifically mediated by the mARC1. Inactivation by mARC1 is a possible explanation for the high doses of NHU required for treatment.
Assuntos
Hidroxiureia , Animais , Hidroxiureia/farmacologia , Hidroxiureia/metabolismo , Hidroxiureia/análogos & derivados , Oxirredução , Humanos , Ureia/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia , Camundongos , Oxirredutases/metabolismo , Oxirredutases/antagonistas & inibidoresRESUMO
Predator-prey interactions play a crucial role in maintaining ecological balance and possibly provide inspiration for strategies to mitigate environmental changes such as harmful algal blooms (HABs). To this end, this study aims to develop a novel strategy to mitigate HABs based on predator-prey interaction, i.e., Daphnia magna and Microcystis aeruginosa interaction. Bio-compounds (urea and 9-octadecenamide) produced by D. magna when encounter M. aeruginosa, were identified, particularly with urea promoting the aggregation of M. aeruginosa. Then, a novel adsorbent against HABs was synthesized by integrating bio-compounds of urea, and its effectiveness in removing M. aeruginosa was demonstrated. Notably, the adsorbent displayed a high removal efficiency of 99.25 % within 6 h. Our eco-friendly strategy holds promise for controlling HABs, representing the successful application of biomimicry principles.
Assuntos
Quitosana , Daphnia , Microcystis , Ureia , Animais , Ureia/química , Ureia/farmacologia , Adsorção , Quitosana/química , Daphnia/efeitos dos fármacos , Proliferação Nociva de Algas , Gossypium , Comportamento PredatórioRESUMO
Barrier membranes (BM) for guided bone regeneration (GBR) aim to support the osteogenic healing process of a defined bony defect by excluding epithelial (gingival) ingrowth and enabling osteoprogenitor and stem cells to proliferate and differentiate into bone tissue. Currently, the most widely used membranes for these approaches are collagen-derived, and there is a discrepancy in defining the optimal collagen membrane in terms of biocompatibility, strength, and degradation rates. Motivated by these clinical observations, we designed a collagen-free membrane based on l-valine-co-l-phenylalanine-poly(ester urea) (PEU) copolymer via electrospinning. Degradation and mechanical properties of these membranes were performed on as-spun and water-aged samples. Alveolar-bone-derived stem cells (AvBMSCs) were seeded on the PEU BM to assess their cell compatibility and osteogenic characteristics, including cell viability, attachment/spreading, proliferation, and mineralized tissue-associated gene expression. In vivo, PEU BMs were subcutaneously implanted in rats to evaluate their potential to cause inflammatory responses and facilitate angiogenesis. Finally, critical-size calvarial defects and a periodontal model were used to assess the regenerative capacity of the electrospun PEU BM compared to clinically available Cytoflex synthetic membranes. PEU BM demonstrated equal biocompatibility to Cytoflex with superior mechanical performance in strength and elasticity. Additionally, after 14 days, PEU BM exhibited a higher expression of BGLAP/osteocalcin and superior in vivo performance-less inflammation and increased CD31 and VWF expression over time. When placed in critical-sized defects in the calvaria of rats, the PEU BM led to robust bone formation with high expression of osteogenesis and angiogenesis markers. Moreover, our membrane enhanced alveolar bone and cementum regeneration in an established periodontal model after 8 weeks. We demonstrate that the PEU BM exhibits favorable clinical properties, including mechanical stability, cytocompatibility, and facilitated bone formation in vitro and in vivo. This highlights its suitability for GBR in periodontal and craniofacial bone defects.
Assuntos
Regeneração Óssea , Poliésteres , Animais , Regeneração Óssea/efeitos dos fármacos , Ratos , Poliésteres/química , Poliésteres/farmacologia , Membranas Artificiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Ureia/química , Ureia/farmacologia , Masculino , Humanos , Aminoácidos/química , Aminoácidos/farmacologia , Regeneração Tecidual Guiada/métodosRESUMO
By performing differential scanning calorimetry(DSC) measurements on RNase A, we studied the stabilization provided by the addition of potassium aspartate(KAsp) or potassium glutamate (KGlu) and found that it leads to a significant increase in the denaturation temperature of the protein. The stabilization proves to be mainly entropic in origin. A counteraction of the stabilization provided by KAsp or KGlu is obtained by adding common denaturants such as urea, guanidinium chloride, or guanidinium thiocyanate. A rationalization of the experimental data is devised on the basis of a theoretical approach developed by one of the authors. The main contribution to the conformational stability of globular proteins comes from the gain in translational entropy of water and co-solute ions and/or molecules for the decrease in solvent-excluded volume associated with polypeptide folding (i.e., there is a large decrease in solvent-accessible surface area). The magnitude of this entropic contribution increases with the number density and volume packing density of the solution. The two destabilizing contributions come from the conformational entropy of the chain, which should not depend significantly on the presence of co-solutes, and from the direct energetic interactions between co-solutes and the protein surface in both the native and denatured states. It is the magnitude of the latter that discriminates between stabilizing and destabilizing agents.
Assuntos
Ácido Aspártico , Ácido Glutâmico , Desnaturação Proteica , Ácido Aspártico/química , Desnaturação Proteica/efeitos dos fármacos , Ácido Glutâmico/química , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Termodinâmica , Varredura Diferencial de Calorimetria , Entropia , Estabilidade Proteica , Guanidina/química , Guanidina/farmacologia , Ureia/química , Ureia/farmacologia , Conformação ProteicaRESUMO
The methyl-d-erythritol phosphate (MEP) pathway has emerged as an interesting target in the fight against antimicrobial resistance. The pathway is essential in many human pathogens, including Plasmodium falciparum (Pf), but is absent in human cells. In the present study, we report on the discovery of a new chemical class targeting IspD, the third enzyme in the pathway. Exploration of the structure-activity relationship yielded inhibitors with potency in the low-nanomolar range. Moreover, we investigated the whole-cell activity, mode of inhibition, metabolic, and plasma stability of this compound class, and conducted in vivo pharmacokinetic profiling on selected compounds. Lastly, we disclosed a new mass spectrometry (MS)-based enzymatic assay for direct IspD activity determination, circumventing the need for auxiliary enzymes. In summary, we have identified a readily synthesizable compound class, demonstrating excellent activity and a promising profile, positioning it as a valuable tool compound for advancing research on IspD.
Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Humanos , Ureia/química , Ureia/farmacologia , Eritritol/metabolismo , Eritritol/análogos & derivados , Eritritol/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Fosfatos Açúcares/metabolismo , Fosfatos Açúcares/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidoresRESUMO
Potatoes (Solanum tuberosum L.) are a significant food crop cultivated around the world. Caffeic acid (CA) can enhance plant growth by promoting antioxidant activity and stimulating root development, contributing to overall plant health and vigor. Cobalt sulfate (CoSO4) boosts plant growth by promoting nitrogen (N) fixation, healthier root development, and chlorophyll synthesis, enhancing photosynthesis and overall plant health. Nanoparticle-coated urea (NPCU) improves nutrient uptake, promoting plant growth efficiency and reducing environmental impact. This study investigates the effects of combining CA, CoSO4, and NPCU as amendments on potatoes with and without NPCU. Four treatments, control, 20 µM CA, 0.15 mg/L CoSO4, and 20 µM CA + 0.15 mg/L CoSO4 with and without NPCU, were applied in four replications using a completely randomized design. Results demonstrate that the combination of CA + CoSO4 with NPCU led to an increase in potato stem length (~ 6%), shoot dry weight (~ 15%), root dry weight (~ 9%), and leaf dry weight (~ 49%) compared to the control in nutrient stress. There was a significant rise in chlorophyll a (~ 27%), chlorophyll b (~ 37%), and total chlorophyll (~ 28%) over the control under nutrient stress also showed the potential of CA + CoSO4 with NPCU. In conclusion, the findings suggest that applying CA + CoSO4 with NPCU is a strategy for alleviating potato nutrient stress.
Assuntos
Ácidos Cafeicos , Nanopartículas , Solanum tuberosum , Ureia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ureia/farmacologia , Nanopartículas/química , Cobalto/farmacologia , Cobalto/química , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacosRESUMO
Transforming growth factor ß type 1 receptor (TGFßR1), a crucial serine-threonine kinase, is central to the TGFß/Smad signaling pathway, governing cellular processes like growth, differentiation, apoptosis, and immune response. This pathway is closely linked to the epithelial-mesenchymal transition (EMT) process, which plays an important role in the metastasis of hepatocellular carcinoma (HCC). To date, only limited inhibitors targeting TGFßR1 have entered clinical trials, yet they encounter challenges, notably high toxicity, in clinical applications. Herein, an efficient virtual screening pipeline was developed. Eighty compounds were screened from a pool of over 17 million molecules based on docking scores and binding free energy. Four compounds were manually selected with the assistance of enhanced sampling method BPMD (binding pose metadynamics). The binding stability of these four compounds complexed with TGFßR1 was subsequently studied through long-timescale conventional molecular dynamics simulations. The three most promising compounds were subjected to in vitro bioactivity assays. Cpd272 demonstrated moderate inhibitory activity against TGFßR1, with an IC50 value of 1.57 ± 0.33 µM. Moreover, it exhibited cytotoxic effects on human hepatocellular carcinoma cell line Bel-7402. By shedding light on the binding mode of the receptor-ligand complexes, Cpd272 was identified as a hit compound featuring a novel urea-based scaffold capable of effectively inhibiting TGFßR1.
Assuntos
Simulação de Dinâmica Molecular , Receptor do Fator de Crescimento Transformador beta Tipo I , Ureia , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/química , Ureia/química , Ureia/farmacologia , Ureia/análogos & derivados , Simulação de Acoplamento Molecular , Descoberta de Drogas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologiaRESUMO
PURPOSE: Excessive tachycardia in resuscitated septic shock patients can impair hemodynamics and worsen patient outcome. We investigated whether heart rate (HR) control can be achieved without increased vasopressor requirements using the titratable highly selective, ultra-short-acting ß1-blocker landiolol. METHODS: This randomized, open-label, controlled trial was conducted at 20 sites in 7 European countries from 2018 to 2022 and investigated the efficacy and safety of landiolol in adult patients with septic shock and persistent tachycardia. Patients were randomly assigned to receive either landiolol along with standard treatment (n = 99) or standard treatment alone (n = 101). The combined primary endpoint was HR response (i.e., HR within the range of 80-94 beats per minute) and its maintenance without increasing vasopressor requirements during the first 24 h after treatment start. Key secondary endpoints were 28-day mortality and adverse events. RESULTS: Out of 196 included septic shock patients, 98 received standard treatment combined with landiolol and 98 standard treatment alone. A significantly larger proportion of patients met the combined primary endpoint in the landiolol group than in the control group (39.8% [39/98] vs. 23.5% [23/98]), with a between-group difference of 16.5% (95% confidence interval [CI]: 3.4-28.8%; p = 0.013). There were no statistically significant differences between study groups in tested secondary outcomes and adverse events. CONCLUSION: The ultra-short-acting beta-blocker landiolol was effective in reducing and maintaining HR without increasing vasopressor requirements after 24 h in patients with septic shock and persistent tachycardia. There were no differences in adverse events and clinical outcomes such as 28-day mortality vs. standard of care. The results of this study, in the context of previous trials, do not support a treatment strategy of stringent HR reduction (< 95 bpm) in an unselected septic shock population with persistent tachycardia. Further investigations are needed to identify septic shock patient phenotypes that benefit clinically from HR control.
Assuntos
Frequência Cardíaca , Morfolinas , Choque Séptico , Taquicardia , Ureia , Humanos , Choque Séptico/tratamento farmacológico , Choque Séptico/complicações , Choque Séptico/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Ureia/análogos & derivados , Ureia/uso terapêutico , Ureia/farmacologia , Taquicardia/tratamento farmacológico , Taquicardia/fisiopatologia , Taquicardia/complicações , Idoso , Frequência Cardíaca/efeitos dos fármacos , Morfolinas/uso terapêutico , Morfolinas/farmacologia , Europa (Continente)RESUMO
Omecamtiv mecarbil (OM) is a small molecule that has been shown to improve the function of the slow human ventricular myosin (MyHC) motor through a complex perturbation of the thin/thick filament regulatory state of the sarcomere mediated by binding to myosin allosteric sites coupled to inorganic phosphate (Pi) release. Here, myofibrils from samples of human left ventricle (ß-slow MyHC-7) and left atrium (α-fast MyHC-6) from healthy donors were used to study the differential effects of µmolar [OM] on isometric force in relaxing conditions (pCa 9.0) and at maximal (pCa 4.5) or half-maximal (pCa 5.75) calcium activation, both under control conditions (15 °C; equimolar DMSO; contaminant inorganic phosphate [Pi] ~170 µM) and in the presence of 5 mM [Pi]. The activation state and OM concentration within the contractile lattice were rapidly altered by fast solution switching, demonstrating that the effect of OM was rapid and fully reversible with dose-dependent and myosin isoform-dependent features. In MyHC-7 ventricular myofibrils, OM increased submaximal and maximal Ca2+-activated isometric force with a complex dose-dependent effect peaking (40% increase) at 0.5 µM, whereas in MyHC-6 atrial myofibrils, it had no effect or-at concentrations above 5 µM-decreased the maximum Ca2+-activated force. In both ventricular and atrial myofibrils, OM strongly depressed the kinetics of force development and relaxation up to 90% at 10 µM [OM] and reduced the inhibition of force by inorganic phosphate. Interestingly, in the ventricle, but not in the atrium, OM induced a large dose-dependent Ca2+-independent force development and an increase in basal ATPase that were abolished by the presence of millimolar inorganic phosphate, consistent with the hypothesis that the widely reported Ca2+-sensitising effect of OM may be coupled to a change in the state of the thick filaments that resembles the on-off regulation of thin filaments by Ca2+. The complexity of this scenario may help to understand the disappointing results of clinical trials testing OM as inotropic support in systolic heart failure compared with currently available inotropic drugs that alter the calcium signalling cascade.
Assuntos
Contração Miocárdica , Miofibrilas , Ureia , Humanos , Ureia/análogos & derivados , Ureia/farmacologia , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Cálcio/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo , Miosinas/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Masculino , Miosinas Cardíacas/metabolismo , Feminino , AdultoRESUMO
Root caries is the main cause of oral pain and tooth loss in the elderly. Protecting root lesions from environmental disturbances, resisting pathogens, and facilitating remineralization over time are essential for addressing root caries, but are challenging due to the irregular root surface and the complex oral environment. Hagfish secretes slime when facing danger, which converts into gels upon contact with seawater, suffocating the predators. Inspired by hagfish's defense mechanism, a fluid-hydrogel conversion strategy is proposed to establish a mechanical self-regulating multifunctional platform for root caries treatment. The fluid system (silk fibroin-tannic acid-black phosphorene-urea, ST-BP-U), in which urea disrupts the hydrogen bonds between silk fibroin and tannic acid, can easily spread on the irregular root surface and permeate into dentinal tubules. Upon contact with the surrounding water, urea diffuses, prompting the hydrogel re-formation and creating intimate attachments with micromechanical inlay locks. Meanwhile, BP increases the crosslinking of the re-formed hydrogel network, resulting in reinforced cohesion for robust wet adhesion to the tooth root. This process establishes a structured platform for effective antimicrobial phototherapy and dentin remineralization promotion. This water-responsive fluid-hydrogel conversion system adapts to the irregular root surface in the dynamic wet environment, holding promise for addressing root caries. STATEMENT OF SIGNIFICANCE: Root caries bring a heavy burden to the aging society, but the irregular root surface and dynamic moist oral environment always hinder non-surgical therapeutic effects. Here, we propose a water-responsive fluid-hydrogel conversion strategy aimed at mechanical self-regulation on the irregular and wet root interface to construct a functional structural platform. The liquid system (ST-BP-U) that prebreak intermolecular hydrogen bonds can easily spread on irregular surfaces and dentin tubules. When encountering water, hydrogen bonds re-form, and BP increases the crosslinking of the hydrogel formed in situ. Based on this firm wet-adhesion platform, it provides powerful phototherapy effects and promotes dentin remineralization. This fluid-hydrogel conversion system turns the disadvantages of wet environment into advantages, offering a promising strategy for root caries.
Assuntos
Hidrogéis , Cárie Radicular , Remineralização Dentária , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cárie Radicular/terapia , Cárie Radicular/tratamento farmacológico , Fototerapia , Ureia/química , Ureia/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Taninos/química , Taninos/farmacologia , Humanos , Fibroínas/químicaRESUMO
This study reports a novel, eco-friendly; fast and cost-effective microwave method for synthesizing carboxymethylated graphene oxide (CMGO) from sugarcane residues. Fourier-transform infrared spectroscopy (FTIR) confirmed successful CMGO synthesis through the presence of characteristic peaks at 1567.93 and 1639.29 cm-1 (COONa vibrations) and increased CH2 intensity compared to unmodified graphene oxide (GO). Furthermore, CMGO derived from sugarcane residues demonstrated potential in mitigating the side effects of toxic materials like carbon tetrachloride (CCl4). Treatment with CMGO partially reduced elevated levels of liver enzymes (ALT and AST) and nitrogenous waste products (urea and uric acid) in CCl4-induced liver damage models, suggesting an improvement in liver function despite ongoing cellular damage.This work paves the way for a sustainable and economical approach to produce functionalized graphene oxide with promising biomedical applications in alleviating toxin-induced liver injury.
Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Grafite , Fígado , Micro-Ondas , Grafite/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Tetracloreto de Carbono/toxicidade , Masculino , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Ácido Úrico , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Ureia/análogos & derivados , Ureia/farmacologia , CamundongosRESUMO
This study evaluated the mechanical properties of demineralized dentin matrix submitted to different bleaching treatments, as well as the changes in mass and collagen biodegradation brought about by endogenous protease. Dentin collagen matrices were prepared to receive the following treatments (n=12): no bleaching treatment (C-control), 10% carbamide peroxide (CP-Opalescence PF, Ultradent, South Jordan, UT, USA) 10%/8 hours/ day/14 days, and 40% hydrogen peroxide (HP-Opalescence Boost, Ultradent), 40 minutes per session/3 sessions. The dentin matrices were evaluated for elastic modulus and mass before and after treatments and ultimate tensile strength after treatments. The solution collected during storage was evaluated for hydroxyproline release. There was no statistically significant difference between CP and C in terms of the elastic modulus (p=0.3697) or mass variation (p=0.1333). Dentin beams treated with HP and C presented significant mass loss after the first session (p=0.0003). HP treatment led to complete degradation of collagen matrices after the second bleaching session. After the second session, CP showed higher hydroxyproline concentration than C (p<0.0001). Ultimate tensile strength was lower for CP than C (p=0.0097). CP did not affect the elastic modulus or the dentin collagen matrix mass but did promote hydroxyproline release by endogenous protease and reduce the ultimate tensile strength. HP significantly affected the mechanical properties of dentin and promoted complete degradation of the demineralized dentin collagen matrix.
Assuntos
Peróxido de Carbamida , Colágeno , Dentina , Módulo de Elasticidade , Peróxido de Hidrogênio , Resistência à Tração , Clareadores Dentários , Clareamento Dental , Dentina/metabolismo , Dentina/efeitos dos fármacos , Colágeno/metabolismo , Humanos , Clareadores Dentários/farmacologia , Peróxido de Carbamida/farmacologia , Clareamento Dental/métodos , Peptídeo Hidrolases/metabolismo , Peróxidos , Ureia/análogos & derivados , Ureia/farmacologia , Hidroxiprolina/metabolismo , Técnicas In VitroRESUMO
Tyrosinase inhibitors are studied in the cosmetics and pharmaceutical sectors as tyrosinase enzyme is involved in the biosynthesis and regulation of melanin, hence these inhibitors are beneficial for the management of melanogenesis and hyperpigmentation-related disorders. In the current work, a novel series of diphenyl urea derivatives containing a halo-pyridine moiety (5a-t) was synthesized via a multi-step synthesis. In vitro, tyrosinase inhibitory assay results showed that, except for two compounds, the derivatives were excellent inhibitors of human tyrosinase. The average IC50 value of the inhibitors (15.78 µM) is lower than that of kojic acid (17.3 µM) used as the reference compound, indicating that, on average, these molecules are more potent than the reference. Derivative 5a was identified as the most potent human tyrosinase inhibitor of the series, with an IC50 value of 3.5 ± 1.2 µM, approximately 5 times more potent than kojic acid. To get further insights into the nature of binding site interactions, molecular docking and molecular dynamics simulation studies were carried out. Moreover, the evaluation of in silico ADME properties showed a highly favorable profile for the synthesized compounds. These findings suggested that the further development of this class of compounds could be useful to get potent drug-like compounds that can target hyperpigmentation-related disorders.
Assuntos
Inibidores Enzimáticos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , Piridinas , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Ureia/farmacologia , Ureia/análogos & derivados , Ureia/química , Ureia/síntese química , Simulação de Dinâmica MolecularRESUMO
Studies have indicated that stress-related symptoms can lead to hormonal and neural changes, affecting the pain threshold and nociceptive behaviors. The precise role of orexin receptors (OX1r and OX2r) in stress-induced analgesia (SIA) remains an inquiry yet to be comprehensively elucidated. The current investigation aimed to assess the impact of acute immobilization restraint stress on pain-related behavioral responses after administering antagonists targeting OX1r and OX2r in a rat model using the tail-flick test. After a period of five to seven days post-stereotaxic surgery in CA1, the baseline tail-flick latency (TFL) was recorded for each animal. Subsequently, rats were unilaterally administered varying doses of the OX1r antagonist (SB334867; 1, 3, 10, and 30 nmol), the OX2r antagonist (TCS OX2 29; 1, 3, 10, and 30 nmol), or a vehicle (0.5 µl solution containing 12% DMSO) through an implanted cannula. Following a 5-min interval, the animals were subjected to a restraint stress (RS) lasting for 3 h. The tail-flick test was conducted after the stress exposure, and the TFLs were assessed at 60-min intervals. The findings of this study revealed that RS elicits antinociceptive responses in the tail-flick test. Microinjection of OX1r and OX2r antagonists into the CA1 attenuated RS-induced analgesia during the tail-flick test. Furthermore, the results underscored the preeminent role of OX2 receptors in modulating SIA. In conclusion, the orexin system localized within the hippocampal CA1 region may, in part, contribute to the manifestation of SIA in the context of acute pain.
Assuntos
Benzoxazóis , Região CA1 Hipocampal , Naftiridinas , Antagonistas dos Receptores de Orexina , Receptores de Orexina , Restrição Física , Estresse Psicológico , Animais , Receptores de Orexina/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/administração & dosagem , Masculino , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Estresse Psicológico/metabolismo , Ratos , Benzoxazóis/farmacologia , Benzoxazóis/administração & dosagem , Naftiridinas/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/administração & dosagem , Isoquinolinas/farmacologia , Isoquinolinas/administração & dosagem , Ratos Sprague-Dawley , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Piridinas/farmacologia , Piridinas/administração & dosagem , Dor/tratamento farmacológico , Dor/metabolismo , Aminopiridinas , SulfonamidasRESUMO
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series of quaternary ammonium functionalized urea-based anion receptors were studied. While the monodentate mono-urea M1, bisurea M2, and trisurea M3 failed to break through the cell membrane barrier and thus could not kill bacteria, the extended bidentate dimers D1-D3 presented gradually increased membrane penetrating capabilities, DNA conformation perturbation abilities, and broad-spectrum antibacterial activities against E. coli, P. aeruginosa, S. aureus, E. faecalis, and S. epidermidis.
Assuntos
Antibacterianos , Membrana Celular , Ligação de Hidrogênio , Ureia , Ureia/química , Ureia/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , DNA Bacteriano/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Escherichia coli/efeitos dos fármacosRESUMO
The transient receptor potential melastatin 7 channel (TRPM7) is a nonselective cation channel highly expressed in some human cancer tissues. TRPM7 is involved in the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cancer cells. Modulation of TRPM7 could be a promising therapeutic strategy for treating cancer; however, efficient and selective pharmacological TRPM7 modulators are lacking. In this study we investigated N- [4- (4, 6-dimethyl- 2-pyrimidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea (SUD), a newly synthesized benzoylurea derivative, for its effects on cancer cell migration and EMT and on functional expression of TRPM7. Our previous studies showed that SUD induces cell cycle arrest and apoptosis of MCF-7 and BGC-823 cells (human breast cancer and gastric cancer cell lines, respectively). Here, we show that SUD significantly decreased the migration of both types of cancer cells. Moreover, SUD decreased vimentin expression and increased E-cadherin expression in both cell types, indicating that EMT is also decreased by SUD. Importantly, SUD potentially reduced the TRPM7-like current in a concentration-dependent manner and decreased TRPM7 expression through the PI3K/Akt signaling pathway. Finally, molecular docking simulations were used to investigate potential SUD binding sites on TRPM7. In summary, our research demonstrated that SUD is an effective TRPM7 inhibitor and a potential agent to suppress the metastasis of breast and gastric cancer by inhibiting TRPM7 expression and function.
Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM , Ureia , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/química , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Simulação de Acoplamento Molecular , Células MCF-7RESUMO
Glycogen synthase kinase 3ß (GSK-3ß) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3ß inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3ß inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b-3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.