Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.813
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2368202, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38970562

RESUMO

Influenza A viruses (IAV) impose significant respiratory disease burdens in both swine and humans worldwide, with frequent human-to-swine transmission driving viral evolution in pigs and highlighting the risk at the animal-human interface. Therefore, a comprehensive One Health approach (interconnection among human, animal, and environmental health) is needed for IAV prevention, control, and response. Animal influenza genomic surveillance remains limited in many Latin American countries, including Colombia. To address this gap, we genetically characterized 170 swine specimens from Colombia (2011-2017). Whole genome sequencing revealed a predominance of pandemic-like H1N1 lineage, with a minority belonging to H3N2 and H1N2 human seasonal-like lineage and H1N1 early classical swine lineages. Significantly, we have identified reassortant and recombinant viruses (H3N2, H1N1) not previously reported in Colombia. This suggests a broad genotypic viral diversity, likely resulting from reassortment between classical endemic viruses and new introductions established in Colombia's swine population (e.g. the 2009 H1N1 pandemic). Our study highlights the importance of a One Health approach in disease control, particularly in an ecosystem where humans are a main source of IAV to swine populations, and emphasizes the need for continued surveillance and enhanced biosecurity measures. The co-circulation of multiple subtypes in regions with high swine density facilitates viral exchange, underscoring the importance of monitoring viral evolution to inform vaccine selection and public health policies locally and globally.


Assuntos
Evolução Molecular , Variação Genética , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Filogenia , Doenças dos Suínos , Animais , Suínos , Colômbia/epidemiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Saúde Única , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Sequenciamento Completo do Genoma , Genoma Viral , Monitoramento Epidemiológico , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/classificação , Influenza Humana/virologia , Influenza Humana/epidemiologia
2.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38975739

RESUMO

The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (Calidris canutus islandica) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of islandica red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.


Assuntos
Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Europa (Continente)/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Vírus Reordenados/genética , Surtos de Doenças/veterinária , Charadriiformes/virologia , Aves/virologia
3.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932172

RESUMO

Rift Valley fever (RVF) in ungulates and humans is caused by a mosquito-borne RVF phlebovirus (RVFV). Live attenuated vaccines are used in livestock (sheep and cattle) to control RVF in endemic regions during outbreaks. The ability of two or more different RVFV strains to reassort when co-infecting a host cell is a significant veterinary and public health concern due to the potential emergence of newly reassorted viruses, since reassortment of RVFVs has been documented in nature and in experimental infection studies. Due to the very limited information regarding the frequency and dynamics of RVFV reassortment, we evaluated the efficiency of RVFV reassortment in sheep, a natural host for this zoonotic pathogen. Co-infection experiments were performed, first in vitro in sheep-derived cells, and subsequently in vivo in sheep. Two RVFV co-infection groups were evaluated: group I consisted of co-infection with two wild-type (WT) RVFV strains, Kenya 128B-15 (Ken06) and Saudi Arabia SA01-1322 (SA01), while group II consisted of co-infection with the live attenuated virus (LAV) vaccine strain MP-12 and a WT strain, Ken06. In the in vitro experiments, the virus supernatants were collected 24 h post-infection. In the in vivo experiments, clinical signs were monitored, and blood and tissues were collected at various time points up to nine days post-challenge for analyses. Cell culture supernatants and samples from sheep were processed, and plaque-isolated viruses were genotyped to determine reassortment frequency. Our results show that RVFV reassortment is more efficient in co-infected sheep-derived cells compared to co-infected sheep. In vitro, the reassortment frequencies reached 37.9% for the group I co-infected cells and 25.4% for the group II co-infected cells. In contrast, we detected just 1.7% reassortant viruses from group I sheep co-infected with the two WT strains, while no reassortants were detected from group II sheep co-infected with the WT and LAV strains. The results indicate that RVFV reassortment occurs at a lower frequency in vivo in sheep when compared to in vitro conditions in sheep-derived cells. Further studies are needed to better understand the implications of RVFV reassortment in relation to virulence and transmission dynamics in the host and the vector. The knowledge learned from these studies on reassortment is important for understanding the dynamics of RVFV evolution.


Assuntos
Vírus Reordenados , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Ovinos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/virologia , Vírus Reordenados/genética , Doenças dos Ovinos/virologia , Coinfecção/virologia , Coinfecção/veterinária , Vacinas Atenuadas/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Anticorpos Antivirais/sangue
4.
Viruses ; 16(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38932226

RESUMO

Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period. Whole genomes were determined by sequencing using Illumina MiSeq without prior genome amplification. Fifteen RVA genomes, one RVB genome and a partial RVC genome were identified. Phylogenetic analyses of the RVA data suggested circulation of one dominant strain (G5-P[6]/P[13]/P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1), typical of South African porcine strains, although not closely related to previously detected South African porcine strains. Reassortment with three VP4-encoding P genotypes was detected. The study also reports the first complete RVB genome (G14-P[5]-I13-R4-C4-M4-A10-T4-E4-H7) from Africa. The partial RVC (G6-P[5]-IX-R1-C1-MX-A9-N6-T6-EX-H7) strain also grouped with porcine strains. The study shows the continued circulation of an RVA strain, with a high reassortment rate of the VP4-encoding segment, on the porcine farm. Furthermore, incidents of RVB and RVC on this farm emphasize the complex epidemiology of rotavirus in pigs.


Assuntos
Fazendas , Genoma Viral , Genótipo , Filogenia , Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Rotavirus/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Suínos , África do Sul/epidemiologia , Infecções por Rotavirus/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/epidemiologia , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Sequenciamento Completo do Genoma , Fezes/virologia
5.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932274

RESUMO

We identified a child coinfected with influenza B viruses of B/Yamagata and B/Victoria lineages, in whom we analyzed the occurrence of genetic reassortment. Plaque purification was performed using a throat swab specimen from a 9-year-old child, resulting in 34 well-isolated plaques. The genomic composition of eight gene segments (HA, NA, PB1, PB2, PA, NP, M, and NS genes) for each plaque was determined at the lineage level. Of the 34 plaques, 21 (61.8%) had B/Phuket/3073/2013 (B/Yamagata)-like sequences in all gene segments, while the other 13 (38.2%) were reassortants with B/Texas/02/2013 (B/Victoria)-like sequences in 1-5 of the 8 segments. The PB1 segment had the most B/Victoria lineage genes (23.5%; 8 of 34 plaques), while PB2 and PA had the least (2.9%; 1 of 34 plaques). Reassortants with B/Victoria lineage genes in 2-5 segments showed the same level of growth as viruses with B/Yamagata lineage genes in all segments. However, reassortants with B/Victoria lineage genes only in the NA, PB1, NP, or NS segments exhibited reduced or undetectable growth. We demonstrated that various gene reassortments occurred in a child. These results suggest that simultaneous outbreaks of two influenza B virus lineages increase genetic diversity and could promote the emergence of new epidemic strains.


Assuntos
Coinfecção , Vírus da Influenza B , Influenza Humana , Filogenia , Vírus Reordenados , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/classificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/classificação , Humanos , Criança , Influenza Humana/virologia , Coinfecção/virologia , Genoma Viral , Masculino , Proteínas Virais/genética
6.
PLoS One ; 19(5): e0300862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739614

RESUMO

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Brasil , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Charadriiformes/virologia , Genoma Viral , Aves/virologia
7.
Virus Genes ; 60(3): 320-324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722491

RESUMO

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.


Assuntos
Animais Selvagens , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , China , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/classificação , Influenza Aviária/virologia , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves/virologia , Evolução Molecular , Genoma Viral/genética , Neuraminidase/genética , Proteínas Virais/genética
8.
Emerg Infect Dis ; 30(6): 1285-1288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703022

RESUMO

We isolated novel reassortant avian influenza A(H5N6) viruses containing genes from clade 2.3.4.4b H5N1 virus and low pathogenicity avian influenza viruses in carcasses of whooper swans and bean geese in South Korea during December 2023. Neuraminidase gene was from a clade 2.3.4.4b H5N6 virus infecting poultry and humans in China.


Assuntos
Animais Selvagens , Aves , Vírus da Influenza A , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , República da Coreia/epidemiologia , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Aves/virologia , Vírus Reordenados/genética , História do Século XXI , Humanos , Neuraminidase/genética
9.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 574-578, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38678355

RESUMO

Objective: To identify a novel reassortant H3N2 avian influenza virus using nanopore sequencing technology and analyze its genetic characteristics. Methods: The positive samples of the H3N2 avian influenza virus, collected from the external environment in the farmers' market of Guangzhou, were cultured in chicken embryos. The whole genome was sequenced by targeted amplification and nanopore sequencing technology. The genetic characteristics were analyzed using bioinformatics software. Results: The phylogenetic trees showed that each gene fragment of the strain belonged to the Eurasian evolutionary branch, and the host source was of avian origin. The HA gene was closely related to the origin of the H3N6 virus. The NA gene was closely related to the H3N2 avian influenza virus from 2017 to 2020. The PB1 gene was closely related to the H5N6 avian influenza virus in Guangxi Zhuang Autonomous Region and Fujian Province from 2016 to 2022 and was not related to the PB1 gene of the H5N6 avian influenza epidemic strain in Guangzhou. The other internal gene fragments had complex sources with significant genetic diversity. Molecular characteristics indicated that the strain exhibited the molecular characteristics of a typical low pathogenic avian influenza virus and tended to bind to the receptors of avian origin. On important protein sites related to biological characteristics, this strain had mutations of PB2-L89V, PB1-L473V, NP-A184K, M1-N30D/T215A, and NS1-P42S/N205S. Conclusions: This study identified a novel reassortant H3N2 avian influenza virus by nanopore sequencing, with the PB1 gene derived from the H5N6 avian influenza virus. The virus had a low ability to spread across species, but further exploration was needed to determine whether its pathogenicity to the host was affected.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Influenza Aviária , Sequenciamento por Nanoporos , Filogenia , Vírus Reordenados , Animais , Vírus Reordenados/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Genoma Viral , Embrião de Galinha , Galinhas/virologia , Proteínas Virais/genética , Variação Genética
10.
Emerg Microbes Infect ; 13(1): 2341142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38581279

RESUMO

H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.


Assuntos
Galinhas , Evolução Molecular , Genoma Viral , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , China/epidemiologia , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Camundongos , Galinhas/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genótipo , Humanos
11.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
12.
Viruses ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675898

RESUMO

Piscine orthoreovirus (PRV) is a pathogen that causes heart and skeletal muscle inflammation in Salmo salar and has also been linked to circulatory disorders in other farmed salmonids, such as Oncorhynchus kisutch and Oncorhynchus mykiss. The virus has a segmented, double-stranded RNA genome, which makes it possible to undergo genetic reassortment and increase its genomic diversity through point mutations. In this study, genetic reassortment in PRV was assessed using the full genome sequences available in public databases. This study used full genome sequences that were concatenated and genome-wide reassortment events, and phylogenetic analyses were performed using the recombination/reassortment detection program version 5 (RDP5 V 5.5) software. Additionally, each segment was aligned codon by codon, and overall mean distance and selection was tested using the Molecular Evolutionary Genetics Analysis X software, version 10.2 (MEGA X version 10.2). The results showed that there were 17 significant reassortment events in 12 reassortant sequences, involving genome exchange between low and highly virulent genotypes. PRV sequences from different salmonid host species did not appear to limit the reassortment. This study found that PRV frequently undergoes reassortment events to increase the diversity of its segmented genome, leading to antigenic variation and increased virulence. This study also noted that to date, no reassortment events have been described between PRV-1 and PRV-3 genotypes. However, the number of complete genomic sequences within each genotype is uneven. This is important because PRV-3 induces cross-protection against PRV-1, making it a potential vaccine candidate.


Assuntos
Evolução Molecular , Doenças dos Peixes , Genoma Viral , Orthoreovirus , Filogenia , Vírus Reordenados , Infecções por Reoviridae , Seleção Genética , Orthoreovirus/genética , Orthoreovirus/classificação , Animais , Vírus Reordenados/genética , Vírus Reordenados/classificação , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Doenças dos Peixes/virologia , Genótipo , Variação Genética , Oncorhynchus mykiss/virologia
13.
Arch Virol ; 169(5): 111, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664271

RESUMO

India has reported highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks since 2006, with the first human case reported in 2021. These included viruses belonging to the clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, and 2.3.2.1c. There are currently no data on the gene pool of HPAI H5N1 viruses in India. Molecular clock and phylogeography analysis of the HA and NA genes; and phylogenetic analysis of the internal genes of H5N1 viruses from India were carried out. Sequences reported from 2006 to 2015; and sequences from 2021 that were available in online databases were used in the analysis. Five separate introductions of H5N1 viruses into India were observed, via Indonesia or Korea (2002), Bangladesh (2009), Bhutan (2010), and China (2013, 2018) (clades 2.2, 2.2.2, 2.2.2.1, 2.3.2.1a, 2.3.2.1c, and 2.3.4.4b). Phylogenetic analysis revealed eight reassortant genotypes. The H5N1 virus isolated from the human case showed a unique reassortant genotype. Amino acid markers associated with adaptation to mammals were also present. This is the first report of the spatio-temporal origins and gene pool analysis of H5N1 viruses from India, highlighting the need for increased molecular surveillance.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Filogenia , Filogeografia , Índia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Humanos , Influenza Humana/virologia , Influenza Humana/epidemiologia , Genótipo , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Neuraminidase/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves/virologia , Surtos de Doenças
14.
Viruses ; 16(4)2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38675907

RESUMO

Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.


Assuntos
Proteínas do Capsídeo , Vírus Reordenados , Rotavirus , Replicação Viral , Rotavirus/genética , Proteínas do Capsídeo/genética , Humanos , Vírus Reordenados/genética , Animais , Mutação , Linhagem Celular , Genética Reversa/métodos , Genótipo , Mutação Puntual , Infecções por Rotavirus/virologia , Genoma Viral , Antígenos Virais/genética , Antígenos Virais/imunologia
15.
Viruses ; 16(4)2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675910

RESUMO

Influenza A viruses (IAVs) pose a serious threat to global health. On the one hand, these viruses cause seasonal flu outbreaks in humans. On the other hand, they are a zoonotic infection that has the potential to cause a pandemic. The most important natural reservoir of IAVs are waterfowl. In this study, we investigated the occurrence of IAV in birds in the Republic of Buryatia (region in Russia). In 2020, a total of 3018 fecal samples were collected from wild migratory birds near Lake Baikal. Of these samples, 11 were found to be positive for the H13N8 subtype and whole-genome sequencing was performed on them. All samples contained the same virus with the designation A/Unknown/Buryatia/Arangatui-1/2020. To our knowledge, virus A/Unknown/Buryatia/Arangatui-1/2020 is the first representative of the H13N8 subtype collected on the territory of Russia, the sequence of which is available in the GenBank database. An analysis of reassortments based on the genome sequences of other known viruses has shown that A/Unknown/Buryatia/Arangatui-1/2020 arose as a result of reassortment. In addition, a reassortment most likely occurred several decades ago between the ancestors of the viruses recently collected in China, the Netherlands, the United States and Chile. The presence of such reassortment emphasizes the ongoing evolution of the H13N8 viruses distributed in Europe, North and East Asia, North and South America and Australia. This study underscores the importance of the continued surveillance and research of less-studied influenza subtypes.


Assuntos
Aves , Genoma Viral , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Sequenciamento Completo do Genoma , Animais , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Federação Russa/epidemiologia , Aves/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Fezes/virologia , Animais Selvagens/virologia
16.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648521

RESUMO

Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.


Assuntos
Genoma Viral , Filogenia , Vírus Reordenados , Vírus Reordenados/genética , Evolução Molecular , Modelos Genéticos
17.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446039

RESUMO

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Criança , Humanos , Animais , Suínos , Pré-Escolar , Idoso , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Chile/epidemiologia , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
18.
Emerg Microbes Infect ; 13(1): 2332667, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38494746

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses have caused large outbreaks within avian populations on five continents, with concurrent spillover into a variety of mammalian species. Mutations associated with mammalian adaptation have been sporadically identified in avian isolates, and more frequently among mammalian isolates following infection. Reports of human infection with A(H5N1) viruses following contact with infected wildlife have been reported on multiple continents, highlighting the need for pandemic risk assessment of these viruses. In this study, the pathogenicity and transmissibility of A/Chile/25945/2023 HPAI A(H5N1) virus, a novel reassortant with four gene segments (PB1, PB2, NP, MP) from North American lineage, isolated from a severe human case in Chile, was evaluated in vitro and using the ferret model. This virus possessed a high capacity to cause fatal disease, characterized by high morbidity and extrapulmonary spread in virus-inoculated ferrets. The virus was capable of transmission to naïve contacts in a direct contact setting, with contact animals similarly exhibiting severe disease, but did not exhibit productive transmission in respiratory droplet or fomite transmission models. Our results indicate that the virus would need to acquire an airborne transmissible phenotype in mammals to potentially cause a pandemic. Nonetheless, this work warrants continuous monitoring of mammalian adaptations in avian viruses, especially in strains isolated from humans, to aid pandemic preparedness efforts.


Assuntos
Furões , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões/virologia , Humanos , Chile , Influenza Humana/virologia , Influenza Humana/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Vírus Reordenados/classificação , Filogenia , Influenza Aviária/virologia , Influenza Aviária/transmissão
20.
Virology ; 592: 110009, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330852

RESUMO

Swine influenza viruses pose ongoing threat to pork industry throughout the world. In 2023, fattening pigs from a swine farm in Inner Mongolia of China experienced influenza-like symptoms. Co-infection of influenza A virus with Pasteurella multocida was diagnosed in lung tissues of diseased pigs and a genotype 4 (G4) Eurasian avian-like (EA) H1N1 virus was isolated, which was named as A/swine/Neimenggu/0326/2023. We demonstrated the virus preferentially bound human-like SAα2,6Gal receptor. It was noteworthy that the virus possessed multiple genetic markers for mammalian adaptation in the internal genes. Animal studies showed that compared with genotype 1 (G1) EA H1N1 virus and early prevalent G4 EA H1N1 virus, A/swine/Neimenggu/0326/2023 virus exhibited increased virus shedding, enhanced replication in lungs, and caused more severe lung lesions in pigs. These findings indicate that the G4 EA H1N1 virus poses increased threat to pork industry, controlling the prevailing viruses in pigs should be promptly implemented.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Doenças dos Suínos , Suínos , Humanos , Animais , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Genótipo , Aves , China/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...