Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Front Immunol ; 15: 1404649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100665

RESUMO

The type I interferon (IFN) pathway is important for eukaryotic cells to resist viral infection, as well as an impediment to efficient virus replication. Therefore, this study aims to create an IFNAR1 knockout (KO) Madin-Darby bovine kidney (MDBK) cell line using CRISPR/Cas9 and investigate its application and potential mechanism in increasing viral replication of bovines. The IFNAR1 KO cells showed increased titers of bovine viral diarrhea virus (BVDV) (1.5 log10), with bovine enterovirus and bovine parainfluenza virus type 3 (0.5-0.8 log10). RNA-seq revealed reduced expression of the genes related IFN-I pathways including IFNAR1, STAT3, IRF9, and SOCS3 in IFNAR1 KO cells compared with WT cells. In WT cells, 306 differentially expressed genes (DEGs) were identified between BVDV-infected and -uninfected cells. Of these, 128 up- and 178 down-regulated genes were mainly associated with growth cycle and biosynthesis, respectively. In IFNAR1 KO cells, 286 DEGs were identified, with 82 up-regulated genes were associated with signaling pathways, and 204 down-regulated genes. Further, 92 DEGs were overlapped between WT and IFNAR1 KO cells including ESM1, IL13RA2, and SLC25A34. Unique DEGs in WT cells were related to inflammation and immune regulation, whereas those unique in IFNAR1 KO cells involved in cell cycle regulation through pathways such as MAPK. Knocking down SLC25A34 and IL13RA2 in IFNAR1 KO cells increased BVDV replication by 0.3 log10 and 0.4 log10, respectively. Additionally, we constructed an IFNAR1/IFNAR2 double-knockout MDBK cell line, which further increased BVDV viral titers compared with IFNAR1 KO cells (0.6 log10). Overall, the IFNAR1 KO MDBK cell line can support better replication of bovine viruses and therefore provides a valuable tool for bovine virus research on viral pathogenesis and host innate immune response.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Receptor de Interferon alfa e beta , Replicação Viral , Animais , Bovinos , Receptor de Interferon alfa e beta/genética , Linhagem Celular , Vírus da Diarreia Viral Bovina/fisiologia , Vírus da Diarreia Viral Bovina/genética
2.
Virology ; 598: 110189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089051

RESUMO

Bovine viral diarrhea virus (BVDV) is a widespread pathogen of cattle and other mammals that causes major economic losses in the livestock industry. N4-TSC and 6NO2-TSC are two thiosemicarbazones derived from 1-indanone that exhibit anti-BVDV activity in vitro. These compounds selectively inhibit BVDV and are effective against both cytopathic and non-cytopathic BVDV-1 and BVDV-2 strains. We confirmed that N4-TSC acts at the onset of viral RNA synthesis, as previously reported for 6NO2-TSC. Moreover, resistance selection and characterization showed that N4-TSCR mutants were highly resistant to N4-TSC but remained susceptible to 6NO2-TSC. In contrast, 6NO2-TSCR mutants were resistant to both compounds. Additionally, mutations N264D and A392E were found in the viral RNA-dependent RNA polymerase (RdRp) of N4-TSCR mutants, whereas I261 M was found in 6NO2-TSCR mutants. These mutations lay in a hydrophobic pocket within the fingertips region of BVDV RdRp that has been described as a "hot spot" for BVDV non-nucleoside inhibitors.


Assuntos
Antivirais , Farmacorresistência Viral , Genótipo , Indanos , Tiossemicarbazonas , Antivirais/farmacologia , Antivirais/química , Animais , Bovinos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Indanos/farmacologia , Indanos/química , Farmacorresistência Viral/genética , Vírus da Diarreia Viral Bovina Tipo 1/efeitos dos fármacos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/genética , Linhagem Celular , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Diarreia Viral Bovina Tipo 2/genética , Vírus da Diarreia Viral Bovina Tipo 2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Mutação , RNA Viral/genética
3.
Sci Rep ; 14(1): 10169, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702375

RESUMO

Bovine viral diarrhea virus (BVDV) is considered to be the most common agent of severe diarrhea in cattle worldwide, causing fever, diarrhea, ulcers, and abortion. Bovine herpesvirus 1 (BoHV-1) is also a major bovine respiratory disease agent that spreads worldwide and causes extensive damage to the livestock industry. Recombinase polymerase amplification (RPA) is a novel nucleic acid amplification method with the advantages of high efficiency, rapidity and sensitivity, which has been widely used in the diagnosis of infectious diseases. A dual RPA assay was developed for the simultaneous detection of BVDV and BoHV-1. The assay was completed at a constant temperature of 37 °C for 30 min. It was highly sensitive and had no cross-reactivity with other common bovine viruses. The detection rate of BVDV RPA in clinical samples (36.67%) was higher than that of PCR (33.33%), the detection rate of BoHV-1 RPA and PCR were equal. Therefore, the established dual RPA assay for BVDV and BoHV-1 could be a potential candidate for use as an immediate diagnostic.


Assuntos
Vírus da Diarreia Viral Bovina , Herpesvirus Bovino 1 , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Animais , Bovinos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Sensibilidade e Especificidade , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/diagnóstico , DNA Viral/genética
4.
Viruses ; 16(5)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38793603

RESUMO

Bovine viral diarrhea virus (BVDV) infections cause USD 1.5-2 billion in losses annually. Maternal BVDV after 150 days of gestation causes transient fetal infection (TI) in which the fetal immune response clears the virus. The impact of fetal TI BVDV infections on postnatal growth and white blood cell (WBC) methylome as an index of epigenetic modifications was examined by inoculating pregnant heifers with noncytopathic type 2 BVDV or media (sham-inoculated controls) on Day 175 of gestation to generate TI (n = 11) and control heifer calves (n = 12). Fetal infection in TI calves was confirmed by virus-neutralizing antibody titers at birth and control calves were seronegative. Both control and TI calves were negative for BVDV RNA in WBCs by RT-PCR. The mean weight of the TI calves was less than that of the controls (p < 0.05). DNA methyl seq analysis of WBC DNA demonstrated 2349 differentially methylated cytosines (p ≤ 0.05) including 1277 hypomethylated cytosines, 1072 hypermethylated cytosines, 84 differentially methylated regions based on CpGs in promoters, and 89 DMRs in islands of TI WBC DNA compared to controls. Fetal BVDV infection during late gestation resulted in epigenomic modifications predicted to affect fetal development and immune pathways, suggesting potential consequences for postnatal growth and health of TI cattle.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Metilação de DNA , Vírus da Diarreia Viral Bovina , Epigênese Genética , Leucócitos , Animais , Bovinos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Feminino , Gravidez , Leucócitos/virologia , Vírus da Diarreia Viral Bovina/genética , Anticorpos Antivirais/sangue , Doenças Fetais/virologia , Doenças Fetais/veterinária , Doenças Fetais/genética , Vírus da Diarreia Viral Bovina Tipo 2/genética , Feto/virologia
5.
Acta Trop ; 254: 107198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531427

RESUMO

Bovine viral diarrhea virus (BVDV) infection has a significant economic impact on beef and dairy industries worldwide. Fetal infection with a non-cytopathic strain may lead to the birth of persistently infected (PI) offspring, which is the main event in the epidemiological chain of BVDV infection. This report describes the birth of 99 BVDV-PI heifer calves within 52 days of birth in a regular BVDV-vaccinated Brazilian dairy cattle herd and the subgenotypes of the infecting field strains. This study was conducted in a high-yielding open dairy cattle herd that frequently acquired heifers from neighboring areas for replacement. The farm monitors the birth of PI calves by screening all calves born using an ELISA (IDEXX) for BVDV antigen detection. All calves aged 1-7 days were evaluated. For positive and suspected results, the ELISA was repeated when the calves were close to one month old. A total of 294 heifer calves were evaluated between February and March 2021. Of these, 99 (33.7 %) had positive ELISA results and were considered PI calves. To evaluate the predominant BVDV species and subgenotypes in this outbreak, whole blood samples were collected from 31 calves born during the study period. All samples were submitted to the RT-PCR assay for the partial amplification of the BVDV 5'-UTR region, and these amplicons were subjected to nucleotide sequencing. Phylogenetic analysis identified BVDV-1b and BVDV-1d in 16 and 13 heifer calves, respectively. In two calves, it was not possible to determine the BVDV-1 subgenotype. Detection of PI animals and monitoring of circulating BVDV subgenotype strains are central to disease control. This study shows that regular BVDV vaccination alone may be insufficient to prevent BVDV infection in high-yielding open dairy cattle herds. Other biosecurity measures must be adopted to avoid the purchase of cattle with acute infections by BVDV or BVDV-PI, which can cause a break in the health profile of the herd and economic losses.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Surtos de Doenças , Filogenia , Animais , Bovinos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Surtos de Doenças/veterinária , Feminino , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 1/classificação , Vírus da Diarreia Viral Bovina Tipo 1/isolamento & purificação , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Brasil/epidemiologia , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/classificação , Vírus da Diarreia Viral Bovina/isolamento & purificação , Vírus da Diarreia Viral Bovina/imunologia , Genótipo , Vacinas Virais/imunologia , Ensaio de Imunoadsorção Enzimática , Indústria de Laticínios , Vacinação/veterinária , Anticorpos Antivirais/sangue
6.
J Vet Diagn Invest ; 36(2): 222-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429686

RESUMO

Since being reported in 1979 and 2006, indirect fluorescent antibody (IFA) tests have not been reported to detect bovine viral diarrhea virus (BVDV) antibodies to our knowledge. Thus, we re-evaluated the efficacy and usefulness of IFA tests for BVDV serology. We tested 4 combinations of 2 antibody conjugates (fluorescein isothiocyanate [FITC]-conjugated rabbit IgG anti-bovine IgG; rabbit IgG F(ab')2 fragment anti-bovine IgG [F(ab')2 FITC-IgG]) and 2 washing solutions (PBS; carbonate-bicarbonate-buffered saline [CBBS]) to evaluate the specificity of an IFA test for BVDV. We compared the sensitivity of the optimal combination with virus neutralization (VN) tests and an ELISA, and compared IFA with VN titers against different genotype (subgenotype) strains. For the F(ab')2 FITC-IgG/CBBS combination, only 1 of the 156 (0.6%) 4-fold diluted cattle sera resulted in a nonspecific reaction; other combinations led to a much higher incidence (22.9-37.2%). For the F(ab')2 FITC-IgG/CBBS combination, IFA detection rates were identical (36 of 59) for BVDV1 and BVDV2 genotypes, and IFA titers against them were strongly correlated (r = 0.99). The antibody-detection rates of the IFA tests were almost identical to those of VN tests and the ELISA (κ: 0.96 and 0.89, respectively). The IFA titers against 4 strains (BVDV1a, BVDV1j, BVDV2a, and an unidentified strain) were similar, 1,024 to ≥4,096, although the VN titers were different. Thus, our IFA tests were specific and sensitive, and more useful than VN tests given that the IFA tests could evaluate the immune status of cattle using a representative strain, regardless of genotype (subgenotype).


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Bovinos , Animais , Coelhos , Fluoresceína-5-Isotiocianato , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/genética , Anticorpos Antivirais , Imunoglobulina G , Diarreia/veterinária , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico
7.
N Z Vet J ; 72(2): 66-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212951

RESUMO

AIM: To determine which genotypes of bovine viral diarrhoea virus (BVDV) circulate among cattle in New Zealand. METHODS: Samples comprised BVDV-1-positive sera sourced from submissions to veterinary diagnostic laboratories in 2019 (n = 25), 2020 (n = 59) and 2022 (n = 74) from both beef and dairy herds, as well as archival BVDV-1 isolates (n = 5). Fragments of the 5' untranslated region (5' UTR) and glycoprotein E2 coding sequence of the BVDV genome were amplified and sequenced. The sequences were aligned to each other and to international BVDV-1 sequences to determine their similarities and phylogenetic relationships. The 5' UTR sequences were also used to create genetic haplotype networks to determine if they were correlated with selected traits (location, type of farm, and year of collection). RESULTS: The 5' UTR sequences from New Zealand BVDV were closely related to each other, with pairwise identities between 89% and 100%. All clustered together and were designated as BVDV-1a (n = 144) or BVDV-1c (n = 5). There was no evidence of a correlation between the 5' UTR sequence and the geographical origin within the country, year of collection or the type of farm. Partial E2 sequences from New Zealand BVDV (n = 76) showed 74-100% identity to each other and clustered in two main groups. The subtype assignment based on the E2 sequence was the same as based on the 5' UTR analysis. This is the first comprehensive analysis of genomic variability of contemporary New Zealand BVDV based on the analysis of the non-coding (5' UTR) and coding (E2) sequences. CONCLUSIONS AND CLINICAL RELEVANCE: Knowledge of the diversity of the viruses circulating in the country is a prerequisite for the development of effective control strategies, including a selection of suitable vaccines. The data presented suggest that New Zealand BVDV are relatively homogeneous, which should facilitate eradication efforts including selection or development of the most suitable vaccines.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Vacinas , Bovinos , Animais , Vírus da Diarreia Viral Bovina/genética , Filogenia , Regiões 5' não Traduzidas , Nova Zelândia/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Vírus da Diarreia Viral Bovina Tipo 1/genética , Genótipo
8.
J Vet Diagn Invest ; 36(1): 115-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37908042

RESUMO

We characterized bovine viral diarrhea virus (BVDV)-related abortions in cattle and identified the species and subgenotypes in the state of Santa Catarina, southern Brazil. Our RT-PCR assay was positive for BVDV in 5 fetuses from different farms; however, 3 of the 5 fetuses were also PCR-positive for Neospora caninum. In the 5 BVDV-positive fetuses, gross lesions included fetal mummification (1), hepatomegaly (1), subcutaneous edema (1), and perirenal edema (1). Predominant histologic lesions included epicarditis and mild-to-moderate lymphoplasmacytic myocarditis (5), mild multifocal lymphoplasmacytic interlobular pneumonia (4), nephrosis associated with moderate multifocal interstitial nephritis (1), moderate multifocal lymphoplasmacytic necrotic hepatitis (1), and mild multifocal lymphoplasmacytic meningitis (1). The amplification products from the Pestivirus 5'UTR region of 4 of the 5 fetuses had 96.3-100% similarity between fetal strains and reference strains. The samples were distributed into 2 branches of the phylogenetic tree; strains UDESC:01, UDESC:02, and UDESC:05 clustered in the BVDV-1e branch, uncommon in the Americas, and strain UDESC:04 clustered in the BVDV-2b branch. The three 1e strains had 96.9-97.4% similarity.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina Tipo 2 , Vírus da Diarreia Viral Bovina , Gravidez , Feminino , Bovinos , Animais , Vírus da Diarreia Viral Bovina Tipo 1/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Brasil/epidemiologia , Filogenia , Vírus da Diarreia Viral Bovina Tipo 2/genética , Vírus da Diarreia Viral Bovina/genética , Diarreia/veterinária , Edema/veterinária , Doenças dos Bovinos/epidemiologia
9.
Virology ; 590: 109968, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141499

RESUMO

Bovine viral diarrhea virus (BVDV) is known to cause financial losses and decreased productivity in the cattle industry worldwide. Currently, there are no available antiviral treatments for effectively controlling BVDV infections in laboratories or farms. The BVDV envelope protein (E2) mediates receptor recognition on the cell surface and is required for fusion of virus and cell membranes after the endocytic uptake of the virus during the entry process. Therefore, E2 is an attractive target for the development of antiviral strategies. To identify BVDV antivirals targeting E2 function, we defined a binding site in silico located in domain IIIc at the interface between monomers in the disulfide linked dimer of E2. Employing a de novo design methodology to identify compounds with the potential to inhibit the E2 function, compound 9 emerged as a promising candidate with remarkable antiviral activity and minimal toxicity. In line with targeting of E2 function, compound 9 was found to block the virus entry into host cells. Furthermore, we demonstrated that compound 9 selectively binds to recombinant E2 in vitro. Molecular dynamics simulations (MD) allowed describing a possible interaction pattern between compound 9 and E2 and indicated that the S enantiomer of compound 9 may be responsible for the antiviral activity. Future research endeavors will focus on synthesizing enantiomerically pure compounds to further support these findings. These results highlight the usefulness of de novo design strategies to identify a novel class of BVDV inhibitors that block E2 function inhibiting virus entry into the host cell.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Proteínas do Envelope Viral/metabolismo , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/metabolismo , Antivirais/farmacologia
10.
Virulence ; 15(1): 2289764, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047736

RESUMO

Bovine viral diarrhoea-mucosal disease caused by bovine viral diarrhoea virus (BVDV) is a major infectious disease that affects the cattle industry. The nonstructural protein Npro of BVDV antagonizes the type I interferon (IFN-I) pathway, thereby escaping the host immune response. The exact mechanism by which Npro uses host proteins to inhibit IFN-I production is unclear. The host protein CALCOCO2 was identified as a binding partner of Npro using a yeast two-hybrid screen. The interaction between Npro and CALCOCO2 was confirmed by yeast co-transformation, co-immunoprecipitation assays, and GST pull-down assays. The stable overexpression of CALCOCO2 markedly promoted BVDV propagation, while the knockdown of CALCOCO2 significantly inhibited BVDV replication in MDBK cells. Interestingly, CALCOCO2 inhibited IFN-I and IFN-stimulated gene production in BVDV-infected cells. Ectopic expression of CALCOCO2 effectively reduced IRF3 protein levels via the proteasome pathway. CALCOCO2 was found to promote Npro-mediated ubiquitination degradation of IRF3 by interacting with IRF3. Our results demonstrate the molecular mechanism by which Npro recruits the CALCOCO2 protein to regulate IRF3 degradation to inhibit IFN-I production.


Assuntos
Vírus da Diarreia Viral Bovina , Interferon Tipo I , Animais , Bovinos , Saccharomyces cerevisiae , Replicação Viral , Bioensaio , Vírus da Diarreia Viral Bovina/genética , Diarreia
11.
Vet Microbiol ; 288: 109948, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113573

RESUMO

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and is an important pathogen that represents a serious threat to the development of the cattle industry by causing significant economic losses. Liver X receptors (LXRs) are members of the nuclear receptor superfamily and have become attractive therapeutic targets for cardiovascular disease. In the present study, we found that LXRs in both Madin-Darby bovine kidney (MDBK) cells and mice were associated with BVDV infection. GW3965, an agonist for LXRs, significantly inhibited BVDV RNA and protein levels in MDBK cells. In vivo studies in a mouse model also confirmed the inhibitory role of GW3965 in BVDV replication and the ameliorating effect of GW3965 on pathological injury to the duodenum. In vitro investigations of the potential mechanisms involved showed that GW3965 significantly inhibited BVDV-induced increases in cholesterol levels and viral internalization. Furthermore, the antiviral activity of GW3965 was significantly reduced following cholesterol replenishment, thus demonstrating that cholesterol was involved in the resistance of GW3965 to BVDV replication. Further studies indicated the role of ATP-binding cassette transporter A1 (ABCA1) and cholesterol-25-hydroxylase (CH25H) in the antiviral activity of GW3965. We also demonstrated the significant antiviral effect of 25hydroxycholesterol (25HC), a product of the catalysis of cholesterol by CH25H. In addition, the anti-BVDV effects of demethoxycurcumin (DMC), cyanidin-3-O-glucoside (C3G), and saikosaponin-A (SSA), three natural agonizts of LXRs, were also confirmed in both MDBK cells and mice. However, the antiviral activities of these agents were weakened by SR9243, a synthetic inhibitor of LXRs. For the first time, our research demonstrated that the activation of LXRs can exert significant anti-BVDV effects in MDBK cells and mice.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Bovinos , Animais , Camundongos , Linhagem Celular , Receptores X do Fígado , Replicação Viral/genética , Vírus da Diarreia Viral Bovina/genética , Rim , Antivirais/farmacologia , Colesterol , Diarreia/veterinária
12.
Vopr Virusol ; 68(6): 465-478, 2023 Dec 26.
Artigo em Russo | MEDLINE | ID: mdl-38156563

RESUMO

The review provides an analysis of literature data on the persistent form of Bovine Viral diarrhea/Mucosal disease (BVD) and is focused on virus and host factors, including those related to immune response, that contribute the persistence of the virus. BVD is a cattle disease widespread throughout the world that causes significant economic damage to dairy and beef cattle. The disease is characterized by a variety of clinical signs, including damage to the digestive and respiratory organs, abortions, stillbirths and other failures of reproductive functions.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina , Animais , Gravidez , Feminino , Bovinos , Vírus da Diarreia Viral Bovina/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Diarreia/veterinária
13.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4861-4873, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147987

RESUMO

The aim of this study was to produce Erns protein of bovine viral diarrhea virus (BVDV) by using suspensively cultured CHO cells expression system and to analyze the immunogenicity of the purified Erns protein. In this study, the recombinant eukaryotic expression plasmid pcDNA3.1-BVDV-Erns was constructed based on the gene sequence of BVDV-1 NADL strain. The Erns protein was secreted and expressed in cells supernatant after transfecting the recombinant expression plasmid pcDNA3.1-BVDV-Erns into CHO cells. The expression and purification of the Erns protein was analyzed by SDS-PAGE, the reactivity was determined with anti-His monoclonal antibodies and BVDV positive serum with Western blotting. Immunogenicity analysis of the Erns protein was determined after immunizing New Zealand white rabbits, and the serum antibodies were tested by indirect ELISA (iELISA) and indirect immunofluorescence (IFA). The serum neutralizing titer of the immunized rabbits was determined by virus neutralization test. The concentration of the purified Erns protein was up to 0.886 mg/mL by BCA protein quantification kit. The results showed that the Erns protein could be detected with anti-His monoclonal antibodies and anti-BVDV sera. Serum antibodies could be detected by iELISA on the 7th day post-prime immunization, and the antibody level was maintained at a high titer until the 28th day post-immunization. The antibody titer was 1:128 000. Furthermore, the expression of the Erns protein in BVDV-infected MDBK cells could be detected with immunized rabbits sera by IFA. Moreover, antigen-specific neutralizing antibodies of 2.71 log10 was induced in rabbits. In this study, purified BVDV Erns protein was successfully produced using CHO suspension culture system, and the recombinant protein was proved to have a good immunogenicity, which may facilitate the development of BVD diagnosis method and novel subunit vaccine.


Assuntos
Vírus da Diarreia Viral Bovina , Vacinas Virais , Coelhos , Animais , Cricetinae , Cricetulus , Células CHO , Anticorpos Antivirais , Vírus da Diarreia Viral Bovina/genética , Anticorpos Monoclonais/genética , Diarreia , Vacinas Virais/genética
14.
Viruses ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896862

RESUMO

The antigenicity of bovine viral diarrhea virus (BVDV) has been evaluated using virus-neutralizing titer data analyzed by principal component analysis (PCA) and has demonstrated numerous isolates to be antigenically divergent from US vaccine strains. The lack of BVDV-1b strains in currently licensed vaccines has raised concerns regarding the lack of protection against BVDV-1b field strains. The aim of this study was to evaluate the antigenic diversity of BVDV-1b strains and better understand the breadth of antigenic relatedness using BVDV-1b antisera and antisera from vaccine strains. Results from this analysis demonstrate the antigenic diversity observed among BVDV-1b isolates and genetic assignment into the BVDV-1b subgenotype is not representative of antigenic relatedness. This is demonstrated by BVDV-1b isolates (2280N, SNc, Illc, MSU, and 2337) observed to be as antigenically dissimilar as BVDV-2a isolates when using BVDV-1b antisera. Additionally, when BVDV-1a vaccine antisera was used for comparisons, a greater percentage of BVDV-1b isolates clustered with BVDV-1a vaccine strains as part of PC1, suggesting antigenic relatedness and potentially partial protection. Collectively, data from this study would suggest that while most BVDV-1b isolates are antigenically similar, there are antigenically dissimilar BVDV-1b isolates as determined by the lack of cross-reactivity, which may contribute to the lack of protection.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Vacinas , Animais , Bovinos , Vírus da Diarreia Viral Bovina/genética , Análise Multivariada , Soros Imunes , Diarreia , Filogenia
15.
Int J Biol Macromol ; 253(Pt 7): 127351, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839600

RESUMO

Bovine viral diarrhea virus (BVDV) is one of the most important pathogens of cattle, causing numerous economic losses to the cattle industry. To date, many potential mechanisms of BVDV evading or subverting innate immunity are still unknown. In this study, an lnc-CYLD/miR-2383/CYLD axis involved in BVDV-host interactions was screened from RNA-seq-based co-expression networks analysis of long noncoding RNAs, microRNAs and mRNAs in BVDV-infected bovine cells, and underlying mechanisms of lnc-CYLD/miR-2383/CYLD axis regulating BVDV replication were explored. Results showed that BVDV-induced up-regulation of the lnc-CYLD competed for binding to the miR-2383, and then promoted CYLD expression, thereby inhibiting RIG-I-mediated type-I interferon (IFN) production, which was subsequently confirmed by treatment with lnc-CYLD overexpression and miR-2383 inhibitor. However, miR-2383 transfection and small interfering RNA-mediated lnc-CYLD knockdown inhibited CYLD expression and enhanced RIG-I-mediated type-I IFN production, inhibiting BVDV replication. In addition, interaction relationship between lnc-CYLD and miR-2383, and colocalization relationship of lnc-CYLD, miR-2383 and CYLD were confirmed by dual-luciferase assay and in situ hybridization assay. Conclusively, up-regulation of the lnc-CYLD as a competing endogenous RNA binds to the miR-2383 to reduce inhibitory effect of the miR-2383 on the CYLD expression, playing an important role in counteracting type-I IFN-dependent antiviral immunity to facilitate BVDV replication.


Assuntos
Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Interferon Tipo I , MicroRNAs , RNA Longo não Codificante , Animais , Bovinos , Proteína DEAD-box 58/genética , RNA Longo não Codificante/metabolismo , Replicação Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Diarreia Viral Bovina/genética , Interferon Tipo I/genética , Diarreia , Vírus da Diarreia Viral Bovina Tipo 1/genética
16.
Virol J ; 20(1): 205, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679808

RESUMO

Bovine viral diarrhea virus (BVDV) affects cattle worldwide causing severe productive and economic loss. In this study, we investigated the subgenotypes of BVDV circulating in cattle samples from the Aysén region, an active cattle breeding area located in southern Chile. Partial amplification of the 5' untranslated region (UTR) was performed by polymerase chain reaction (PCR), and twelve samples were analyzed by Sanger sequencing and phylogenetic analysis. Eight samples were identified as belonging to Pestivirus bovis subgenotype 1e, three to 1-b, and one to 1-d. The phylogenetic analyses performed revealed a marked distance between these now-identified strains and those previously reported in the country. These findings support the need to continually expand the analysis of the variability of the viral phylogeny for the currently circulating BVDV strains and to update the vaccines recommended for this livestock area and surrounding areas.


Assuntos
Vírus da Diarreia Viral Bovina , Animais , Bovinos , Chile/epidemiologia , Filogenia , Vírus da Diarreia Viral Bovina/genética , Regiões 5' não Traduzidas , Diarreia
17.
J Virol ; 97(9): e0057223, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695056

RESUMO

The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.


Assuntos
Vírus da Diarreia Viral Bovina , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Vírus da Diarreia Viral Bovina/genética , Hepacivirus/metabolismo , Mutação , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Linhagem Celular , Animais
18.
Virus Genes ; 59(6): 836-844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589803

RESUMO

Whole-genome phylogenetic analysis, the most suitable strategy for subtyping bovine viral diarrhea virus 1 (BVDV-1) and BVDV-2, is not feasible for many laboratories. Consequently, BVDV isolates/strains have been frequently subtyped based on analysis of single genomic regions, mainly the 5' untranslated region (UTR). This approach, however, may lead to inaccurate and/or poorly statistically supported viral classification. Herein, we describe novel primer sets whose amplicons may be easily sequenced and used for BVDV subtyping. Initially, genomic regions previously described as the most suitable targets for BVDV subtyping were analyzed for design of high-coverage primers. The putative amplicons were analyzed in silico for their suitability to reproduce the phylogenetic classification of 118 BVDV-1 and 88 BVDV-2 complete/near-complete genomes (CNCGs) (GenBank). This analysis was also performed considering the region amplifiable by primers HCV90-368, 324-326 and BP189-389 (5'UTR), which have been used for BVDV diagnosis and/or classification. After confirming the agreement between the analyses of our primers' amplicon versus the CNCGs, we optimized the RT-PCRs and evaluated their performance for amplification of BVDV isolates/strains (n = 35 for BVDV-1; n = 33 for BVDV-2). Among the potential targets for BVDV subtyping, we designed high-coverage primers for NS3-NS4A (BVDV-1) (526 bp amplicon) and NS5B (BVDV-2) (728 bp). The classification based on these regions fully reproduced the subtyping of all CNCGs. On the other hand, subtyping based on the putative amplicons from primers HCV90-368, 324-326 and BP189-389 showed disagreements in relation the CNCG analysis. The NS3-NS4A and NS5B primers also allowed the amplification of all BVDV isolates/strains tested. Finally, we suggest the use of these primers in future phylogenetic and epidemiological studies of BVDVs.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina Tipo 2 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Vírus da Diarreia Viral Bovina Tipo 2/genética , Filogenia , Genômica , Regiões 5' não Traduzidas/genética , Vírus da Diarreia Viral Bovina/genética
19.
Res Vet Sci ; 162: 104965, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516041

RESUMO

The aim of this study was to estimate the occurrence of bovine viral diarrhea virus (BVDV) infection and to assess the population immunity in cattle vaccinated against BVDV in different regions of Kazakhstan. Cattle samples were collected in 12 oblasts (43 districts) of Kazakhstan. A total of 2477 cattle from 114 herds and 21 Bukhara deer (Cervus elaphus bactrianus) were examined by ELISA and conventional RT-PCR. Univariate and multivariate logistic regression analysis was performed to identify risk factors associated with BVDV infection in the country. In total, antibodies against BVDV were found in 79.3% (1965/2477) of all the animals and 92.1% (105/114) of all the herds examined. Seroprevalence in unvaccinated and vaccinated animals was 48.6% (447/920) and 98.7% (1391/1410), respectively. Seroprevalence in deer was 19.1% (4/21). The BVDV RNA was detected in six unvaccinated cattle (0.2%). Sequence analysis of the 5'-untranslated region demonstrated that four of the detected strains belonged to BVDV-1 and two strains to BVDV-2. Regression analysis revealed that age, production type, housing method, farm size, and geographic location were risk factors for BVDV infection in cattle in Kazakhstan. The present data confirm circulation of BVDV-1 and BVDV-2 in Kazakhstan and highlight the need to improve strategies for prevention and control of BVDV infection in the country.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Cervos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina Tipo 2 , Vírus da Diarreia Viral Bovina , Animais , Bovinos , Vírus da Diarreia Viral Bovina Tipo 1/genética , Estudos Soroepidemiológicos , Cazaquistão/epidemiologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina/genética , Anticorpos Antivirais , Regiões 5' não Traduzidas , Diarreia/veterinária , Doenças dos Bovinos/epidemiologia
20.
BMC Res Notes ; 16(1): 121, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365644

RESUMO

OBJECTIVE: Evaluate bovine viral diarrhea virus (BVDV) antigenicity by using virus neutralization titers (VNT) analyzed using the principal component analysis (PCA) from antisera generated against US-based vaccine strains against both US-origin field isolates and non-US-origin field isolates. RESULTS: Data from both independent analyses demonstrated that several US-origin and non-US-origin BVDV field isolates appear to be antigenically divergent from the US-based vaccine strains. Results from the combined analysis provided greater insight into the antigenic diversity observed among BVDV isolates. Data from this study further support genetic assignment into BVDV subgenotypes, as well as strains within subgenotypes is not representative of antigenic relatedness. PCA highlights isolates that are antigenically divergent from members of the same species and subgenotype and conversely isolates that belong to different subgenotypes have similar antigenic characteristics when using antisera from US-based vaccine isolates.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Vacinas , Animais , Bovinos , Genótipo , Vírus da Diarreia Viral Bovina/genética , Soros Imunes , Análise Multivariada , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...